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Full Parameter Time Complexity (FPTC): A Method
to Evaluate the Running Time of Machine Learning
Classifiers for Land Use/Land Cover Classification

Xiaorou Zheng, Jianxin Jia, Shanxin Guo , Jinsong Chen, Luyi Sun, Yingfei Xiong, and Wenna Xu

Abstract—In emergency responses to natural disasters, action-
able information provided by remote sensing images is crucial to
help emergency managers become aware of the situation and assess
the magnitude of the damage. Without the accurate prediction of
time consumption, choosing an algorithm for land use/land cover
(LULC) classification under these emergency circumstances could
be blind and subjective. Here, we proposed a full parameter time
complexity (FPTC) analysis and the corresponding coefficient ω
to estimate the actual running time of the LULC classification
without actually running the code. The FPTC of five general
algorithms is derived in this article. After derivation, the FPTC
of k-nearest neighbors (kNN) is F (nv + nlog2 u), the FPTC of
logistic regression (LR) is F (Qm2vn), the FPTC of classification
and regression tree (CART) is F ((m + 1)nvlog2n), the FPTC
of random forest (RF) is F (s(m + 1)nvlog2n), and the FPTC of
support vector machine (SVM) is F (m2Qv (n + k)). The results
show a strong linear relationship between the actual running time
and FPTC [R-squared:kNN (0.991), LR (0.997), CART (0.999), RF
(1.000), and SVM (0.999)], with different data size. The average
root-mean-squared error between the real running time and the
estimated running time is 3.34 s, which demonstrates the effective-
ness of FPTC. Combining FPTC with the corresponding coefficient
ω, the running time of the classification can be precisely predicted,
which will help emergency managers quickly choose algorithms in
response to natural disasters with available remote sensing data
and limited time.
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NOMENCLATURE

T r ∈ Rn×v Training dataset
T e ∈ Rz×v Test dataset
n The number of total samples for T r

v The number of bands/features
m The number of categorizations
b The number of total samples for T e

t′ The running time
C The regularization parameter
ω The constant coefficient
θ

′
The model parameters

u The number of object group in kNN
λ The learning rate
s The number of trees in the random forest
Q The total iterations
k The number of support vectors
γ The kernel parameters in SVM

I. INTRODUCTION

A SSESSMENTS of natural disasters and risk are the foun-
dation of decision-making processes for a wide variety

of actors from the public to government emergency managers.
Quickly quantifying damage and expected future losses is usu-
ally the first step to becoming aware of the current situation [1]–
[3]. The land use/land cover (LULC) products from remote
sensing imagery can provide first-hand information for this
purpose [4]–[6]. As a result that this decision-making process is
usually urgent, choosing an appropriate classification algorithm
to achieve this goal with limited time and resources can be
challenging [7]. In addition to classification accuracy, the actual
time consumption of the algorithm is another aspect that needs
to be carefully evaluated before running the task [4], [7], [8].
Without an accurate prediction of time consumption, choosing
an algorithm for LULC classification under these emergency
circumstances could be blind and subjective.

In general, the methods to estimate the time consumption
of a classification task can be divided into two categories:
1) sampled-data-based methods and 2) time-complexity-based
methods [9], [10]. The first category involves estimating based
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on running the program and launching the time-calculated func-
tion on the sampled dataset. These methods hold an assumption
that the actual running time between the sample and the whole
dataset can be simplified by a linear or nonlinear relation-
ship. Although these methods are used in various studies [8],
[10], [11], the drawbacks of these methods are that 1) this
linear or nonlinear relationship highly depends on the hardware,
which cannot be generalized across different computing envi-
ronments, and 2) the effect of the different parameters of the
algorithm (both operational and hidden parameters) is treated
as a black box. The influence of these parameters remains
unknown.

The second category involves estimating based on a time
complexity analysis. The commonly used asymptotic time com-
plexity belongs to this category, usually referred to as traditional
time complexity (TTC) [9]. TTC is a function of input size
(e.g., the number of samples), which measures the computational
complexity with the input size increase under the iterations
of unit operation (e.g., addition or multiplication). The time
of each unit operation is assumed to have the same value, so
the iterations can be estimated as proportional to the running
time [9], [12]. In the process of calculating the TTC, many
low-order details have been ignored. For instance, when we
calculate TTC for a function f(n) = an2 + bn+ c (where n
represents the data size), only f(n) = n2 is of concern [9], [12],
[13]. As a result,O(n2) is used to estimate the upper boundary of
the time complexity of this function. The purpose of the TTC is to
capture the acceleration of the running time as an increase in the
data size (N) at the theoretical level; this can hardly be used for
the accurate prediction of the running time, especially for remote
sensing LULC classification tasks, where the time consumption
not only relates to the data size (N) but also to other parameters
(e.g., the number of available bands and the number of support
vectors). How to consider the influence of these parameters to
predict the overall time consumption remains a challenge.

