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A Novel CNN-Based Detector for Ship Detection
Based on Rotatable Bounding Box in SAR Images

Rong Yang ", Zhenru Pan ", Xiaoxue Jia

Abstract—Thanks to the excellent feature representation capa-
bilities of neural networks, deep learning-based methods perform
far better than traditional methods on target detection tasks such
as ship detection. Although various network models have been
proposed for SAR ship detection such as DRBox-vl, DRBox-v2,
and MSR2N, there are still some problems such as mismatch of
feature scale, contradictions between different learning tasks, and
unbalanced distribution of positive samples, which have not been
mentioned in these studies. In this article, an improved one-stage
object detection framework based on RetinaNet and rotatable
bounding box (RBox), which is referred as R-RetinaNet, is pro-
posed to solve the above problems. The main improvements of
R-RetinaNet as well as the contributions of this article are threefold.
First, a scale calibration method is proposed to align the scale
distribution of the output backbone feature map with the scale
distribution of the targets. Second, a feature fusion network based
on task-wise attention feature pyramid network is designed to
decouple the feature optimization process of different tasks, which
alleviates the conflict between different learning goals. Finally, an
adaptive intersection over union (IoU) threshold training method
is proposed for RBox-based model to correct the unbalanced dis-
tribution of positive samples caused by the fixed IoU threshold on
RBox. Experimental results show that our method obtains 13.26 %,
9.49%,8.92%, and 4.55% gains in average precision under an IoU
threshold of 0.5 on the public SAR ship detection dataset compared
with four state-of-the-art RBox-based methods, respectively.

Index Terms—Neural network, rotatable bounding box (RBox),
synthetic aperture radar, target detection.

I. INTRODUCTION

YNTHETIC aperture radar can work under all-weather and
S day-and-night conditions and make very high resolution
images. Therefore, it plays an important role in remote sensing
information extraction and is particularly suitable for remote
monitoring. With the rapid development of spaceborne SAR
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system such as TerraSAR-X, RADARSAT-2, Sentinel-1, and
Gaofen-3, SAR has been widely used in civil and military fields
for target classification, reconnaissance, surveillance. However,
because of the special imaging mechanism, SAR images may
become unrecognizable for human in some cases, which makes
searching for targets of interest in massive SAR images by eyes
become time-consuming and often impractical. Consequently,
how to detect and identify various targets quickly and accurately
in SAR images has been the focus of research. Researches
on ship detection are vital in many areas [1], such as marine
monitoring, maritime management, and military intelligence
acquisition. Many investigations that relate to ship detection in
SAR imagery have been carried out recently [2], [3].

Traditional ship detection methods mainly rely on statistical
analysis of image pixels, and most of them are threshold-based
methods [4]-[6]. The threshold-based methods determine the
threshold that distinguishes ship targets from the background
by modeling sea clutter based on the theory of constant false
alarm rate (CFAR) filtering [7], [8], which have become the
classic methods for SAR image target detection, and have been
widely used in practical ship target detection systems [9]. Sea
clutter model with higher complexity usually has higher fitting
accuracy, but it may cause difficulty in parameter estimation, so
the researches on CFAR-based methods in recent years mainly
focus on the tradeoff between the accuracy of sea clutter model-
ing and the computational complexity [10], [11]. In addition
to the CFAR-based methods, Li and Zelnio [12] proposed a
method based on the generalized-likelihood ratio test. This
method requires statistical modeling of both ship targets and
clutter. However, it is difficult to build a unified target statistical
model because of the different shapes, sizes, and directions
of ship targets, which limits the application of this method.
Threshold-based methods work well in homogeneous areas such
as offshore area, but they perform poorly in heterogeneous
areas such as ports, and often require assistance from shoreline
segmentation to obtain better results.

Some of these statistical analysis-based methods use different
statistical properties of targets and backgrounds such as standard
deviation and noncircularity in the images [13], [14]. In addition,
principal component analysis [15] and Bayesian theory [16]
have also been used to extract various statistical characteristics.
These techniques can enhance the robustness of the detection
algorithm, but they may require some prior knowledge. Besides,
researchers have also conducted a lot of research on ship de-
tection by combining SAR images under different polarization
channels [17], [18].
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Compared with single-polarization SAR, polarimetric SAR
(PolSAR) can provide information about the target structure
from the scattering matrix [19], which helps to improve the per-
formance of SAR object detection. Therefore, researchers have
made alot of attempts to use PoISAR data for ship detection [20].
Common ship detection algorithms for PoISAR images mainly
include polarization target decomposition [21], [22], statistical
theory methods [23], machine learning methods [24], [25], and
subaperture-based methods [26], [27].

These traditional methods make full use of the statistical char-
acteristics of SAR images, and the performance of the detector
based on traditional methods can be further improved by prior
information. However, there are many inherent disadvantages
to traditional methods, which make them difficult to completely
meet the practical application requirements of ship detection. On
the one hand, hand-designed features often have poor robustness
and cannot guarantee stable performance in complex scenarios;
on the other hand, traditional methods often require multiple
operating steps and are time-consuming, which is unacceptable
in real-time ship detection.

Recently, with the development of deep learning, the perfor-
mance of object detection algorithms based on deep convolu-
tional neural networks (CNNs) are far superior to traditional
algorithms [28], [29]. At the same time, with the in-depth study
of CNNs and the availability of high-performance computing
chips, detection algorithms based on CNNs with different char-
acteristics and applicable scopes have been developed. From
the perspective of the network structure, the CNN-based de-
tection algorithm realizes the transition from two-stage mod-
els to one-stage models, from top-up structure to top-down
structure, and from single-scale network to feature pyramid
network (FPN) that implements multiscale detection [30]. Ren
et al. proposed Faster R-CNN [31] in combination with region
proposal network (RPN) to improve the repeated operation of
candidate box feature extraction, which has become the current
mainstream target detection algorithm. Subsequently, You Only
Look Once [32] and single-shot multibox detector (SSD) [33]
were proposed in order to improve the speed of the detection
algorithm. Such algorithms are based on regression ideas and
integrate classification and detection into the same network,
which makes real-time detection possible. Furthermore, meth-
ods based on visual attention suppress noise in the network and
highlight the effective features of targets. The introduction of
these technologies further improves the detection accuracy [34].

The successful application of CNNs in the field of target de-
tection has injected great vitality into SAR image ship detection.
At the beginning, researchers tried to use CNNs to improve
the detection performance of traditional methods. In [2], a full
CNN was used to perform land and sea segmentation, and then
a CFAR method was used for ship detection, which improved
the detection performance of CFAR at the sea-land junction.
In [35], Faster R-CNN was improved and combined with CFAR.
The improved Faster R-CNN scanned the target area of potential
ships and sent it to the protection window of CFAR to improve
the detection rate of small targets.

Later, with the access of a large amount of available training
data, scholars began to focus on SAR image ship detection
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methods based entirely on CNNss that utilize end-to-end mode,
which improves the efficiency and accuracy of detection. Li et
al. [36] proposed an improved faster R-CNN method and pro-
vided a dataset called SAR ship detection dataset (SSDD), which
was widely used in subsequent ship detection researches. Jiao
et al. [37] performed multiscale and multiscene ship detection
using a densely connected network as backbone and introduced
Focal Loss to faster R-CNN structure.

In SAR images, the detection difficulty of inshore ships is
much greater than that of offshore ships. This is because the
backscatter characteristics of many land-based facilities in near-
shore scenes are very similar to ship targets. Without the help
of the sea-land segmentation operation, the ship detector may
misclassify some objects on land as ship targets, which increase
the false alarm rate of the detector. To solve this problem, Cui
et al. [38] proposed a detector based on dense attention pyramid
network to improve ship detection performance in inshore areas.
With the increase in the complexity and depth of the model,
the performance of the model has also been greatly improved.
However, the problem of poor real-time performance still exists
while using the two-stage models. In response to this problem,
Wang et al. [39] use the SSD model for ship target detection
and trains the network through transfer learning to improve
the detection speed, but the detection performance for small
targets is poor because the receptive field of the top-level feature
map is large, which do not match the scales of small ships. In
addition, due to the lack of refinement of the detection results, the
detection accuracy based on one-stage methods is often inferior
to that based on two-stage detection [40].

