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Abstract—Near realtime flood mapping in densely populated ur-
ban areas is critical for emergency response. The strong heterogene-
ity of urban areas poses a big challenge for accurate near realtime
flood mapping. However, previous studies on automatic methods
for urban flood mapping perform infeasible in near realtime or fail
to generalize well to other floods, for several reasons. First, multi-
temporal pixel-wise flood mapping requires accurate image regis-
tration, hindering the efficiency of large-scale processing. Although
automatic image registration has been investigated, precisely coreg-
istered multitemporal image sequence requires time-consuming
fine tuning. Additionally, the floods may lead to the loss of many cor-
responding image points across multitemporal images for accurate
coregistration. Second, existing unsupervised methods generally
rely on hand-crafted features for floodwater detection. Such fea-
tures may not well represent the patterns of floodwaters in different
areas due to inconsistent weather conditions, illumination, and
floodwater spectra. This article proposes a self-supervised learning
framework for patch-wise urban flood mapping using bitemporal
multispectral satellite imagery. Patch-wise change vector analysis
is used with patch features learned through a self-supervised au-
toencoder to produce patch-wise change maps showing potentially
flood-affected areas. Postprocessing including spectral and spatial
filtering is applied to these patch-wise change maps to remove non-
flood related changes. Final flood maps and parameter sensitivities
were evaluated using several performance metrics. Two flood events
from areas with differing degrees of urbanization were considered:
Hurricane Harvey flood (2017) in Houston, Texas, and Hurricane
Florence flood (2018) in Lumberton, North Carolina. The proposed
method shows strong performance for self-supervised urban flood
mapping.

Index Terms—Flood mapping, multispectral (MS) imagery, self-
supervised learning, urban.
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1. INTRODUCTION

HROUGHOUT the history of human civilization, floods

have brought catastrophe to human settlements, including
huge losses of life and property. As the most frequent natural
disaster, floods account for more than 75% of federallydeclared
disasters in the U.S. [1]. Records of flood events globally show
that the number of individuals affected by floods is growing at an
alarming rate [2]. In response, the United Nations (UN) has set
the goal to rapidly and accurately respond to upcoming floods
for protecting vulnerable people and mitigating economic losses,
as stated in the UN Sustainable Development Goal 11 (2015-
2030) [3]. To help meet this goal, improved methods for realtime
flood extent mapping over dense urban regions to support flood
response efforts are needed.

Remote sensing (RS) data have played an important role in
large-scale flood extent mapping. Optical multispectral (MS)
or hyperspectral (HS) satellite imagery in particular has unique
advantages for identifying flooded (FL) areas by virtue of the
abundant spectral information associated with floodwater [4]-
[9]. Wieland et al. [ 7] developed an operational processing chain
for flood extent mapping with Landsat and Sentinel-2 images.
Wang et al. [6] used MS imargery from Landsat 8 to explore the
role of normalized difference water index in super-resolution
flood inundation mapping. Li et al. [4] proposed to use discrete
particle swarm optimization for subpixel flood mapping on
Landsat images. Recently, Du et al. [10] and Tong et al. [11]
proposed improved particle swarm optimization methods for
endmember extraction, which have great potential for subpixel
flood mapping. These aforementioned flood mapping studies,
however, have focused on rural areas with relatively homoge-
neous image backgrounds. Meanwhile, flood extent mapping is
insufficiently investigated in urban areas due to heterogeneous
land cover and land use, low spatial resolution of MS imagery,
and lack of flood extent ground truth datasets [12], [13].

Satellite sensors are capable of scanning the entire earth
surface with a high revisit frequency, abundant spectral bands,
and high spatial resolution, which enable high-resolution map-
ping over heterogeneous urban areas. There have been a
growing number of satellite constellations in orbit, includ-
ing PlanetLab’s [14] PlanetScope, RapidEye, and SkySat and
Maxar/DigitalGlobe’s [15] QuickBird, WorldView, IKONOS,
and GeoEye. The raw pixel digital numbers in multitem-
poral optical imagery are usually inconsistent for the same
land cover types due to the changing weather and illumina-
tion conditions [16]. Such inconsistency is a barrier to robust
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floodwater detection from multitemporal RS images using data-
driven machine learning models. Geometric and radiometric cor-
rections are needed before surface reflectance imagery products
can be useful for consistent spectral-based identification of FL
areas [12], [13].

Regarding the mapping strategy, both pixel-wise [4], [5],
[16]-[20] and patch-wise [12], [13], [21] models have been
proposed for flood mapping. Pixel-wise flood mapping meth-
ods assign each pixel of the input imagery a label [e.g., FL
or nonflooded (NF)], whereas patch-wise methods predict the
class of an entire patch cropped from the imagery. Both pixel-
and patch-wise mapping have been explored for flood extent
mapping, since each has unique advantages in specific scenarios.
Patch-wise mapping has been widely used for flood mapping
over heterogeneous urban areas [12], [13], [21], for several
reasons. First, patch-wise mapping helps mitigate the impact of
errors from multitemporal image registration. It is challenging
to have large-scale coregistered multitemporal high spatial reso-
lution images in near realtime due to radiometric and geometric
distortions [22]-[24]. Intensive labor work is required to fine-
tune the corresponding image points for accurate coregistration.
Such preprocessing is time-consuming for large-scale flood
mapping, precluding application in near realtime. Moreover,
since floodwaters may have covered a large part of the study
area, many corresponding image points across the multitemporal
images may not be available for image registration. Second,
pixel-wise mapping requires pixel-wise human annotations for
model training and validation, which is more time-consuming
and labor-intensive than patch-wise mapping. Even if un-/self-
supervised methods are used, human annotated validation data
are still required for model evaluation over a small study area,
which is expensive due to the heterogeneous image background
over urban areas. For example, to map FL areas on an image
of size 100 x 100 pixels (px), pixel-wise labeling requires 10*
labels, whereas patch-wise labeling requires only 102 labels if
the image is divided into nonoverlapping patches of size 10 x 10
px. In addition, it is more difficult to accurately label a pixel than
a patch for heterogeneous urban areas.