In fact, without considering the physical discrepancy between
the different platforms (such as CPU and GPU), the time con-
sumption of a classification algorithm can be influenced by
1) the date size, 2) the number of classes, 3) the number of
bands/features, 4) the iteration structure of the algorithm, 5) the
operational parameters of the algorithm, such as the number
of trees in random forest, and 6) the hidden parameters of the
algorithm, such as the number of support vectors. All these
components affect the actual time consumption of the algorithm
in different ways via unknown mechanisms. Determining how
the contribution of each component can be quantified is key to
predicting the actual time that will be consumed.

To address the abovementioned issues, we propose full param-
eter time complexity (FPTC), which takes all time-consuming
parameters into account. The FPTC of five general algorithms—
k-nearest neighbors (kNN) [14], logistic regression (LR) [15],
classification and regression tree (CART) [16], random forest
(RF) [17], and support vector machine (SVM) [18]—is derived
in this article. We defined a coefficient ω to model the physical
discrepancy between different platforms for different classifiers.
To test the effectiveness of FPTC and the corresponding co-
efficient ω, the Xinjiang Uygur Autonomous Region, China,

and the Sentinel-2 A dataset were chosen as a case study. The
results show that the running time of the classification task can
be precisely predicted by combining FPTC with coefficient ω.
These will help emergency managers make quick decisions in
response to natural disasters. Our contribution can be summa-
rized as follows.

1) We propose a method to quantitatively evaluate the time
efficiency of a machine learning classifier (FPTC) and
derive the FPTC of five general algorithms: kNN, LR,
CART, RF, and SVM.

2) To predict the time consumption, we propose the coeffi-
cientω, which is used to establish the relationship between
running time and FPTC. The coefficient ω can be easily
obtained with the pre-experiment with a small sampled
dataset under different computing environments.

3) For the parameters that cannot be estimated before running
the algorithm, we analyze the relationship between these
parameters and those easily obtained hyperparameters to
predict the actual running time without actually running
the algorithm.

The remainder of this article is organized as follows. In
Section II, FPTC is defined, and the corresponding mathematical
derivation is described in detail. Sections III and IV present the
materials and the experimental result of the Xinjang dataset.
Section V concludes with a summary.

II. FULL PARAMETER TIME COMPLEXITY

A. Definition

FPTC is defined as two components. One is F (n,m, v,θ
′
),

the algorithm-related part, which can be derived based on the
structural analysis for one particular classifier. This part is a
function of n,m, v and θ′, where n represents the sample size,
m represents the number of targeted classes, v represents the
number of bands/features of the remote sensing image, and θ′

represents a collection of parameters related to the algorithm.
It should be noticed that the θ′ can be different for different
algorithms. For instance, θ′ of the FPTC in kNN consists of
the number of nearest neighbors u, while the θ′ of the FPTC
in SVM consists of the number of iterations Q and the number
of support vectors k. The second component is the coefficient
ω, which is a physically related part reflecting the computing
environmental factors, such as the speed of the CPU/GPU or the
RAM. Therefore, the coefficient ω may vary depending on the
platform. Usually, a pre-experiment on a small part of the dataset
can help us to evaluate this coefficient for a specific classifier.
Combining these two parts, the definition of FPTC is as follows:

t∗ = F (n,m, v,θ′) (1)

t′ = ω × t∗ (2)

where t′ is the real running time, ω is the coefficient, and t∗

is the time estimated by structural analysis. In the following
section, we will derive the algorithm-related part of FPTC for
five classically and commonly used classifiers in the remote
sensing field. We derive the FPTC of the selected algorithms in
the following order: kNN, LR, CART, RF, and SVM.
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Fig. 1. Deriving FPTC for kNN.

B. Deriving FPTC for k-NN

The kNN classifier [14] memorizes the entire training dataT r

and performs classification only if the test data x(e) ∈ T e are
given, in which e ∈ {n+ 1, n+ 2, . . . , n+ b}. The classifiers
compute the distance or similarity between the test data x(e)

and each training sample. The classifier then found a group
of u objects in the training set T r that were closest to the
test object x(e). In this process, the commonly used Manhattan
distance is equivalent to the Minkowskian r-distance function
with r = 1, adopted as the distance or similarity metric with the
following [19]:

D(i) =

v∑
j+1

∣∣∣x(i)
j − x

(e)
j

∣∣∣ (3)

where D(i) is the distance between the training sample
(x(i), y(i)) and the test dataT e, in which i ∈ {1, 2, 3, . . .. . ., n}.