Most deep learning based SAR ship detection algorithms use
horizontally placed rectangular bounding box (BBox) to locate
ship targets [25], [41]-[48]. However, the BBox shows poor
performance when the ship targets are close to each other in the
coast [49]. At the same time, the overlapped BBoxes may be
suppressed by nonmaximum suppression (NMS) operation in
the postprocessing steps if the ship targets are densely arranged,
which results in missed detection [50]. Driven by this problem,
the detection algorithm based on rotatable bounding box (RBox)
has become a hot spot recently. Wang et al. [49] used an
improved SSD model to detect ship targets and estimate the
orientation angle of the ship simultaneously, realizing the ship
detection based on RBox in SAR images. An et al. [S1] used an
RBox-based detection method to improve the performance of
SAR image ship detection, which was originally used to perform
ship detection in optical remote sensing images. Pan ez al. [52]
use a multistage network to optimize the localization results of
the RBox-based model, which improves the detection accuracy.

Although the introduction of the RBox can effectively im-
prove the detection accuracy of densely distributed ship targets,
it also brings new problems to the training of network models,
which have not been mentioned in previous studies for SAR ship
detection.

First, the combination of multiscale feature maps was widely
used for improving the model’s detection performance for targets
of different sizes in previous studies. Since the RBox-based
model generates much more anchors on the feature map than
the BBox-based model [51], the feature map with unreasonable
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scale will introduce huge computational cost while unable to
effectively improve model performance. Besides, the standard
one-stage models remove the RPN in order to improve the
detection efficiency, which leads to the misalignment between
the region of the features used for prediction and the real region
of target. This misalignment is an important reason for the poor
accuracy of the one-stage model [53]. A feasible method to
alleviate this misalignment is to ensure that the scale distribu-
tion on the original image corresponding to the small feature
map input into the prediction network covers the targets’ real
scale distribution on the original image as much as possible,
which also requires a reasonable feature map scale combination.
However, how to quickly find a reasonable feature map scale
combination is still a challenge since previous studies only used
heuristic solutions for this problem.

Second, the feature map after multiscale fusion is completely
shared by the classification branch and the localization branch
in the current detection models [34], [37], [38], [40], [42],
[49]-[52], which makes the optimization of the fusion feature
map fully coupled by different learning tasks. However, classi-
fication tasks and localization tasks have completely opposite
requirements for the spatial sensitivity of features, which leads
to different learning tasks conflicting with each other during
the training process [54], [55]. Therefore, trying to decouple
the optimization process of different learning tasks on the fused
feature maps will be a direction worth exploring.

Third, the anchor-based (BBox-based or RBox-based) detec-
tion methods need to generate massive anchors on the image, and
at the same time, a fixed intersection over union (IoU) thresh-
old is used to distinguish these anchors into positive samples
and negative samples according to their IoU with the target
boxes [31], [33], [51]. An IoU threshold that is close to 0 will
cause the positive samples to contain many anchors that do not
match the targets, whereas an IoU threshold that is close to 1 will
cause the lack of positive samples. Both cases are not conducive
to model learning, so the anchors that have an IoU over 0.5 with a
true target are usually taken as a positive sample in most studies.
However, the anchors based on RBox will cause some targets
to generate too many or too few positive samples that meet the
specific IoU threshold due to their different aspect ratio and
various orientation angles, which makes the model focus too
much on those targets with more positive samples and ignore
targets with fewer positive samples. The above characteristics
of the RBox-based detection method exacerbate the imbalance
between positive and negative samples in the training stage,
which eventually leads to model degradation.

In addition, our previous work [52] is devoted to designing
more complex networks such as multistage models to improve
the accuracy of ship detection, which are much slower than
one-stage models. However, high detection speed is also critical
in practical applications such as satellite military reconnaissance
mission. How to improve model detection accuracy without
sacrificing detection speed remains a challenge to be solved.

In this article, a ship detection method called as R-RetinaNet
is proposed aiming for solving the above-mentioned issues
for RBox-based ship detection. The main improvements of
R-RetinaNet as well as the contributions of this article are mainly
reflected from the following aspects:

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

First, in order to ensure the speed of the detection method, we
choose one-stage model as our basic design framework. At the
same time, a feature map scale calibration method is proposed
to align the scale distribution of the output backbone feature
maps with the scale distribution of the targets, which avoids the
heuristic operation or exhaustive search during model design
process.

Second, inspired by [56], a new pyramid network named task-
wise attention feature pyramid network (TA-FPN) was proposed
to decouple the optimization process of different learning tasks
on the fused feature map, which produced better results than
traditional FPN.

Third, an adaptive IoU threshold (AIT) training method is
proposed for the training of the model in order to alleviate model
degradation caused by the severe imbalance of positive samples
on different targets, which significantly improves the model’s
performance.

The rest of this article is organized as follows. Section II
introduces the proposed methods. The experimental results on
two datasets and the comparison with several state-of-the-arts
methods are explained in Section III. Finally, Section IV con-
cludes the article.

II. METHODS

In this part, the details of the proposed network structure
as well as the training process of the proposed model and
corresponding hyperparameters will be introduced. At first, the
key points and the overall architecture of the proposed network
are derived by analyzing the problems of some existing methods.
Next, the AIT training method is described in detail to show how
it works.

A. Overall Scheme of Network Structure

The current mainstream detection models can be divided into
one-stage models and two-stage models. The one-stage models
are widely used in various application scenarios that require
low latency such as video detection due to their faster detection
speed compared with two-stage models. In general, the size of
images produced by remote sensing systems such as SAR is
much larger (e.g., 3000 x 3000) than that of traditional sensors
such as ordinary cameras, which creates a large computational
burden for SAR ship detection. Therefore, this article chooses
the one-stage model RetinaNet as the basic design framework in
order to meet the high-speed requirements of applications such
as ship monitoring.

The network structure proposed in this article is illustrated
in Fig. 1, which can be divided into four parts: the feature
extraction part, the feature fusion part, the prediction part, and
the postprocessing part.

1) Feature Extraction: Each training image will be first ran-
domly cut into a 320 x 320 slice containing at least one target,
and then the slice is fed into a feature extraction network to
obtain feature maps with different scales and different semantic
information. If not specified, the feature extraction network used
in our model is ResNet50, which shows a good compromise
between calculation and performance in our experiments.
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Fig. 1.  Architecture of the proposed model R-RetinaNet.

2) Feature Fusion: Next, we will select feature maps that can
well match the target scale distribution of dataset and feed them
into the feature fusion network named TA-FPN to obtain multi-
scale feature maps with strong semantic information. The feature
optimization module named task-wise squeeze-and-excitation
(SE) module in feature fusion network will attempt to decou-
ple the optimization process of different learning tasks on the
multiscale feature maps to a certain extent by performing two
different channel optimizations on the feature maps according
to different learning tasks.

3) Prediction: The output of the feature fusion network will
be input to the classification branch network and the localization
branch network, respectively. The classification branch network
will predict the confidence of the prior anchors corresponding
to each pixel on the feature maps of different scales. This
confidence determines the probability that the anchor belongs
to a target. Localization branch network outputs the normalized
coordinate deviation between the anchor belonging to a target
and the true bounding box of that target.

4) Postprocessing: In the training stage, the output of the
classification branch and the localization branch will be used to
calculate the classification loss and the localization loss, respec-
tively. In the test stage, the anchors with confidence less than
T.ont Will be removed, and then the coordinates of the remaining
anchors will be compensated by the output of the localization
branch network to obtain the detection results. Finally, NMS
operation with a threshold of 7, is performed on the detection
results to eliminate detection results with large overlap.