It is worth noting that, for urban flood mapping with high
spatial resolution imagery, the U.S. Federal Emergency Man-
agement Agency (FEMA) defined the National Flood Mapping
Products [25] with FL areas that are either submerged or sur-
rounded by floodwaters. As such, not only floodwater pixels but
also their neighboring nonfloodwater pixels (e.g., building pixels
surrounded by floodwaters) are included in FL areas. When
combined with self-supervised learning, patch-wise mapping
is able to address the aforementioned issues associated with
pixel-wise mapping and to produce large-scale flood maps in
near realtime. The patch-wise flood maps are consistent with
FEMA'’s Flood Mapping Products, since non-floodwater pixels
near floodwater pixels within the same patch are included in FL
areas.

To our best knowledge, few studies have investigated self-/un-
supervised patch-based methods using optical MS imagery for
flood mapping over heterogeneous urban areas. To overcome
the above limitations, this study proposes a self-supervised
patch-based urban flood mapping method using bitemporal
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pre- and postflood MS satellite imagery with four spectral
bands including blue (B), green (G), red (R), and near infrared
(NIR). Self-supervised learning is a special type of unsuper-
vised learning [26], [27]. Self-supervised models are trained
with automatically generated labels, which require no manual
annotation for training. In this study, patch features were learned
in a self-supervised manner using an autoencoder model [28].
We performed bitemporal patch change vector analysis (Patch-
CVA) followed by spectral and spatial filtering to map urban
floods in near realtime. The method was evaluated for two
hurricane-induced flood events in the United States: Hurri-
cane Harvey (2017) in Houston, Texas, and Hurricane Florence
(2018) in Lumberton, North Carolina. Results show that the
method provides strong performance and robust generalizability.

Major contributions of this study include the following.

1) The proposed method obviates massive human-annotated
training data through a self-supervised learning frame-
work. This enables the application of the method in
large-scale and realtime, which offers the potential for its
deployment in operational workflows at the front lines of
emergency humanitarian assistance and disaster relief.

2) The flood maps generated by the proposed method for
the two study areas demonstrate the method’s robustness
and generalizability in emergency response for upcoming
floods.

3) The proposed method is resilient to nonflood related
changes between the bitemporal data by leveraging spec-
tral and spatial filtering, which effectively removed non-
flood related changes for accurate flood mapping.

4) Although this framework is proposed to map urban floods
in near realtime, it also paves the way for damage mapping
in response to other types of disasters such as wildfires,
earthquakes, etc.

The structure of this article is organized as follows. Related
work is discussed in Section II. The study areas and datasets are
described in Section III. The proposed method is presented in
Section IV. Experimental results are summarized in Section V.
Discussion about the results is given in Section VI. Finally,
Section VII concludes this article.

II. RELATED WORK

Recent studies have shown promising results of supervised
patch-based land cover mapping and its potential in flood map-
ping. Li ef al. [21] developed an active self-learning convolu-
tional neural network (CNN) to classify the synthetic-aperture-
radar (SAR) image patches into three classes (i.e., NF, FL with
buildings, and FL without buildings). Peng et al. [12], [13]
designed a Siamese CNN model to evaluate the patch similarity
for identification of FL. MS image patches. Song et al. [29] and
Sharma et al. [30] proposed CNN-based models to map land
cover with superior performance compared with pixel-based
methods, especially in heterogeneous urban areas.

The aforementioned CNN based models demonstrate the
power of data-driven supervised deep learning and computer
vision in flood mapping by leveraging an increasing volume
of RS data with massive human labels. However, such a
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time-consuming manual labeling process poses further chal-
lenges for near realtime flood mapping and emergency response
in a large scale. Additionally, these models often fail to gener-
alize well when applied to other floods or locations [12], [16],
[27].

To address the challenges associated with supervised meth-
ods, unsupervised pixel-wise flood mapping with bitemporal
pre- and postflood imagery has been explored with as few
human annotations as possible through change detection [24],
[31]-[34] followed by automatic thresholding techniques such
as the minimum error thresholding proposed by Kittler and
Hlingworth (KI) [35], [36] and Otsu’s method [37], [38]. In
2009-2010, the IEEE Geoscience and Remote Sensing Society
launched a Data Fusion Contest [34] for flood mapping based on
multitemporal change detection, which involves both supervised
and unsupervised flood mapping on optical MS and SAR data.
In the category of unsupervised flood mapping with optical MS
data, the winning algorithm [34] used the NIR band of pre- and
postflood imagery with an unsupervised clustering algorithm,
leveraging the high absorption of water in the NIR band. Byun
et al. [24] proposed an unsupervised change detection approach
to pixel-wise flood mapping based on bitemporal MS image
fusion with detection of spectral distortion. Schlaffer er al. [32]
conducted harmonic analysis of multitemporal SAR imagery
to identify FL pixels, which showed strong deviations from
the corresponding NF pixels. Giustarini et al. [33] developed
a hybrid framework integrating SAR backscatter thresholding,
FL region growing, and change detection for flood mapping
using bitemporal SAR imagery. Du et al. [39] recently proposed
the unsupervised deep slow feature analysis for unsupervised
pixel-wise change detection based on bitemporal MS imagery,
which can be further applied in flood mapping.

The previous works discussed above showed good results
of flood mapping in an unsupervised manner without intensive
human labeling of training data. Unfortunately, those unsuper-
vised methods focused on pixel-wise mapping, which are not
directly applicable to patch-wise mapping over heterogeneous
urban areas.

To sum up, patch-wise flood mapping over heterogeneous
urban areas using a self-supervised deep learning approach
is still missing in previous works to the best of the authors’
knowledge, which is the main objective of this study.

III. STUDY AREA AND DATASETS

This work investigates self-supervised mapping of urban
floods in two different cities in the United States (U.S.), includ-
ing the 2017 Hurricane Harvey flood in Houston, Texas (see
Fig. 1), and the 2018 Hurricane Florence flood in Lumberton,
North Carolina (see Fig. 2). We choose these two study areas
because both floods involve dense residential, industrial, and
commercial areas. Experiments based on these two study areas
will validate the effectiveness of the proposed method in flood
mapping over heterogeneous urban areas.