The kNN classifier is a lazy learner, which means that the cost
of building the model is cheap, but classifying the test samples
is relatively expensive [20]. To calculate the complexity over
testing samples, the FPTC of kNN classifiers is divided into two
parts (see Fig. 1). First, the FPTC of calculating the distance
between one training sample and test datax(e) isF (v) (3). When
there are n testing samples that need to be classified, the FPTC
becomes F (vn). Second, training samples with a minimum
distance should be selected from the training set. In this classic
optimal searching algorithm, the FPTC becomes F (nlog2 u).
Therefore, the total FPTC of kNN is F (nv + nlog2 u). Con-
sidering the corresponding coefficient ωkNN, the FPTC of kNN
is associated with the real running time t

′
kNN as follows:

t′kNN = ωkNN × t∗kNN = ωkNN × F (nv + nlog2 u). (4)

C. Deriving FPTC for LR

LR [15] performs multiple classifications by replacing the
posterior probabilities of sigmoid transformation with that of
softmax transformation [21]. In our derivation, the L2 norm is
added into the loss function as a regularization term, which im-
proves the numerical stability and robustness of the LR classifier.
According to our derivation, the loss function of LR with the L2

norm and softmax takes the following form [21]:

J(θ) = − 1

n
·

n∑
i=1

m∑
j=1

1
{
y(i) = j

}
· log

exp(θT
j x

(i))∑m
l=1 exp(θT

l x
(i))

+
a

2
· ‖ θ ‖22 (5)

where θ is the v ×mmatrix, in which elements are the parame-
ters of LR, θpj is the weight of the j category in the feature layer
p, and α controls the regularization strength.

The goal of the LR classifier is to find the parameters of θ
with optimal values when the minimum value of loss function is
obtained. The stochastic average gradient (SAG) is a common
strategy to optimize the LR classifier [22]. The SAG is an
improvement on stochastic gradient descent, and only proposed
general equation in the original paper. According to our deriva-
tion, θT

j = {θ1j , θ2j , θ3j , . . .. . ., θvj} of LR with L2 norm and
softmax transformation are updated according to [22]

θr+1
j = θr

j −
λ

n

n∑
i=1

zri (6)

zr
i =

{
∇θj

J(θ) if i = ir

zri otherwise
(7)

∇θj
J(θ) = x(i)

(
1
{
y(i) = j

})
− exp(θT

j x
(i))∑m

l=1 exp(θT
l x

(i))
+ αθj

(8)

where λ is the learning rate, and ir is taken at random from the
set {1, 2, 3, . . . , n} for the rth iteration.

For each iteration, (6)–(8) are updated once. Therefore, the
loss function is calculated one at a time by (8), and θj with v
elements is updated one at a time by (7). Based on the above-
mentioned analysis, the FPTC of each iteration is F (mvn).
In multiple LR classification, supposing that Q iterations (the
number of iterations during the SAG process) are carried out
for each category, the total FPTC of LR becomes F (Qmvn). In
this case, the FPTC of multiple LR in the m category can also
be written as F (Qm2vn). Finally, the FPTC of LR is associated
with a real running time t′LR as follows, and the key steps for
derivating FPTC for LR are shown in Fig. 2

t′LR = ωLR × t∗LR = ωLR × F (Qm2vn). (9)

D. Deriving FPTC for CART

CART focuses on compiling training data by the Gini splitting
rule [16], [17]. The Gini index is similar to the entropy or
information-gain criterion for constructing the IF (T r) impurity
function [20]. The IF (T r) impurity is used to determine the
split nodes of the binary tree and takes the following form [16]:

IF (T r) = 1−
m∑
j=1

p(j/Tr)
2 = 1−

m∑
j=1

(∑n
i 1
{
y(i) = j

}
n

)2

(10)
where p(j/Tr) is the ratio of the number of samples in class j
to the total number of samples in training data T r.
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Fig. 2. Deriving FPTC for LR.

Fig. 3. Deriving FPTC for CART.

Suppose c is the split node for feature/band q. The binary tree
is split into two subtreesT l andT g , in whichT l = {(x, y)|xq <
c} and T g = {(x, y)|xq > c}. The goal of the CART classifier
is to find the optimal c∗ and q∗, which minimize the sum of
IF (T l) and IF (T g). The sum of the IF (T l) and IF (T g) is
the optimization function. To make it easier to understand, we
have made a simple change to the optimization function [16]

J(q, c) = − nl

n

m∑
j=1

p(j/Tl)
2 − ng

n

m∑
j=1

p(j/Tg)
2 (11)

c∗, q∗ = argmin
c,q

J(c, q) (12)

where nl is the number of samples in T l, and ng is the number
of samples in T g .