B. Scale Calibration of Output Feature Maps

The standard RetinaNet [57] uses the ResNet50 without the
classification layer as the feature extraction network. In addition,
standard RetinaNet added two convolutional layers on the last

Prediction Post-processing

TABLE I
FEATURE EXTRACTION NETWORK OF RETINANET

Block Name Conv Block Setting Output Size
Input - 320 x 320, 3
Stage_1 7 X 7, 64, stride 2 160 x 160, 64
Max pool 3 x 3, stride 2 80 x 80, 64
[ 1x1,64 ]
Stage 2 3x3,64 | x3  80x80,256
| 1x 1,256 |
[ 1x 1,128 |
Stage_3 3 x 3,128 x 4 40 x 40, 512
| 1x1,512 |
[ 1% 1,256
Stage_4 3 x 3,256 x 6 20 x 20, 1024
| 1x1,1024 |
[ 1x1,512 ]
Stage_5 3 x 3,512 X 3 10 x 10, 2048
| 1x1,2048 |
Stage_6 3 % 3, 256, stride 2 5 X 5, 256
Stage_7 3 x 3, 256, stride 2 2 X 2,256

feature layer of ResNet50, which improves the detection perfor-
mance of large targets. We divide the feature extraction network
of RetinaNet into different blocks as shown in Table I for the
following explanation. Stage_n indicates that the resolution of
the output feature map at this stage is 1/2" times that of the
original image, therefore different stages correspond to feature
maps of different scales.

Feature maps with different scales need to be output from the
backbone network for subsequent processing. In order to detect
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TABLE II
SCALE SETTING OF OUTPUT FEATURE MAPS IN DIFFERENT METHODS FOR
DATASET SSDD
Method Backbone Network  Stage of Output Feature Maps

DAPN [38] ResNet101 {2,3.4,5}
DNN-AM [40] Customized {2,3.4}

LSSD [42] VGG16 {4,5}

R-SSD [49] VGG16 {3.4,5,6,7,8}
DRBox-v2 [51] VGG16 {34}

ship targets of different scales, CNN-based methods usually
generate prior anchors with multiscales on different feature
maps. Therefore, it is necessary to determine which feature
maps of the backbone network are required for prediction as
well as the scales of prior anchors used for detection after the
feature extraction of the backbone network is completed. Previ-
ous studies used different methods such as K-means clustering
algorithm or fine-tuning to determine the scales of the prior
anchors aiming to cover the target scale distribution in the dataset
as much as possible [36], [37], [40], [51]. However, different
heuristic settings for the same dataset SSDD [36] shown in
Table II are used in previous works without a good explanation
for the scale selection of output backbone feature maps, which
may not guarantee the optimal performance. Feature maps with
inappropriate scales may not only fail to boost the detection
performance, but also bring additional computational burden
for subsequent processing. At present, the method to find the
optimal feature map stage setting is to test different combinations
one by one without a fast and reasonable guidance scheme.
How to quickly find the optimal scale configuration remains
a challenge to be solved.

In this article, we propose a method and a new indicator called
ideal target scale (ITS) to try to guide the calibration of the output
feature map scale setting. The ITS for feature map of Stage_n
is defined as

ITS, = m x 2" (1

where m is the size of the convolution kernel of the subnetworks.
For the one-stage detection model proposed in this article, a 3 x
3 convolution kernel is used to detect objects at each position on
the feature maps output from the backbone network, therefore
m = 3. The physical meaning of ITS,, is the side length of the
original image square area corresponding to the small piece
of feature map covered by the convolution kernel when the
subnetworks are detecting objects on the feature map of Stage_n
at a specific position.

To analyze the impact of feature maps at different stages on
the prediction of a specific target, we define the target scale s”
of target ¢ in the original image as

sB = \/hE x wP 2)

where hP and w? are the height and width of the BBox of target
1, respectively.
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Feature maps used for
prediction at a specific pixel

A part of backbone feature map
of target i at different stages

Fig.2. Feature map used for the center pixel prediction at different stages with
m = 3. Note that the target with s? = 16 is taken as an example here because

B _ . .
s;” = 16 a typical value in our dataset.

In the two-stage models, the Rol pooling layer is used to
align the feature map region input into the prediction network
with the target’s real region [31]. However, in the one-stage
model, the region of the feature map input into the prediction
network at each anchor point is only determined by m and
cannot be dynamically adjusted according to the region of the
target, which is interpreted in Fig. 2. Taking a target with
hB = wP = 16 as an example, as can be seen from Fig. 2, on
the one hand, the small piece of feature map used for prediction
at a specific position will contain too many background pixels
when the ideal target scale ITS,, is too large than the scale of
target s7 such as Stage_4 in Fig. 2, which will introduce too
much noise for prediction, and the low resolution of the feature
map may also lead to insufficient positive samples during the
training stage [51]. On the other hand, although low-level feature
maps can provide dense anchors on the original image, too much
reliance on high-resolution feature maps may bring unnecessary
computational burden, and the convolution kernel will focus on
partial information if the scale the target s is too large than ITS,,
such as Stage_1 in Fig. 2, which is not conducive to the detection
of large targets. Therefore, the backbone feature maps output for
prediction should contain a feature map whose ITS,, is closest
to the target s® in order to ensure the detection performance
of the model, such as Stage 2 in Fig. 2. When considering
targets with different s?, this means that the range of ITS,, of
the backbone feature maps should cover the distribution of the
sP in the dataset.

In addition, the feature maps should also be used as few as
possible in order to balance the accuracy and speed of the model.
Following the above design principles, we propose a feature
map scale calibration method to align the scale distribution of
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Fig. 3. Flowchart of feature scale calibration method.

the output feature maps of the backbone network with the scale
distribution of the targets. The flowchart of our feature scale
calibration method is summarized in Fig. 3. We first use the
K-means algorithm to cluster the scales of different targets in
the dataset according to the height and width of the BBoxes to
obtain K BBox centers. Next, K scale centers are obtained by
(2). Then, we find two feature maps whose ITS are closest to the
smallest scale center and the largest scale center, respectively,
and mark their ITS as ITS,,,i, and ITS,,,ax. Finally, feature maps
withITS € [ITSin, [TSmax] are selected as output feature maps
to ensure that the targets’ scale distribution is well covered
without introducing too many redundant feature maps.

C. Feature Fusion Based on TA-FPN

In feature extraction networks, feature maps in deep lay-
ers often have strong semantic features and low resolution,
which is very helpful for target classification but restrict their
localization capacity in detection tasks. Feature maps in shal-
low layers have higher resolution but their low-level features
harm their representation capacity for object recognition [58].
In order to obtain high-resolution feature maps with strong
semantic features, FPN [58] is proposed, which uses a top-down
pathway to enhance the semantic information of the low-level
high-resolution feature maps. The introduction of FPN greatly
improved the model’s adaptability to multiscale targets. Since
then, researchers have used various techniques such as atten-
tion mechanisms to enhance the feature fusion capabilities of
FPN [38], [40], [49].

However, these studies mainly focus on the global optimiza-
tion of features without taking into account the different learning
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goals of classification branch and localization branch. In gen-
eral, classification tasks require features to maintain translation
invariance and scale invariance, which means that the features
used for classification should remain as constant as possible
when the position and scale of the same target change. However,
the localization task requires features to maintain translation and
scale variability, which means that changes in target position
and size should be expressed in the features. This feature space
deviation of two different tasks seriously hurts the training
process [54].

Driven by this problem, researchers have begun to make some
explorations. Recent research shows that this internal contradic-
tion can be greatly alleviated by decoupling the gradient flows of
classification task and the localization task in the spatial dimen-
sion of the feature maps [54], which successfully improves the
model performance. However, this spatial decoupling depends
on the RPN integrated in the two-stage models, which cannot
be applied in the one-stage models. Therefore, we designed a
new feature optimization module based on task-wise attention
mechanism for one-stage models to decouple the gradient flows
of classification task and the localization task in the channel
dimension of the feature maps and a new FPN named TA-FPN
is proposed, which is shown in the middle of Fig. 1. Each
fused feature map obtained by merging the lateral connection
and high-level features will be recalibrated separately in the
task-wise SE module, which is illustrated in Fig. 4. The encoder
of the task-wise SE module consists of a fully connected layer
and a ReLU activation function. The decoder consists of a fully
connected layer and a sigmoid activation function. The global
information of each channel in the fused feature map is first input
to an encoder, which can be expressed as

e, = ReLU (W,z,) 3)

where W,, € ]R% ““is the weight of encoder at Stage_n and
C' is the number of channel of input feature map. rsg is the
reduction factor and it is used to reduce the model complexity.
z,, € RE*11 is the output of global pooling layer at Stage_n.