For each flood event, the data used in this study were bitempo-
ral pre- and postflood MS imagery from PlanetLab [14] covering
the same geographic area. All images are surface reflectance
products with four spectral bands (i.e., B, G, R, and NIR). Spatial
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TABLE I
SPECIFICATIONS FOR HARVEY AND FLORENCE MS IMAGES

Florence

September 14, 2018
July 31, 2017 August 31, 2018
August 31, 2017  September 18, 2018
B, G, R, NIR
(1850, 3070) (2240, 2940)

Specifications Harvey

August 25, 2017

Hurricane Landfall Date
Image Date (Before)
Image Date (After)
Spectral Band
Height, Width (px)
Spatial Resolution (m)
Pre-processing
Total # of Patches
Ratio of FL.

Surface Reflectance
56,795 65,856
0.1777 0.1916

resolution of both datasets over the two study areas are 3 m of
ground sampling distance.

This work performed patch-wise flood extent mapping, where
nonoverlapping corresponding pre- and postflood patches were
cropped from the before and after bitemporal MS images, re-
spectively. Each patch is of size 10 x 10 px and thus covers
ground area of 30 x 30 m. The goal of this study is to classify
the postflood patches into FL. or NF.

Although the proposed method is self-supervised (i.e., with-
out human annotated training labels), ground truth data are
needed for quantitative evaluation of experimental results. This
ground truth data were generated by manually labeling the
datasets for the two study areas. All post-flood image patches
were labeled by visual inspection of the very high resolution
(VHR) imagery with spatial resolution of 0.3 m from National
Oceanic and Atmospheric Administration (NOAA) collected on
the same day as those from PlanetLab. We cropped patches
from NOAA’s VHR imagery, with each patch covering the same
geographical area (i.e., 30 x 30 m) as the colocated PlanetLab
MS patch. Each NOAA VHR patch thus contains 100 px x 100
px (100 = 30/0.3), which was labeled by three expert annotators
based on the FL area within the patch. The ground truth label
of each postflood patch was determined by the majority vote
out of all three annotations. Patches with a tiny negligible FL
area or with floodwaters under tree canopy were intentionally
labeled as NF [12], [21]. 56 795 labeled patches (10 094 FL and
46 701 NF) were collected for the Harvey dataset and 65 856
labeled patches (12 619 FL and 53 237 NF) were collected for
the Florence dataset. More detailed specifications of the datasets
are summarized in Table I.

IV. METHODOLOGY
A. Problem Formulation

Given a pair of pre- and postflood MS images (IP', IPoS),
we cropped M rows by N columns nonoverlapping patch
pairs (IET;,IEZSI), where i =1,2,...,M and j=1,2,...,N
are patch coordinates. Each patch is with 10 x 10 px and four
bands. This study proposed a fully self-supervised framework

F for generating the flood map P by
P — .F'(Ipl‘e7 IpOSl)
= Fa(Fa(Fo(F1 (TP, T7%)))) M

where (F7, Fa, F3, F4) denote the four interlocking modules
in the framework F, including 1) JF7: patch encoding for patch
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Fig. 1.
patch-wise flood extent map.

feature extraction, 2) Fa: Patch-CVA for initial flood mapping,
3) F3: spectral filtering to remove NF changes for intermediate
flood mapping, and 4) F4: spatial filtering to remove noise for
final flood mapping. Fig. 3(a) illustrates the workflow of the
proposed framework.

Since the pre and post-flood images were captured with a
time interval of less than one month, we assume that the land
cover changes over the study areas mainly resulted from floods.
Accordingly, patch similarity estimation based on patch feature
vectors was used for patch change detection and initial flood
mapping. The more similar (I}, Ifo;t) the less likely that Ili)f;-“
was indeed FL.

Furthermore, initial flood maps based on patch change de-
tection may lead to unexpected false alarms due to noise and
isolated NF changes. Using the spectral signature of floodwaters
and the spatial topology of FL areas, we conducted further
spectral filtering to remove NF changes and spatial filtering to
remove minor isolated or noisy changes for accurate FL patch
detection.

B. Patch Encoding

The Patch Encoding module learned the multidimensional

features of both pre- and postflood patches (I}, IPN) for patch
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(d)

Harvey data. (a) Study area of Harvey flood. (b) Satellite image before flood. (c) Satellite image after flood. (d) Manually classified ground truth of

. . . pre pmt
change detection. Specifically, each pair of (I} Y L ) were

fed into a pretrained Siamese patch Encoder to extract the
representative features (c}';, c} ;). Patch change detection was
then conducted in the Patch—CVA module based on the encoded
patch features (cf'5, ¢}")

To enable self-supervised learning of patch features without
human annotated labels, we developed an autoencoder model,
which encodes the high-dimensional input into low-dimensional
features and then decodes the features for reconstructing the
input. As such, the autoencoder model was trained with patches
as both the input and the target. The Encoder of the pretrained
autoencoder was then used for encoding the patches. The net-
work architecture of the autoencoder developed in this study is
shown in Fig. 3(b) with hyperparameters listed in Table II, which
includes Encoder and Decoder subnetworks. The Encoder con-
sists of several layers of convolutional nets (Conv), while the
Decoder is composed of a stack of transposed convolutional
nets (ConvTrans).

We trained the Siamese autoencoder for the pre- and postflood
patches with shared weights for further patch change detection.
80% pairs of pre- and postflood patches were used for training,
and the rest 20% for validation. We took batches of bitemporal
patch pairs (I, Ifo;l) as both inputs and targets of the autoen-
coder, using the Adam optimizer [40] along with the L1 loss,
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Fig. 2.
patch-wise flood extent map.

L(x,y), defined as follows:

z,y) Bme yi @

where = and y denote the output and target of the model, and B is
the number of patches in each batch. In the autoencoder model,
the target is the input itself. It should be noted that the class
imbalance (i.e., the relative frequencies of FL and NF patches)
of the datasets (see Table I) does not undermine the performance
of patch change detection for FL patch detection. This is a major
advantage of self-supervised patch change detection for flood
mapping compared to supervised models trained with highly
imbalanced datasets, in which class weights typically must be
set during training [12], [21].

We start with the learning rate of 0.01 and reduce it by a
factor of 10 if the validation loss does not decrease for 10

2005

Florence data. (a) Study area of Florence flood. (b) Satellite image before flood. (c) Satellite image after flood. (d) Manually classified ground truth of

consecutive epochs. Default momentum parameters (31, 32) =
(0.9, 0.999) of the Adam optimizer were used. Weight decay
was set to le — 5. For better model generalization, common
data augmentations were used, including random rotation with
degrees in [0°,90°, 180°,270°], random vertical and horizontal
flipping, and normalization to the range of [0, 1]. After training
with 150 epochs, the pretrained Encoder was then used to
encode both pre- and postflood patches for further patch change
detection.

C. Patch-CVA

The Patch-CVA module followed the widely used technique
of CVA [41]-[44] to select potential FL patches. We computed
the magnitude and direction of change between pairs of pre- and
postflood patch features (c} ;, cpm) The magnitude component

of the change is defined as the Euchdean distance (ED) between
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TABLE II
AUTOENCODER HYPERPARAMETERS
Module Operation Parameters
Input Image Patches  Size: [Batch, 4, 10, 10]
Convolution (out: 64, kernel: 3)
Convl Batch Normalization
Encod onv LeakyReLU (0.01)
neoder Max-pool (2)
Convolution (out: 128, kernel: 3)
Conv2 Batch Normalization
onv LeakyReLU (0.01)
Max-pool (2)
Convolution (out: 64, kernel: 1)
Conv3 . .
Sigmoid
ConvTransposed (out: 128, kernerl: 1)
ConvT: 1 Batch Normalization
Decod onvirans LeakyReLU (0.01)
ccoder Upsample (scale: 2, bilinear)
ConvTransposed (out: 64, kernerl: 3)
ConvTrans? Batch Normalization
onvirans LeakyReLU (0.01)
Upsample (scale: 2, bilinear)
ConvTrans3 C.oan'ransposed (out: 4, kernerl: 3)
Sigmoid
Target Same as Input  Size: [Batch, 4, 10, 10]

t
the ¢}'; and c}; as follows:
pre _post\ _ || pre post
ED(U’ zj)*‘ci,j* i ||y 3)

Suppose the patch feature vector consists of K elements,
traditional direction change was defined as « = (aq, as,

,Qy ..., ), where «ap is computed by the
following:
Cpre k/’ CpOSt k
cos () = Z’J( ) - ”E ) )
pre pos
ED (e, o)

Spectral
Itering
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‘ Input
i Patch Change Map
Encoder!

Binarization

|
|
| |
|
|
1
T
‘

Flood Map (Znitial)

ng. (b) Autoencoder architecture for training the patch Encoder.

where c"%(k) and "' (k) denote the kth elements in c!'; and

pos
i !, respectively.

However, the above direction change in traditional CVA is not
often used [43] because the direction component in traditional
CVA often leads to a quantity o with the same dimension as the
input change vectors and even more complex high-dimensional
change maps for further change detection. Hence, we used the
cosine similarity score (5) to measure the angle between the
pre- and postflood patch feature vectors, which indicated the
direction component of the change.

)" (e )

C;

pre post

(ct

pre _post ,J 4,J

os(c: ., c. . ) = 5

< 2,97 7] > | preH ‘ post ©)
t

where cos(cfr;, c;) denotes the cosine score of the angle
t

between ¢} ; and ¢}’

Followmg the maps of magnitude and direction changes,
binarization through automatic thresholding was used to select
initial potential FL patches. We applied the technique proposed
by Rosin [45], [46] to select the threshold, where the corner
of the histogram was selected as the threshold. Rosin [45],
[46] assumed that the histogram of the change map of either
magnitude or direction is a unimodal distribution with one
dominant population with respect to the secondary population.
Specifically, the selected point on the histogram corresponding
to the threshold is the most distant from the line between the
peak and the end of the histogram (see Fig. 4).

Based on the above thresholding technique, we binarized both
magnitude and direction change maps to obtain the initial flood
maps.

D. Spectral Filtering

The initial flood maps may contain multiple types of changes
not related to floodwaters—shadows, human built-up areas,
errors in radiometric or geometric corrections, etc. Since all FL
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postflood patches contain floodwater pixels, spectral features
of the initial flood maps were investigated to remove nonflood
related changes.

Floodwater typically has lower surface reflectance than that
of other major land cover types such as built-up areas and
vegetation. We performed a pixel-wise binary unsupervised
clustering for all pixels in potential post-flood FL patches based
on the initial flood maps. In this study, k-means [47] clustering
on raw pixel spectra was used for both Harvey and Florence
datasets. It should be noted that the spectra of some buildings
in dense neighborhoods are very similar to those of floodwaters
(see Fig. 5), leading to misclassification of some building pixels.
By leveraging Microsoft building footprints [48], we removed
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Fig. 6. Patch connectivity: patches (Py, P2, P3) marked in yellow are con-
nected since they are within a distance of d patches, whereas patches (Py, Ps)
marked in blue are not connected to any patches in the map since they are far
away from other patches.

building pixels classified as FL and thus obtained intermediate
flood maps.

E. Spatial Filtering

After Spectral Filtering, there can still exist false alarms in the
intermediate flood map due to small isolated areas previously
identified as FL patches due to noise, shadow, and other errors.
Often, these areas are isolated and far from major FL areas.
The spatial topology of flood movement means that that FL
patches tend to be close to each other. Therefore, we assume that
FL patches are connected in major FL areas. FL patches need
not be strictly adjacent to each other in heterogeneous urban
areas, however, since patches with floodwaters under trees are
defined as NF [12], [21], leading to disconnection of some FL
patches. Therefore, we defined in this study that FL patches were
connected if they were within a predefined maximum distance
of d patches as illustrated in Fig. 6.

After identification of major FL areas through connectivity
analysis, small isolated areas were removed if they contained
less than a predefined minimum number of a patches in the
intermediate flood maps as they exhibited false alarms. Finally,
the final flood maps were generated based on both direction and
magnitude change, respectively.