< . .
e, € R7se Vs the output of encoder at Stage_n and is then
fed into decoders, which can be expressed as

a, = Sigmoid(M,,xe,, + byi) 4)

where a,,;, € R€*1*1 is the output vector of the kth decoder at

Stage_nand k € {1,2}. M, € C' x R is the weight of kth
decoder at Stage_n. b,; € RE*1x1 i5 the bias of kth decoder
at Stage_n and it is initialized to 2.19 to avoid the output of
the decoders being too small at the beginning of training. Each
channel of the fused feature map will be enhanced or suppressed
by multiplying with the corresponding element in the output
vector of a decoder. This structure allows the model to learn how
to adaptively focus on features in different channels according
to different learning tasks, which is why we named it TA-FPN. It
is worth noting that the encoder in a task-wise SE module must
be shared by the two branches, because task-wise SE module
with two independent encoders did not provide any performance
improvement according to our experiments. Detailed analysis of
TA-FPN is explained in Section III-D.
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Representation of RBox.

D. Prior Anchor Generation With RBox

After obtaining the multiscale feature maps, the prior anchors
are generated on the image at the anchor points corresponding
to each pixel of feature maps. The interval of anchor points is
determined by the spatial relationship between the input image
and the feature maps, which is well illustrated in previous
studies [51]. Most previous researches applied anchors based
on BBox to detect ship targets. However, recent studies have
shown that RBox can depict the orientation angle of targets much
better. Furthermore, the RBox can also effectively improve the
detection performance, benefiting from its natural adaptation
to densely arranged ship targets. Consequently, we use RBox,
which is shown in Fig. 5 for ship detection. An RBox can be
defined by the following five parameters: the coordinates of its
central point (z,y), the height h and width w, and the rotation
angle 6. The rotation angle 6 of the RBox is defined as the angle
between the long axis of the RBox and the horizontal axis, which
is limited from —90° to 90°.

Each anchor generated on the images will be labeled as
positive sample or negative sample according to their IoU with
the ground truth, which are then used in the training process. For
RBox-based anchors, skew [oU [50], [59] is adopted to compute
the IoU between two RBoxes.

E. AIT Training Method

During the training stage, the loss function can be represented
as the sum of classification loss and localization loss

Ltotal = Lclass + Llocalization

1 1
= Fchonf(c) + ELreg(Ra G) ()

where N, is the number of positive samples, Lcon(c) is the
confidence loss generated by the classification branch, and
Lo (R, G) is the regression loss generated by the localiza-
tion branch. Let IV denotes the total number of anchor boxes,
then ¢ = [cy, 2, ... cy]7 is the confidence vector predicted by
model. R = [ry;ry;. .. ;ry, ] denotes the predicted localization
matrix for positive samples, where r; = [r&,r? 7l r@ 79T
records the predicted regression results of the ith anchor box.
G = [g1;82;...; 8N, ] represent ground truth localization ma-
trix for positive samples, where g; = [¢7, g7, g, g%, ¢?]T de-
notes the ground truth location of the ¢th anchor box. We use the
Smooth-L1 function to calculate the regression loss Lieg, which
is defined as

Lee=2, >

i€Pos me{x,y,h,w,0}

smoothzy (1" — g/") (6)

where

0.5s%, if|s| <1
smooth1(s) = { [s| — 0.5 e1s|e| ’ 7

Focal Loss [57] was introduced as the confidence loss for
classification branch to alleviate the imbalance of positive and
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negative samples in our one-stage model, which can be repre-
sented as

FL=— 5 (1—¢;)"log(c;)— > cz log(1—¢;)
i€Pos i€Neg (8)

=—> (1 —pf)" log(p})

where v = 2 and p! € [0, 1] and can be expressed as

o C; if
“_{1—qﬁ

In the common practice [51], anchor that has the largest IoU
with the ith ground truth target will be matched with the ith
ground truth target and labeled as positive sample. In addition,
anchors that have an IoU larger than Tj,y with any ground truth
target will be matched with that ground truth target and labeled
as positive samples. Except for the positive samples, the rest
of anchor box are labeled as the negative samples or ignored.
Previous studies [49], [51] used a fixed 17,y to distinguish
positive and negative samples when training the RBox-based
model because it is widely used in BBox-based model [31],
[37], [57]. However, this simple copy will cause an extremely
large variance of the number of positive samples generated by
different targets in the RBox-based model, which has not been
mentioned in previous studies. The high variance of the number
of positive samples can be regarded as a kind of intraclass
imbalance problem, which will make the model pay too much
attention to the targets with more positive samples and ignore
the targets with fewer positive samples.

An intuitive idea is to directly lower the fixed IoU threshold to
obtain more positive samples, but this will introduce too many
poor matched positive samples to those targets that already have
enough well-matched positive samples, which cannot effectively
reduce the variance of number of the positive samples.

Based on the above analysis, a new training method based
on AIT is proposed to reduce the variance of the number of
positive samples. For a specific target ¢, we first calculate the
IoU between all anchors and the ground truth RBox of target .
Then, we select the first N, anchors with the largest IoU as the
candidate anchors. Finally, let V; be the IoU of the jth anchor in
the candidate anchors and the T,y of target ¢ will be calculated
as follows:

1 € Pos

1 € Neg * ©)

1
Ty = - 2. Vi (10)
Jj=1

The anchors with IoU > T ; will be regarded as positive
samples and the anchors with loU < T} ; — 0.1 will be regarded
as negative samples. The rest of the anchors will be ignored. T}
will become larger when there are a large number of anchors that
match the target well, thereby avoiding introducing too many
positive samples that are poorly matched to the target. T}, will
decrease when most of the anchors are not well-matched with
the target, which ensures that this target has enough positive
samples.

III. EXPERIMENTS AND DISCUSSION

In this section, experiments are performed to evaluate the per-
formance of the proposed methods. The experimental datasets
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used in this article and the corresponding evaluation methods
will be introduced first. Then, detailed ablation experiments will
be performed to prove the effectiveness of each improvement.
Finally, the comparison with other state-of-the-art methods im-
plies the significance of the proposed method.

A. Experimental Data

Two different datasets are collected to evaluate the proposed
method: SSDD+ and GF3-Ship. SSDD+ contains different sce-
narios and a large number of targets with different scales, which
will be used to analyze the performance of the proposed method
in detail. GF3-Ship consists of 882 high-resolution SAR image
chips produced by the Chinese GF-3 satellite, which is smaller
than SSDD+ and will be used to evaluate the performance of the
proposed methods in high-resolution images and explore the
potential of the GF-3 satellite for ship monitoring.

SSDD+ can only be obtained by applying Li ef al. [36]. The
download link of the SAR image used to make GF3-Ship dataset
was released in [60]. Details of these datasets are described in
the following.

1) SSDD+: SSDD [36] is the first public dataset for ship
target detection in SAR images, which has been widely used
to compare the performance of different detectors. SAR images
of resolution from 1 to 15 m are collected from Radarsat-2,
Sentinel-1, and TerraSAR-X to form the SSDD dataset, which
contains multiscale ships labeled with BBox in various environ-
ments, including different scenes, sensor types. The polarization
modes of these samples include HH, HV, VV, and VH.

On the basis of SSDD, Li er al. [36] introduced a ship
dataset labeled with RBox in order to facilitate the research
of RBox-based detection methods in SAR images, which is
called SSDD+ and has the same samples as SSDD. It should
be noted that some targets in the original SSDD+ have very
poor label quality and low-quality labels will seriously affect
the results of the experiments, so we corrected the labels that
have large errors in the original SSDD+ before our experi-
ments. There are totally 1160 images in SSDD+, which are
randomly divided into training set and test set with the pro-
portion of 8:2 for the training and testing of the proposed
method.