FE. Performance Evaluation

This work investigated the problem of FL patch detection.
With ground truth labels, we computed the number of true
positives (1T'Ps), false positives (F'Ps), true negatives (T'N s),
and false negatives (F/'N s), respectively. Therefore, we quanti-
tatively evaluated the performance of the proposed framework
using precision (Pr), recall (Re), FI score, and overall accuracy
(OA), defined as

TPs
Pr=—-—
TPs + FPs
TPs
e = ——mm"
TPs + FNs
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TABLE IIT
TIME CONSUMPTION ON TRAINING THE AUTOENCODERS AND ENCODING ALL
IMAGE PATCHES WITH THE PRETRAINED ENCODERS FOR HARVEY AND
FLORENCE DATASETS

Dataset Training (mins)  Encoding (mins)
Harvey 40.97 0.33
Florence 46.76 0.37
2
Fl=— "
1/Pr+1/Re
TPs + TN
OA = SN . ©)
TPs + FPs + TNs + FNs

Additionally, as the proposed framework generated the flood
maps, we also evaluated the accuracy based on the intersection
over union (IoU), also known as the Jaccard Index [49]. Given
the ground truth flood map G and the predicted map P, IoU is
defined as

Area of Intersection of (G,P) |G NP

Areaof Union of (G,P)  |GUP|’
(N

IoU(G,P) =

V. EXPERIMENTAL RESULTS

This section describes the application of the proposed method
for patch-wise urban flood mapping over two study areas in the
U.S., including 1) the 2017 Hurricane Harvey Flood at Houston,
Texas and 2) the 2018 Hurricane Florence Flood at Lumberton,
North Carolina. The Patch Encoding models in Section IV-B
were trained on a server with 64-b Ubuntu 16.04.6 LTS and a 24
GiB Titan RTX GPU based on PyTorch [50]. Table III lists the
time consumption on training the autoencoders for 150 epochs
and encoding all the pre- and postflood image patches with
the pretrained encoders for both Harvey and Florence datasets,
respectively.

All other experiments were conducted on a Dell workstation
with an Intel(R) Xeon(R) W-2125 CPU @ 4.00 GHz x 8, 16
GiB RAM, and 64-b Window 10.

A. Flood Event 1: Harvey

1) Results of Patch-CVA: Using the pretrained encoder de-
scribed in Section IV-B, we encoded both pre- and postflood
patches into low-dimensional feature vectors. Fig. 7 shows the
patch-wise change maps generated based on the changes of
direction [see Fig. 7(a)] and magnitude [see Fig. 7(c)], respec-
tively. Both change maps were normalized into the range of
[0, 1].

By leveraging Rosin’s thresholding technique discussed in
Section IV-C, we selected the thresholds of both direction
and magnitude change maps based on their corresponding his-
tograms [Fig. 7(b) and 7(d)].

‘We thus obtained two different binary classification maps [see
Fig. 8(a) and 9(a)] associated with the direction and magnitude
change maps, respectively. Compared with ground truth labels
in Fig. 1(d), we highlighted 7Ps in blue, FPs in red, and FNs in
yellow. Corresponding to Figs. 8(a) and 9(a), we evaluated the
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Fig. 7. Harvey change maps based on encoded pre- and postflood patch
features: (a) Direction change map and (b) histogram with Rosin’s thresholding
corresponding to direction change; (c) magnitude change map and (d) histogram
with Rosin’s thresholding corresponding to magnitude change.

TABLE IV
HARVEY: QUANTITATIVE RESULTS OF THE PATCH-WISE FLOOD MAPS AT
DIFFERENT PROCESSING STAGES BASED ON THE CHANGE OF DIRECTION AND
MAGNITUDE (DIR: DIRECTION; MAG: MAGNITUDE; INT: INITIAL; IMD:
INTERMEDIATE; FNL: FINAL). THE BEST RESULTS FOR EACH EVALUATION
METRIC ARE MARKED IN BOLD FACE.

Type Stage Pr Re F1 IoU OA
(a) INT  0.8939 09175 0.9055 0.8274  0.9659

DIR (b) IMD 09205 09133 0.9169 0.8465 0.9705
(c) FNL 09428 09130 0.9276 0.8651 0.9747
(a) INT  0.8579 0.9313 0.8931 0.8068 0.9603

MAG (b) IME 0.8874 0.9278 0.9071 0.8301  0.9662
(c) FNL 09107 09276 0.9190 0.8502 0.9709

TABLE V

EVALUATION USING DIFFERENT THRESHOLDING METHODS
ON THE DIRECTION CHANGE MAP. ALL BOLD FACE VALUES ARE THE HIGHEST

VALUES.

Thresholding Pr Re F1 IoU OA
Rosin [46] 0.8939 09175 0.9055 0.8274  0.9659
Otsu [38] 0.9969 0.2897 0.4489  0.2894  0.8735

KI [35] 0.6154  0.9934 0.7599 0.6128 0.8884

Pr, Re, F'1, IoU, and O A of the initial flood maps as listed in
Table IV, where the best results were marked in bold.

We also tested binarization of the initial direction change
map [see Fig. 7(a)] using the thresholding methods proposed by
Otsu [38] and Kittler and Illingworth (KI) [35]. Table V sum-
marizes the results associated with each thresholding method.
Rosin’s method outperformed Otsu’s and KI's methods in terms
of F'1, IoU,and O A. Otsu’s method produced high Pr with very
low Re, whereas KI's method performed conversely with low
Pr but high Re. Only Rosin’s method was able to consistently
perform well in all metrics.
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(a)

Fig. 8.
map after spectral filtering. (c) Final flood map after spatial filtering.

()

(©)

Harvey: patch direction change based flood mapping with 7'Ps in blue, F'Ps in red, and F'N's in yellow. (a) initial flood map. (b) Intermediate flood

(a)

Fig. 9.
map after spectral filtering. (c) Final flood map after spatial filtering.

2) Results of Spectral Filtering: We clustered pixels located
in patches detected in the above initial binary change maps. After
removing building pixels with building footprints, some of initial
changed patches were further classified as NF patches, in which
no floodwater pixels were found based on the results of the two-
class K-Means clustering. Figs. 8(b) and 9(b) showed the refined
flood maps associated with direction and magnitude changes,
where patches were marked in different colors indicating 7'Ps,
FPs,and FNs.

To check how spectral filtering improves the accuracy of
patch-wise flood mapping, we also evaluated the associated Pr,
Re, F1, IoU, and OA as listed in Table IV.

3) Results of Spatial Filtering: Results in Figs. 8(b) and 9(b)
from Section V-A2 after spectral filtering show that there are
still small isolated regions of false positive patches marked in
red. Constrained by the spatial topology of floodwaters, FL
patches should be close to each other within a FL region. We also
assumed that a FL region should surpass some minimum area. In
this experiment, we tested multiple options of both the maximum
distance d for FL patch connectivity and the minimum area a
for a FL region. Figs. 8(c) and 9(c) show the final patch-wise
flood maps after spatial filtering with d = 5 and a = 20. Fig. 10
demonstrates the impact of the hyperparameter a and d on the
final patch-wise flood map in terms of the F'1 score and [oU
based on the direction change. The corresponding quantitative
results are summarized in Table IV for both the direction and
magnitude change maps at different processing stages.

B. Flood Event 2: Florence

1) Results of Patch-CVA: We trained a new patch encoder
using the same model architecture [see Fig. 3(b)] with Florence

(b)

(©)

Harvey: patch magnitude change based flood mapping with 7'Ps in blue, F'Ps in red, and F'N s in yellow. (a) Initial flood map. (b) Intermediate flood

TABLE VI
FLORENCE: QUANTITATIVE RESULTS OF THE PATCH-WISE FLOOD MAPS AT
DIFFERENT PROCESSING STAGES BASED ON THE CHANGE OF DIRECTION AND
MAGNITUDE (DIR: DIRECTION; MAG: MAGNITUDE; INT: INITIAL; IMD:
INTERMEDIATE; FNL: FINAL). THE BEST RESULTS FOR EACH EVALUATION
METRIC ARE MARKED IN BOLD FACE.

Type Stage Pr Re F1 IoU OA
(a) INT 07355 0.9293 0.8211 0.6965 0.9224

DIR (b) IMD  0.8249 09265 0.8728 0.7743  0.9483
(c) FNL 08352  0.9251T 0.8779 0.7823  0.9507
(a) INT  0.7360 0.9354 0.8238  0.7004  0.9233

MAG (b) IME 0.8252 0.9326 0.8756 0.7788  0.9492
() FNL  0.8355 0.9311 0.8807 0.7868  0.9517

data, which enables better patch feature extraction for the new
study area. Following the same processing chain for Harvey
data, we obtained two patch-wise flood maps corresponding
to the direction [Fig. 11(a)] and magnitude [see Fig. 11(c)]
change maps, respectively. To obtain the initial flood maps,
thresholds were selected based on the histograms of the direction
[Fig. 11(b)] and the magnitude [see Fig. 11(d)] change maps
using Rosin’s method [45], [46]. Figs. 12(a) and 13(a) showed
the initial flood maps. Corresponding quantitative evaluation is
listed in Table. VL.

2) Results of Spectral Filtering: The two-class unsupervised
K-Means clustering was performed with all pixels from the po-
tential FL patches detected in Figs. 12(a) and 13(a), respectively.
Figs. 12(b) and 13(b) show the refined patch-wise flood maps
after removing nonflood-related patches, which were originally
classified as FL in the initial flood maps [see Figs. 12(a) and
13(a)] by Patch-CVA. Table VI summarizes the evaluation re-
sults associated with the refined intermediate flood maps.
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ilfésl(). Harvey: impact of d and a on the (a) F'1 and (b) IoU of final flood Change Map  Pr Re 1 TolU OA
Raw pixel 0.8524  0.7717  0.8100 0.6807  0.9356
PCA 0.3745  0.1149  0.1759 0.0964  0.8084
Autoencoder  0.8579  0.9313  0.8931 0.8068  0.9603

3) Results of Spatial Filtering: After removing NF changed
patches with spectral filtering, spatial filtering based on spatial
topology of floodwaters was applied to further remove false posi-
tive FL patches in the intermediate flood maps. We used the same
hyperparameters as those in Harvey experiment. Figs. 12(c) and
13(c) demonstrated the results of the final patch-wise flood maps
after spatial filtering.

Associated with Figs. 12(c) and 13(c) were the evaluation of
Pr, Re, F'1, IoU, and O A summarized in Table VI for both the
direction [see Fig. 12(c)] and magnitude [see Fig. 13(c)] change
maps.

We also experimented with different (d,a) to show their
impact on the accuracy of the final patch-wise flood extent maps.
Fig. 14 plotted the change of F'1 and [oU with respect to various
(d,a).

VI. DISCUSSION

A. Patch Feature Learning

The proposed method starts with patch feature extraction by
a patch encoder trained with the input data without manual

feature engineering. Such a self-supervised learning framework
enables automatic learning of patch features and generalized
well to both study areas because the model was trained with
local data. This feature is critical for near realtime automated
flood mapping since traditional hand-crafted features often fail
to generalize well to new datasets associated with heterogeneous
image background, which is common in urban areas. Without
patch feature extraction, patch-wise flood mapping cannot be
implemented through direct pixel-wise processing.

To demonstrate the power of patch features learned by the
proposed method, we tested 1) the raw pixel feature and 2) the
patch feature extracted by principal component analysis (PCA)
for patch-wise flood mapping. First, we computed the pixel-
wise magnitude change between the pre- and postflood images
(IPre, IPY) and obtained the patch-wise magnitude change map
via aggregation of pixel-wise magnitude change across each
patch. Second, PCA was used to extract features from each pair
of pre- and postflood patches and we kept the first two principal
components for further patch-wise flood mapping. Table VII
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Fig. 12.
map after spectral filtering. (c) Final flood map after spatial filtering.

(b)

Florence: patch direction change based flood mapping with 7" Ps in blue, F'Ps in red, and F'N's in yellow. (a) Initial flood map. (b) Intermediate flood

Fig. 13.
map after spectral filtering. (¢) Final flood map after spatial filtering.

summarizes the results of patch-wise initial flood mapping for
Hurricane Harvey based on the raw pixel feature and the PCA
extracted feature without further spectral and spatial filtering,
compared to the results generated by the proposed method (i.e.,
Patch-CVA with magnitude change). Rosin’s method was used
for thresholding both change maps.

The results show that flood mapping based on the raw pixel
feature and the PCA extracted feature fails to capture some
of the weak changes resulting from flooding as demonstrated
by a lower Re than that corresponding to patch feature based
processing. It is worth noting that the autoencoder employed in
the proposed framework significantly outperforms PCA in terms
of patch feature learning for patch-wise flood mapping.