2) GF3-Ship: GF3-Ship is a small dataset for SAR ship
detection research, which is composed of images under different
levels of sea condition. The sea condition information in the
GF3-Ship dataset makes it possible to study the robustness of
the model under different sea conditions. GF3-Ship is made
from 31 large-scale SAR images published by Sun et al. [60].
These large-scale SAR images generated by the GF3 satellite
contain a large number of ship targets and each image has a
size around 3000 x 3000. The horizontal BBox of each ship
target is given by experts after examining the corresponding
SAR images. Based on this dataset, we further mark out the
corresponding RBox according to the BBox of each target and
crop out 882 slices with size of 800 x 800 from 30 images to
form the GF3-Ship dataset. The remaining one large-scale image
is saved for large scene validation. The detailed parameters of
GF3-Ship dataset are shown in Table III. Considering that many
slices are very similar in GF3-Ship dataset, 60% of the slices are
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TABLE III
DETAILED PARAMETERS OF GF3-SHIP DATASET

Parameter Value
Number of Images 882
Image Size 800 x 800
Resolution Im, 3m
Mode Spotlight, UFS
Polarization Mode \A%

Sea Condition Level O - Level 4

500

T T T T T T T T

400 [

w
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o
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Fig.7.  Scatter diagram of the size of targets in SSDD+. The blue dot represents
the size of a target’s RBox, and the red dot represents the size of a prior anchor.

TABLE IV
ANCHOR SETTING FOR DIFFERENT FEATURE MAPS BASED ON RBOX

Feature Map Anchor Parameter

7 |||‘“| |
LI IIIIIIIIIIII.--.. ——— | — .
0

0 25 50 75 100 125 150 175 200 225 250 275 300
Scale of ship

Fig. 6. Statistical histogram of targets’ scales s? in SSDD+.

randomly sampled and used for training and the rest 40% of the
slices are used for testing.

B. Implement Details

1) Data Preprocessing: To enhance the robustness of the
model, we use data augmentation in data preprocessing. During
the training stage, each image will be first padded into a size of
800 x 800 with zeros if its size is smaller than 800 x 800. Then,
we randomly select a ship target in that image and randomly crop
a 320 x 320 slices under the premise of including that target in
this slice. Finally, the slice is randomly flipped horizontally with
a probability of 0.5. During the testing stage, the test image is
inferred at its original size.

2) Hyperparameter Setting: In standard RetinaNet, feature
maps on stages 3—7 with ITS,, € {24,48,96 192384} are used
for detection. However, through the statistical results of the
targets scale distribution of SSDD+ shown in Fig. 6, we find
that that nearly 47% of ship targets in SSDD+ have scales
smaller than ITS3, whereas less than 4% of ship targets in
SSDD+ have scales larger than ITS5, which leads to serious scale
misalignment problem. Therefore, it is necessary to recalibrate
the scales of the output feature maps of the feature extraction
network according to the distribution of the target scale in the
dataset.

Based on the proposed method, we recalibrate the scales of
the output feature maps from ITS,, € {24, 48, 96 192 384} to
ITS,, € {12,24, 48,96} according to the distribution of ship

Stage RBox Scale Aspect Ratio Angle
Stage_2 [7.5, 12] [1.5, 2,28, 4] [0°, £30°, £60°, +£90°]
Stage_3 [17.5, 24] [2, 2.8, 3.8, 5] [0°, £30°, £60°, £90°]
Stage_4 [32.5, 45] [2.3,3,4,5.5] [0°,£30°, £60°, £90°]
Stage_5 [60, 75] [2.5,3.5,4.5,6] [0°,£30°, £60°, £90°]

scale in SSDD+, which means that the feature map on Stage_2,
Stage_3, Stage_4, and Stage_5 of ResNet50 is used for detec-
tion. The calibration process of GF3-Ship is similar to SSDD+.
The detailed calibration process on SSDD+ is explained in
Section III-D.

In order to fit the scale distribution of ship targets as close as
possible without introducing too much computation, we selected
eight scales for the RBox-based anchor, and each scale contained
seven uniformly distributed orientation angles and four aspect
ratios. The size distribution of anchors and targets in SSDD+
is shown in Fig. 7. After the crossover experiments, we evenly
distribute anchors of eight different scales to each output feature
map, which is shown in Table IV. Note that the RBox scale
of anchor in Table 1V is defined as s = \/h!t x wk, where
hE and wk are the height and width of the RBox of anchor i,
respectively.

The settings of the other hyperparameters mentioned above
are shown in Table V as a reference for SSDD+ dataset, which
led to best results in our crossover experiments. For the hyperpa-
rameters involved in the basic framework such as 1o, and 1 js,
we use the default configuration given in the previous literature.
These configurations have been proven to provide a stable per-
formance in our cross experiments. The new hyperparameters
introduced in our proposed methods mainly include the number
of BBox centers K in the scale calibration method, the number
of candidate anchor boxes N, in the AIT training method and
the scaling factor rgg of the task-wise SE module. These newly
introduced hyperparameters have undergone multiple crossover
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TABLE V
SETTING OF HYPERPARAMETERS

Parameter Recommended Value Range  Our Setting
Teonf [0.02-0.1] 0.05
Thms [0.1-0.5] 0.2

K [6-12] 6
Ng [30-80] 40
TSE [4-16] 8

experiments to obtain a reasonable range of values for each of
them. Hyperparameters beyond the recommended value range
in Table V may cause significant performance degradation of
the model or unnecessary computational complexity. Detailed
analysis of the effects of these hyperparameters is shown in
Section III-D.

3) Optimizer Setting: All the models are trained with a
stochastic gradient descent algorithm over an Intel E5-2680
V3 processor and an Nvidia GTX1080Ti GPU. Focal Loss
function [57] and Smooth-L1 Loss function are used to cal-
culate classification loss and regression loss, respectively. The
mini-batch size is 4 in one iteration. The models are trained for
140k iterations with an initial learning rate of 0.0005, which is
then divided by 10 at 80k and 120k iteration, respectively.

C. Evaluation Criteria

In order to compare different models properly, we choose
average precision (AP) and break-even point (BEP) to quantify
the performance of the models.

1) Average Precision: AP [38],[51]is the standard metric for
target detection algorithms, which comprehensively considers
the precision rate P; and recall rate R4 of the model at different
confidence levels and can be expressed as

1
AP, = / Py(Rq)dRy (11)
0

where d is the IoU threshold used to distinguish whether a
detection result is true positive or a false positive. If the IoU
between a predicted RBox and a ground truth RBox is higher
than d%, the predicted RBox is a true positive, otherwise it is a
false positive. The value of AP, canranges from O to 1. The AP,
of an ideal detector will be equal to 1. Following the common
practice, d = 30 and d = 50 are used in the evaluation.

2) Break-Even Point: BEP [51] refers to the point where
Py = Ry, and the corresponding value of the recall (precision)
rate is called as the BEP value and utilized as a metric to
evaluate the detectors at a single confidence level. Higher BEP
corresponds to better detection performance.

D. Evaluation of the Proposed Method

In this section, the contribution of each improvement will
be quantitatively evaluated on SSDD+ and GF3-Ship through a
series of ablation experiments to demonstrate the effectiveness
of each modification. Discussions are then conducted with the
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TABLE VI
ABLATION EXPERIMENTS ON SSDD+

Scale APso BEP5so Inferance Time
Calibration TAFPN  AIT =gy (%) (ms/Tmage)
X X X 87.78 88.62 46.47
VA X X 92.39 92.54 57.94
X N4 X 88.64 89.04 53.11
X X v 91.96 91.29 46.56
v Vv X 93.41 93.23 62.87
v X v 9427 93.75 59.16
x v v 9249 92.37 53.26
v v V. 94.66 94.03 62.77

aim of analyzing the impact of each improvement on the network
model in detail. Finally, the proposed method is compared with
other methods on two different datasets to show the advantages
of the proposed method in ship detection.

1) Ablation Experiments Results: Several improvements
have been made in the aspects of model design and training
process, so it is necessary to study the actual effect of each
improvement and their impact on each other. Experiments using
different combinations of these improvements were performed
and the experimental results on SSDD+ are shown in Table VI.
The experimental results can be summarized as the following
aspects.

First, it can be seen from Table VI that applying each improve-
ment individually can effectively improve the performance of
the benchmark model (Standard RetinaNet), which proves the
significance of each improvement.

Second, the comparison of experiments containing two im-
provements with experiments containing only one improvement
shows that the performance gain of the model is significantly cu-
mulative with multiple improvements, indicating small overlap
between different improvements.

Third, scale calibration provides the largest performance gain
(about 5% of AP5) in experiments that contain only a single
improvement, which illustrate the importance of scale calibra-
tion of the backbone feature map. TA-FPN only contributed an
AP5, improvement around 0.4% to the model with AIT, which
indicates that a better structure may be needed to decouple the
gradient flow of different tasks in the channel dimension.

Finally, it can be found from the last column of Table VI that
the calibration of the feature map has a greater impact on the
detection speed of the model. This is because that the feature map
scale calibration introduces a higher resolution feature map for
detection, which increases a lot of calculations. The introduction
of TA-FPN will also reduce the detection speed because different
subnetworks no longer share the same fusion feature. AIT has
no effect on the detection speed because it does not change the
calculation process of the model.

It is noted from the results that the highest AP and BEP are
achieved by R-RetinaNet with all three improvements.

2) Effect of Scale Calibration: According to the proposed
scale calibration method, we first cluster the BBoxes of the
targets in SSDD+ to obtain six BBox centers: (189.96 x 60.91,
125.51 x 63.39, 95.39 x 44.30, 55.52 x 28.17, 44.63 x
24.86, and 19.49 x 16.17). Then, we can get the six scale
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TABLE VII
CALIBRATION RESULTS UNDER DIFFERENT K

K Calibration Result of Feature Map Scale

2 {3.4,5}
4 {3.4,5}
6 {2,345}
8 {2,345}
10 {2,345}
12 {2,3,4,5}
14 {2,3,4,5,6}
16 {2,3.4.5.6}
94 Calibrated
Setting
92
90 -
< Original
§ gg | Setting
o
<<
86 -
84 -
82
S A o = < 5 o ) =
\b‘ (:,\b (?\ 2 Q’?ﬂ ?,?( ?\ Q" Q/' *
& @ v A\ QF
Output Stage Collection
Fig. 8. Comparison of different output stage collections.

centers as (106.71, 89.20, 65.00, 39.55, 33.31, 17.76), and the
ITS,in and ITS,,.x are known as ITS,,;, = ITS; = 12 and
ITS1ax = ITS5 = 96. Finally, the scales of the output feature
maps are recalibrated from ITS,, € {24, 48, 96 192 384} (used
in standard RetinaNet) to ITS,, € {12, 24, 48, 96}.

The calibration results under different K are shown in Ta-
ble VIL. It can be found that the calibration result of the model
is quite insensitive to the variations of K from 6 to 12. It is
worth noting that too small K cannot generate enough cluster
centers to represent the scale distribution of the targets’ BBox,
whereas too large K will cause redundant calculations when
performing the clustering. Consequently, K = 6 was selected
for subsequent experiments.

To demonstrate the validity of scale recalibration, models
using different scale (stage) settings for the output feature maps
were tested. All controlled trials use the same anchor scale
setting and allocation principles mentioned in Section III-B. All
eight anchor sizes will be evenly distributed to the feature maps
in each configuration. The experimental results are sorted by
their AP value and shown in Fig. 8. It can be seen that the
performance of the calibrated setting is far better than that of
the original setting and slightly inferior to that of the optimal
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(a) ()

Fig.9. Comparison of detection results before and after scale calibration. Note
that the red boxes represent true positive targets, the yellow boxes represent
false positive targets, and green boxes represent missed targets. Column (a)
gives the results before scale calibration. Column (b) gives the results after scale
calibration.

configuration {2,3,4}, which proves that feature map scale align-
ment can effectively improve model performance while avoiding
exhaustive configuration search. Note that the calibrated setting
has the highest test speed in the settings with APsq > 92%.
Fig. 9 shows some of the detection results before and after scale
calibration on SSDD+. It can be seen from Fig. 9 that the scale
calibration effectively improves the recall rate of the targets that
have smaller size compared with other targets in SSDD+.

On the one hand, the proposed method can effectively guide
the scale correction of the output feature map to improve the
performance of the model, which proves the necessity to align
the scale distribution of the output backbone feature maps with
the scale distribution of the targets. On the other hand, it is
worth noting that the proposed scale calibration method cannot
guarantee the optimal scale setting of the feature map, which
may because that the definition of the target scale in Section II-B
is not suitable for the representation of the true scale of the
ship target in the horizontal or vertical direction. Therefore, it is
necessary to design a better target scale representation in order
to increase the robustness of the scale calibration method in the
future work.

3) Effect of TA-FPN: The training of the detection model
based on CNN is a typical multitask learning process, which
includes target classification learning and coordinate regression
learning. The convolution calculation process before the sub-
networks shown in Fig. 1 is fully shared by the classification
subnetwork and the regression subnetwork in the previous meth-
ods, which greatly improves the efficiency of the model. How-
ever, classification tasks and localization tasks have completely
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Fig. 10.  Statistical histogram of element values in d,, at different stages.

opposite requirements on translation transformation and scale
transformation of features.

In order to demonstrate the difference of requirement for the
shared features between different learning tasks, we explored
the behavior of the two decoders in each task-wise SE module
of a converged model. First, the output vectors of decoder_1 and
decoder_2 are averaged over 1160 images in SSDD+, respec-
tively. Then, the difference between the average output vectors
of the two decoders is calculated as follows:

d, = |5~n1 _an2‘ = [dnladn%“-adnm] (12)
where a,,; is the average output vector of decoder 1 at stage n
and a,,» is the average output vector of decoder 2 at stage n. d,,
is the difference between the outputs of two decoders at stage n.
0 < dpm < 1represents the difference between the calibration
values of two decoders for the mth channel of the feature map
at stage n.

The statistical histograms of the element values in d,, are
shown in Fig. 10. It can be seen that almost half of the differences
are greater than 0.5, which means that many channels of the
feature map are suppressed in one branch, whereas enhanced in
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TABLE VIII
PERFORMANCE OF DIFFERENT CALIBRATION STRATEGIES

. . APso BEP5o Inferance Time
Calibration Strategy
(%) (%) (ms/Image)
Original FPN 92.39 92.54 57.94
Global Calibration 92.95 92.74 63.23
Classification Calibration 93.32 92.16 62.47
Localization Calibration 93.25 92.54 62.88
TA-FPN 93.41 93.23 62.87
TABLE IX

INFLUENCE OF rsg ON MODEL PERFORMANCE

TSE 2 4 8 16 32 64

APso 93.19 9292 9341 9332 9253 9281

the other branch, indicating that the feature preference of classi-
fication branch and localization branch is significantly different.
The different behaviors of two decoders in each task-wise SE
module prove the different requirements for features and the
necessity of decoupling in channel dimension. We also tested
different calibration strategies on SSDD+ to prove the advan-
tages of the proposed method, including global optimization,
classification optimization only and localization optimization
only. The experimental results are shown in Table VIII. It can be
seen that the proposed method is superior to other optimization
strategies. Besides, it can be found that the model that uses
different calibration strategies in the two branches (classification
optimization only, localization optimization only or TA-FPN)
is always better than the model that uses the same calibration
strategy in the two branches (original FPN or global calibration),
which indicates the necessity of decoupling different tasks in the
channel dimension.

The performance influence of rsg on model after scale cali-
bration process is shown in Table IX. Increasing rsg can reduce
the amount of parameters of the task-wise SE module, but a
too large rsg will result in insufficient information input to the
decoder, which will damage the performance of the model. Here,
we set rsg = 8, which provides the best performance in our
experiments.

4) Effect of AIT: Although the introduction of RBox makes
the model better adapt to the densely arranged target, it also
causes a huge increase in the variance of the number of positive
samples generated by different targets when using a fixed IoU
threshold, which was totally ignored in previous studies. In
order to analyze the difference in the distribution of positive
samples generated by the BBox and RBox-based models at a
fixed IoU threshold during the training stage, we randomly shift
each target in SSDD+ 100 times on the image and record the
number of positive samples generated by each target after every
shift. Since random cropping is used in the training stage for data
augmentation, and the position of the target in the input image
will change after each cropping, therefore random shift is used
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to simulate the effect of random cropping when recording the
number of positive samples produced by each target.