Similarly, we performed flood mapping based on raw pixel
feature change for Hurricane Florence. Fig. 15(a) shows that
direct pixel-wise change estimation leads to a large number of
false positives due to noninformative changes such as varying
illumination, inaccurate radiometric correction, and poor im-
age registration. The corresponding histogram [see Fig. 15(b)]
also exhibits completely different patterns than those associated
with patch-wise change maps, leading to the failure of Rosin’s,
Otsu’s, or KI’s thresholding techniques.

B. Comparison of Direction and Magnitude Change

As shown in the experimental results for both Harvey and
Florence floods, there is no significant difference between direc-
tion and magnitude change-based patch-wise flood mapping, as

Florence: patch magnitude change based flood mapping with 7'Ps in blue, F'Ps inred, and F'N s in yellow. (a) Initial flood map. (b) Intermediate flood

demonstrated by 1) quantitative evaluation of Pr, Re, F'1, [oU,
and O A in Table IV for Harvey and Table VI for Florence, and
2) by qualitative visual inspection of the final patch-wise flood
maps in Fig. 9(c) for Harvey and Fig. 13(c) for Florence.

However, we observed in Figs. 7 and 11 that the direction
change map showed more abrupt change around the selected
threshold while the magnitude change map changed more grad-
ually, which was also reflected by the respective histograms.
The abrupt change around the threshold indicated that the patch
direction change-based processing encouraged separation of FL
from NF patches with higher contrast compared to magnitude-
based change estimation.

Furthermore, as direction change is more invariant to changes
in illumination compared to magnitude change, direction-based
change detection has the potential to suppress minor noninfor-
mative changes due to varying illumination, as demonstrated in
Figs. 7(a) and 11(a), in which salient changes were highlighted,
whereas subtle changes were suppressed.

C. Impact of Spectral and Spatial Filtering

To demonstrate how spectral and spatial filtering have refined
the patch-wise flood maps, Figs. 8 and 12 present the patch direc-
tion change-based flood maps sequentially for visual inspection
of Harvey and Florence floods with corresponding quantitative
evaluation illustrated in Fig. 16, where Initial, Intermediate,
Final correspond to the results of the initial flood maps based
on Patch-CVA [see Fig. 8(a)], the intermediate flood maps after
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Fig. 15.  Florence: (a) initial change map based on aggregation of pixel-wise
magnitude change across each patch and (b) the corresponding histogram.

spectral filtering [see Fig. 8(b)], and the final flood maps after
spatial filtering [see Fig. 8(c)].

It is obvious that the sequential processing through spectral
and spatial filtering improve accuracy in terms of F'1 and IoU
based on the initial patch-wise flood maps. Spectral filtering
helped remove nonfloodwater related changes. With a two-
class K-Means clustering of all pixels from the initial changed
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patches, most NF patches were removed. Spatial filtering con-
sidered noise and incorrect classification of a few false positive
patches from previous steps. In particular, a few small isolated
changed patches remained after Patch-CVA and spectral filter-
ing. Those small regions were further removed by leveraging
the spatial topology of the FL regions. In this study, FL patches
were constrained to be close to each other with distance less than
5 patches in a major FL region with area of at least 20 patches.
Final flood maps for both Harvey and Florence floods highlight
the robust performance of the proposed method.

Regarding the spatial filtering hyperparameters, (d, a), Fig. 10
shows the impact of different (d, a) on the accuracy of the final
flood maps in terms of F'1 and IoU based on the direction
change. We noted that the performance dropped significantly if
we constrained the maximum distance of FL patch connectivity
strictly with d = 1. That is, FL patches were connected only
if they were strictly adjacent to their neighborhoods. There are
several contributing explanations. Some FL patches under tree
canopy are labeled as NF patches [12], [21]; such conditions are
common in urban areas. As a result, ground truth flood maps may
contain FL patches that are disconnected with the neighboring
FL regions. In addition, false negative patches could result from
thresholding of the initial flood maps, spectral filtering for the
intermediate flood maps, and image noise. As such, we assumed
that any two FL patches were connected if they were within a
maximum distance of d patches. The other hyperparameter a
also influences the performance of spatial filtering for final flood
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TABLE VIIT
EVALUATION OF F'1 AND IoU FOR FLOOD MAPS AFTER THE SEQUENTIAL
(SPECTRAL FILTERING ~+ SPATIAL FILTERING) AND AFTER ONLY SPATIAL
FILTERING BASED ON THE INITIAL DIRECTION CHANGE-BASED FLOOD MAPS
PRODUCED BY PATCH-CVA

Flood Metric  Initial  Intermediate Final
Fl 0.9055 0.9169 (spectral)  0.9276 (spatial)
Harvey 0.9205 (only spatial)
ToU 0.8274 0.8465 (spectral)  0.8651 (spatial)
0.8528 (only spatial)
Fl 0.8211 0.8728 (spectral)  0.8779 (spatial)
Florence 0.8267 (only spatial)
ToU 0.6965 0.7743 (spectral)  0.7823 (spatial)

0.7047 (only spatial)

mapping. We observed that, in ground truth flood maps, some
flooding occurred in localized FL areas relatively far from other
FL patches. Though the localized FL regions are isolated relative
to the major FL regions, however, they should have some area
greater than a predefined empirical value a. As some small FL
patches are attributable noise or other errors (e.g., small area of
the wet road surface), and not removed before spatial filtering,
such an assumption contributed to further refinement of the final
flood maps.