Figs. 11 and 12 show the normalized frequency distribution
histogram and variance of the number of positive samples gen-
erated at Tj,y = 0.5 by the BBox-based and RBox-based Reti-
naNet, respectively. Note that both models use hyperparameter
configurations that maximize their detection performance. It can
be seen from Fig. 12 that there are two main reasons for the rise
of variance of the number of positive samples in the RBox-based
model.

The first reason is that a large number of targets generate very
few positive samples (highlighted by the rectangle on the left in
Fig. 12), which is mainly caused by those targets that have large
aspect ratios. Another reason is that some targets generate a lot
of positive samples (highlighted by the rectangle on the right in
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Fig. 13. Several typical targets in SSDD+ dataset. Note that the red box
represents the ground truth of the target, and the green box represents the anchor
box that has an IoU greater than 0.5 with the ground truth. The anchor setting
follows Table IV. (a) Target with two positive samples. (b) Target with three
positive samples. (c) Target with 28 positive samples. (d) Target with 35 positive
samples.

Fig. 12), which is mainly caused by targets with smaller aspect
ratios or target whose center is very close to the anchor point.
These targets have larger IoU with anchors that has similar size
but different orientation angles, which increases the number of
positive samples. Several typical targets in SSDD+ dataset are
shown in Fig. 13 to illustrate the imbalance of positive samples.

The high variance of positive samples makes the model pay
more attention to the targets with more positive samples in the
training stage, thus ignoring the targets with fewer positive sam-
ples. In order to rebalance the contribution of different targets
in the model training stage, AIT was introduced during the
training stage. The positive samples distribution of RBox-based
model with AIT (/V, = 40) is shown in Fig. 14. It can be seen
that AIT successfully reduces the variance of the number of
positive samples, which makes the RBox-based model can strike
a balance between different targets like the BBox-based model.
The balance of the contribution of different ship targets to the
model during the training process can drive the model to focus
on learning the common characteristics of different ship targets,
instead of focusing too much on some specific ship targets that
generate more positive samples.

AIT with different N, was tested in order to study the effect
of different NV, on the model performance. The experimental
results are shown in Fig. 15. The results show that the value
between 40 and 120 does not lead to significant changes in
outcomes. However, too small N, will cause a performance
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TABLE X
PERFORMANCE OF DIFFERENT IOU THRESHOLD ON SSDD+

TIoU Threshold Mean of positive sample number  Variance of positive sample number AP50(%) BEPs50(%)
Trouy = 0.6 2.88 6.59 91.41 91.68
Trov = 0.5 11.61 61.54 93.91 93.23
Trou = 0.4 45.12 396.04 93.88 93.42
Trov = 0.3 157.91 3.52 x 103 92.31 91.86
Trouy = 0.2 582.84 3.47 x 10% 90.25 90.52
Adaptive IoU Threshold with N, = 40 16.35 7.56 94.66 94.03
0.16 T T T T T T T T M RetinaNet M RetinaNet+SC
01l var = 7.56 | W RetinaNet+SC+TAFPN M RetinaNet+SC+TAFPN+AIT
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. posiv P Fig. 16.  Model performance on SSDD+ dataset in inshore scene and offshore
. le calibrati thod.
Fig. 14.  Positive samples distribution of RBox-based model with AIT(N, = scene. SC means scale calibration metho
40).
mean of the number of positive samples will become too small,
94.8 which will cause a serious imbalance between positive and
946 negative samples. Compared with fixed IoU threshold, AIT can
effectively reduce the variance of the number of positive samples
944 while maintaining the overall number of positive samples, which
& g4 improves the detection performance.
2 o 5) Comparison of Inshore Scene and Offshore Scene: When
< using deep learning technology for ship target detection, the ship
93.8 - detection in the inshore scene is more challenging than the ship
936 1 detection in the offshore scene due to the interference of the land
area. On the one hand, the detector may recognize the objects
93.4 - : ' ' ' ' ' on the land in the inshore scene as ships and cause false alarms.
T.,=05 AT AIT AIT AIT AIT AIT .
ot (N, =20) (N, =40) (N, =60) (N, =80) (N, =100) (N, =120) Op the other hand, vi/hen a ship is close to thej port or closely
aligned with other ships, the detector may treat it as a part of the
Fig. 15.  Effect of different N, on model performance. port or other ships, leading to missed detections. Therefore, the

drop, because small N, will lead to insufficient overall num-
ber of positive samples in the training stage. The performance
comparison between AIT and the fixed IoU threshold method
is shown in Table X. It can be seen from Table X that for
the fixed IoU threshold training method, the variance of the
number of positive samples will increase rapidly when the IoU
threshold is set too small, making the model unable to balance
different targets. When the IoU threshold is set too large, the

detection performance of inshore ships plays an important role
in the evaluation of a detector.

Since SSDD+ has a larger sample size, we choose SSDD+ to
evaluate the detection performance of the model in inshore scene
and offshore scene. Fig. 16 shows the test results of the model in
the inshore scene and the offshore scene under different model
configuration.

For clarity, Fig. 16 only lists four different model configu-
rations. On the one hand, it can be found that the detection
accuracy of inshore scenes under different model configurations
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Fig. 17.  Ship targets in GF3-Ship dataset under different sea conditions. (a)
Ship targets under sea condition of level 1. (b) Ship targets under sea condition
of level 2. (c) Ship targets under sea condition of level 3. (d) Ship targets under
sea condition of level 4.

is much lower than that of offshore scenes, which proves that
the detection task of inshore ships are more challenging than
offshore ships. On the other hand, since the three proposed
improvements were not designed for specific scenes, all three
improvements can effectively boost the detection performance
of inshore scene and offshore scene when compared with the
benchmark model (RetinaNet), which verifies the robustness of
the proposed improvements in various scenes.

In addition, compared with offshore scenes, removing AIT
will result in a more significant reduction in the detection accu-
racy of inshore scenes. Since the model trained with AIT is more
focused on the common characteristics of different ship targets,
this may indicate that learning the common characteristics of
different targets is more essential to ship detection in inshore
scenes.

6) Model Performance Under Different Sea Conditions: The
complex motion state of ship under high sea condition has caused
great difficulties for SAR imaging. This makes ship targets in
SAR images under high sea condition often have poor resolution
and high sidelobes, which can be seen from Fig. 17. As the
level of sea condition increases, the imaging quality of ship
targets gradually deteriorates. Deterioration of image quality
brings a huge challenge to the ship detection task. Therefore,
it is necessary to explore the robustness of the detector under
different sea conditions.

In the GF3-Ship dataset, there are a total of five different sea
conditions, ranging from level O to level 4. As the sample size
of level 0 is too small (eight samples), we decided to combine
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conditions.

Model performance on GF3-Ship dataset under different sea

level 0 and level 1 into one group during the model evaluation
process. The evaluation results of the proposed methods under
different sea conditions are shown in Fig. 18.

Like Fig. 16, here we only list four different model configu-
rations in Fig. 18 for clarity. It can be seen from Fig. 18 that the
overall performance of different models has not gradually deteri-
orated as the sea condition level increases. This may be because
the number of test samples under high sea conditions (levels 3
and 4) in the GF3-Ship dataset is too small to provide reliable
experimental results under high sea conditions. Therefore, in
order to assess the impact of sea conditions on the performance
of the model more accurately, it is necessary to establish a dataset
with a large number of samples in different sea conditions.
Nevertheless, from the experimental results of low-level sea
condition (level 0-1 and level 2) which have sufficient samples,
it can be seen that the increase in sea condition level does have
a certain impact on the detection accuracy of the model. In
addition, in the case of sufficient samples, the model including all
three improvements achieves the best detection accuracy under
different sea conditions, which verifies the effectiveness of the
proposed improvements.

7) Comparison With the State-of-the-Art Methods: In this
section, the proposed methods are compared with several state-
of-the-art SAR ship detectors based on RBox under our im-
plementation to demonstrate the advantages of the proposed
methods. Table XI shows the performance of these methods on
SSDD+ and Table XII shows the performance of these methods
on GF3-Ship. Note that the inference time is measured at a
resolution of 320 x 320. Figs. 19 and 20 show the comparison of
some detection results of different one-stage models on SSDD+
and GF3-Ship, respectively. The PR curves of different models
at d = 50 are shown in Figs. 21 and 22.

As can be seen from Tables XI and XII, due to the use
of multiscale feature maps for training and prediction, SDOE
and DRBox-v2 are better than DRBox-v1 and their detection
accuracy on SSDD+ is similar to basic R-RetinaNet (AP5y =
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(a) (®) © (CY O]

Fig. 19. Comparison of some detection results of different models on SSDD+. The meaning of the color of the RBox is the same as Fig. 9. (a) Ground-truth. (b)
DRBox-v1. (¢) SDOE. (d) DRBox-v2. (¢) Our methods.

(b) (© (d (e)

Fig. 20. Comparison of some detection results of different models on GF3-Ship. The meaning of the color of the RBox is the same as Fig. 9. (a) Ground-truth.
(b) DRBox-v1. (c) SDOE. (d) DRBox-v2. (¢) Our methods.
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TABLE XI

COMPARISON OF DIFFERENT RBOX-BASED METHODS ON SSDD+

Method Framework  Backnone APg30 (%) APs0 (%) BEPso (%) Inference Time per Image (ms)
DRBox-v1 [51] One-Stage VGG16 86.41 - - -
DRBox-v1(Our implementation) One-Stage ResNet50 93.21 81.4 82.59 29.17
SDOE [49] One-Stage VGG16 - 84.2 - 25
SDOE(Our implementation) One-Stage ResNet50 93.88 85.17 87.23 35.33
DRBox-v2 [51] One-Stage VGGI16 92.81 - - -
DRBox-v2(Our implementation) One-Stage ResNet50 95.24 85.74 83.75 34.21
MSR2N [52] Two-Stage ResNet50 93.93 90.11 90.87 103.27
R-RetinaNet One-Stage ResNet50 94.15 87.78 88.62 46.47
R-RetinaNet + SC + TA-FPN + AIT One-Stage ResNet50 97.72 94.66 94.03 62.77
R-RetinaNet One-Stage ResNet101 95.64 89.48 91.46 63.18
R-RetinaNet + SC + TA-FPN + AIT One-Stage ResNet101 97.36 94.45 93.88 77.05
TABLE XII

COMPARISON OF DIFFERENT RBOX-BASED METHODS ON GF3-SHIP

Method Framework  Backnone APg30 (%) APs50 (%) BEPso (%) Inference Time per Image (ms)
SDOE(Our implementation) One-Stage ResNet50 91.05 89.54 90.96 36.32
DR-Box-v1(Our implementation) One-Stage ResNet50 91.55 90.13 90.02 28.72
DRBox-v2(Our implementation) One-Stage ResNet50 92.79 91.68 91.88 34.54
MSR2N [52] Two-Stage ResNet50 93.26 92.17 92.44 101.28
R-RetinaNet One-Stage ResNet50 92.57 90.44 89.59 46.66
R-RetinaNet + SC + TA-FPN + AIT One-Stage ResNet50 93.21 92.61 91.73 63.95
R-RetinaNet One-Stage ResNet101 92.22 90.84 91.19 62.55
R-RetinaNet + SC + TA-FPN + AIT One-Stage ResNet101 92.73 92.41 92.38 76.01
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Fig. 21. PR curves of different models on SSDD+ (d = 50). Fig. 22. PR curves of different models on GF3-Ship (d = 50).

87.78%) that does not apply any additional improvements. For
MSR2N, the multilevel bounding box regression enables it to
obtain higher detection accuracy than the basic R-RetinaNet
and other one-stage models, but the multilevel bounding box
regression also severely reduces the detection speed of MSR2N.

With the help of the proposed methods, our improved R-
RetinaNet not only approaches or even surpasses MSR2N in AP,
but also outperform the multistage MSR2N in detection speed
because of the high detection efficiency of one-stage model. In
addition, it can be seen from Figs. 21 and 22 that the precision
of our method under different recall rates is close to or better
than MSR2N.

Compared with other one-stage state-of-the-art methods, it
can be seen from Fig. 19 that our model has a higher recall rate
on small targets. This may be due to the fact that other one-stage
models only use some feature maps with a smaller resolution,
resulting in that smaller targets cannot be matched to feature
maps with sufficient resolution. Our model is not susceptible to
the interference of near-shore nonship objects, which results in
a lower false alarm rate. This phenomenon may be because TA-
FPN can make the model have better classification performance
and avoid the model from misclassifying the background as ship
targets. Besides, Fig. 20 also proves that the proposed method
has better detection performance on high-resolution SAR images
than other one-stage state-of-the-art methods.
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Fig. 23. Detection results of large scene SAR image. Note that the red boxes represent true positive targets, the yellow boxes represent false positive targets, and
green boxes represent missed targets.
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TABLE XIII
DESCRIPTIONS OF THE LARGE SCENE IMAGE

Parameter Value
Sensor GF3 satellite
Waveband C
Image Size 3000 x 3000
Resolution 3m
Polarization Mode \A%
Sea Condition Level 2

In addition to ResNet50, we also used the deeper backbone
network ResNetl101 to test the proposed method. The exper-
imental results show that the proposed methods can signifi-
cantly boost the detection performance on different backbone
networks. At the same time, the comparison between different
backbone networks shows that using a larger backbone network
cannot provide a stable performance improvement. This may
be because the smaller backbone network is sufficient to fit the
training data.

Overall, experimental results show that the proposed method
can provide competitive performance on both SSDD+ and GF3-
Ship while maintaining a relatively fast inference speed.

8) Validation on Large Scene SAR Image: In order to test
the practicability of the proposed model, we use a large scene
image retained when making the GF3-Ship dataset to test the
proposed model trained on the GF3-Ship dataset. This scene
contains inshore and offshore ships of different scales. The
image parameter information is shown in Table XIII.

First, the large scene SAR image is vertically and parallelly
cropped by 800 x 800 pixels sliding window to provide a suit-
able input size for the model; each successively cropped image
has an overlapped ratio of 25% to ensure the stitching process can
be implemented. Second, 25 cropped SAR images are input into
the proposed model to get the detection results. Third, detection
results are stitched to form the detected panoramic SAR image.
The test results are shown in Fig. 23.

It can be seen from Fig. 23 that the proposed model performs
well in detecting the offshore targets. As for the inshore scene,
false alarms and missed detections still exist. This may be due to
the small number of training samples in the GF3-Ship dataset.
Fewer training samples may cause the model to overfit on the
training set, which in turn affects the generalization performance
of the model.

9) Potential Application of the Proposed Methods on Optical
Images: The proposed scale calibration method is used to solve
the problem of misalignment between the feature map scale
and the target scale distribution. TA-FPN is used to alleviate
the learning conflict between classification tasks and regression
tasks. The adaptive IoU training method is mainly used to solve
the problem of imbalance of positive samples of large aspect
ratio targets in the training phase. The above three problems are
not unique to the SAR image ship detection task. The same
problem may also exist in the task of optical image target
detection, so the applicability of the proposed methods in the
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task of target detection from optical images is also worthy of
further exploration.

IV. CONCLUSION

In this article, an RBox-based neural network detection
method is proposed for SAR image ship detection. Experiments
show that the proposed feature map scale calibration method
can effectively align the scale distribution of the output feature
map of the backbone network with the scale distribution of the
targets, which greatly improves the performance of the model;
the proposed TA-FPN can automatically adapt shared features
to different learning tasks, which alleviates the conflict between
different learning tasks. In addition, the proposed AIT training
method effectively suppresses the positive sample intraclass
imbalance problem in the RBox-based detection method and
reduces variance of the number of positive samples. Compared
with other one-stage RBox-based state-of-the-art methods, our
model obtained the highest AP, which proves the superiority of
the proposed methods.

Furthermore, the detection method proposed in this article
uses a detection architecture based on anchor. Anchor-based
architecture is suitable for natural scene images with dense
targets. However, targets in SAR images are often very sparse.
Therefore, the application of anchor-free architecture that is
suitable for sparse targets in SAR ship detection should become
the key direction of our future research.
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