In this study, spectral filtering and spatial filtering are two
interlocking sequential modules for producing the final flood
maps. Hence, spectral filtering is a prerequisite for spatial
filtering to ensure the robustness and effectiveness of spatial
filtering. To further prove the effectiveness of spatial filtering,
we conducted spatial filtering alone based on the initial direction
change-based flood maps without spectral filtering. Table VIII
shows that the F'1 and IoU of flood maps after only spatial filter-
ing are higher than those of the initial flood maps, demonstrating
the effectiveness of spatial filtering without spectral filtering.
However, comparing the results with only spatial filtering to
those with the sequential (spectral filtering 4 spatial filtering),
we observe that spectral filtering plays a key role as the prereq-
uisite for spatial filtering. Spatial filtering is used based on the
spatial topology of floods (i.e., small isolated and changed areas
are considered as NF). Without spectral filtering, there remain
some large NF but changed areas connected with major FL
areas, resulting in less effective spatial filtering to filter out such
false positive changes. With spectral filtering performed before
spatial filtering, most of the large NF but changed areas are
removed. Then the remaining NF but changed areas are smaller
and isolated from major FL areas such that spatial filtering
performs better for producing the final flood maps. Therefore,
it is important to perform spectral filtering and spatial filtering
sequentially to ensure the accuracy of the final flood maps.

D. Model Performance Across Different Study Areas

Fig. 16 shows that the model performs well for urban flood
mapping, with F'1 above 0.87 and IoU above 0.78, highlighting
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the model’s capability in near realtime processing for upcoming
unseen floods.

The evaluations of F'1 and IoU associated with the Florence
flood were lower than those with the Harvey flood. These dif-
ferences were due mainly to different degrees of NF changes
between the bitemporal data corresponding to the Harvey and
Florence floods over different study areas, respectively. As
demonstrated in Figs. 12(a) and 13(a) for Florence, the ini-
tial flood maps exhibit higher rates of F'Ps (i.e., NF changes
marked in red) than those corresponding to the initial flood maps
[Figs. 8(a) and 9(a)] for Harvey.

With spectral and spatial filtering, the majority of the F'Ps
were removed as demonstrated by the increasing Pr in Tables IV
and VI. The Florence final flood maps contain a higher rate of
F Ps compared to the Harvey final flood maps. Potential causes
include: 1) many F'Ps in the Florence final flood maps consist
of pixels with spectra similar to those of floodwaters such as
patches that are wet but not FL, leading to misclassification in
spectral filtering; and 2) quite a few F'Ps in the Florence final
flood maps are mixed and connected with T'Ps, which were
not removed by spatial filtering. As a result, there remain higher
rates of F'Ps in both direction and magnitude change-based final
flood maps in the Florence experiment.

As the main goal of this study is to map urban floods in near
realtime, time consumption on training and testing the models
plays an important role. Deep learning based models are often
time-consuming due to the training of deep neural networks with
a large volume of data. Table III shows that it took 40.97 mins
and 46.76 min for training the autoencoders corresponding to the
Harvey and Florence floods, respectively. Additionally, it took
less than 1 min to encode all pre- and postflood image patches
into patch features. Such features were then used for further
Patch-CVA, spectral filtering, and spatial filtering, which also
took negligible time to produce the final flood maps. Hence, the
total time consumption of the proposed self-supervised learning
framework was less than 1 h for mapping floods at two different
urban areas with bitemporal satellite MS images, enabling near
realtime processing for emergency response.

E. Comparison of Different Thresholding Methods

Automatic thresholding of the initial direction or magnitude
change maps is critical for identifying initial FL patches for
further spectral and spatial filtering. As demonstrated by Figs. 7
and 11, the histograms exhibit unimodal distributions for both
direction and magnitude change maps associated with Harvey
and Florence data. Table V shows that Rosin’s corner-based
thresholding method achieved superior performance without
specific assumption of the foreground or background sample
distribution. Note that the foreground samples consisted of
changed postflood patches, while the background samples were
unchanged ones.

Itis worth noting that Otsu’s thresholding method tends to set a
larger threshold than the one by Rosin’s method, as demonstrated
by the low recall Re but high precision Pr of the initial flood
maps. One assumption of Otsu’s method is that the histogram of
the image is a bimodal distribution. Additionally, Otsu’s method
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achieves good performance when the valley between the two
peaks of the histogram is deep and sharp [51]. As shown in
Figs. 7 and 11, however, the histograms of both direction and
magnitude change maps for Harvey and Florence data exhibit
unimodal distributions with only one major peak.

In contrast, KI’s minimum error thresholding method picked
up a smaller threshold compared to Rosin’s threshold, leading
to a low precision Pr but a high recall Re. The minimum error
thresholding method assumes that foreground and background
samples are both normally distributed with distinct mean and
standard deviations [35]. This assumption was not true in either
direction or magnitude change maps. Neither FL nor NF patches
exhibit a normal distribution in the histogram of either direction
or magnitude change maps.

VII. CONCLUSION

We propose a fully automated patch-wise urban flood ex-
tent mapping method via a self-supervised learning framework.
The before- and after-flood patch features were automatically
learned through a self-supervised autoencoder. Patch-CVA was
performed based on patch features learned from the pretrained
encoder of the autoencoder model, which generated the patch-
wise direction and magnitude change maps. Potential FL patches
were extracted through robust binarization of the corresponding
change maps, where the binarization thresholds were picked
at the change intensity corresponding to the corners of the
unimodal change map histograms. Since noise and other errors
can cause false alarms in flood mapping, spectral, and spatial
filtering were performed on the initial patch-wise flood maps by
leveraging the spectral signatures and spatial topology of flood-
waters. Our results show that the proposed method achieves good
performance for both Harvey and Florence floods in terms of F'1,
IoU, and OA. For example, we obtained the final flood maps
with 0.9276 F'1 and 0.8651 IoU for Harvey flood, and 0.8779
F'1 and 0.7823 IoU for Florence flood based on respective
direction change maps. The self-supervised learning framework
enables patch feature learning without a large number of human-
annotated training data. The pretrained patch encoder extracts
informative features from both pre- and postflood patches, where
no hand-crafted feature engineering is required. The majority of
the desired changes were detected through Patch-CVA based
on the corresponding patch features as demonstrated by the
initial flood maps. Spectral and spatial filtering further boosts
the performance by removing nonflood related changes and
noise.

Regarding the future work on near realtime flood mapping
in practice, optical MS imagery may not be available due to
the impact of clouds. It is likely worth testing the proposed
method using SAR data or a fusion of SAR and optical data, to
take advantage of the nighttime and all-weather data acquisition
capability of SAR. Moreover, when only limited number of
human annotated training data are available, we would like
to try semisupervised learning, transfer learning, and active
learning for further improvement of flood mapping accuracy
over heterogeneous urban areas.
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