In the CART classifier, FPTC is divided into two parts (see
Fig. 3). First, T r is sorted v times by each feature in advance,
which only needs to be done once. Rankingn samples is a classic
computer problem, and the FPTC of its optimal algorithm is
F (nlog2n). The FPTC of v times ranking is then F (vnlog2n).

Fig. 4. Deriving FPTC for RF.

Second, the binary tree is split according to (11) and (12).
The FPTC of this process is F (mnv). A binary decision
tree is established when the training data are split repeatedly.
According to previous studies, the average expected tree depth
is known as log2n [9]. Building every level in this binary tree
costs F (mnv). Thus, the FPTC of this part is F (mnvlog2n).
By adding the FPTC of the two parts, the FPTC of CART is
F ((m+ 1)nvlog2n). In order to make the FPTC less redundant
and more concise, when m is large enough, it can be simplified
to F (mnvlog2n) with 1

m+1 error rate. The FPTC of CART is
associated with the real running time t′CART as follows, and the
key steps for derivating FPTC for RF are shown in Fig. 3:

t′CART = ωCART × t∗CART = ωCART × F ((m+ 1)nvlog2n).
(13)

E. Deriving FPTC for RF

RF is a type of ensemble learning [17]. The goal of the
ensemble method is to combine several weak learners in order to
improve the performance of the classifier. The ensemble meth-
ods used in RF include bagging, boosting, bootstrap, etc. The
bagging, as the best ensemble method with a strong and complex
model, is used in our study. Without special requirement, the
bagging method randomly extracts then sample size subset with
a replacement from the training set. Generally, CART is often
used as a weak learner in RF. When we build an RF with an s
tree, s subsets are extracted and used to build an s CART.

When we build a CART tree with n samples, the average
expected tree depth is log2n. Every level cost is F(mnv),
and the FPTC of this part is F(mnvlog2n) [9]. When adding
the sorting time F(vnlog2n), the FPTC of building one tree
is F ((m+ 1)nvlog2n), so the FPTC of RF with s trees is
F (s(m+ 1)nvlog2n). Similarly, the FPTC of RF can be sim-
plified to F (smnvlog2n) with a 1

m+1 error rate when m is large
enough. The FPTC of RF is associated with the real running
time t′RF as follows, and the key steps for derivating FPTC for
RF are shown in Fig. 4:

t′RF = ωRF × t∗RF = ωRF × F (s(m+ 1)nvlog2n). (14)

F. Deriving FPTC for SVM

SVM [18] aims to find the hyperplane with the maximum
distance from the support vectors, which is often treated as a
linear programming problem to transform it into a dual problem
by the Lagrangian multiplier method [23], [24]. The function of
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hyperplane g(x, θ) takes the following form [18]:

g(x, θ) = θTx+ b =
v∑

j=1

θvxj + b. (15)

In general, a soft margin hyperplane [24] is often used to avoid
overfitting, which is done by introducing the variable ξ. Based
on the Lagrangian multiplier method, the loss function with a
soft margin takes the following form [18], [24]:

L(θ, b,a, ξ, μ) =
1

2
‖ θ ‖2 +C

n∑
i=1

ξi

+

n∑
i=1

αi(1− ξi − y(i)(θTx(i) + b))

−
n∑

i=1

μiξi (16)

where C is the regularization parameter and αi ≥ 0, μi ≥ 0.
The dual question of finding the hyperplane with the maximum
distance in SVM with soft margin is as follows [18], [24]:

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαiy
(i)y(j)Kij (17)

s.t.
n∑

i=1

αiy
(i) = 0, αi ≥ 0, i = 1, 2, . . .. . ., n (18)

where Ki,j = K(xi,xj) = exp(−γ × ‖xi − xj‖2)(γ > 0) is
the radial basis function (RBF). In our study, the RBF, as the most
commonly kernel function, is used in our research. The kernel
choice can be a key issue for the SVM performance, since the
different kernel could lead to different results. From the perspec-
tive of time complexity, they are the same. For instance, the time
complexity of RBF is F (v) (where v represents the number of
the features of inputs), which is identical to the time complexity
of the linear kernel. From this perspective, the “kernel trick”
is efficient by measuring the difference between samples in the
higher dimensional space without actually projecting them into
it. Based on this reason, the different kernel function selection,
such as linear, polynomial, sigmoid, or RBF, will not have a
significant effect on the FPTC in SVM.

Karush–Kuhn–Tucker (KKT) conditions are as follows [18],
[24]:

αi ≥ 0, μi ≥ 0 (19)

y(i) · g(x(i))− 1 + ξi ≥ 0 (20)

αi · (y(i) · g(x(i))− 1 + ξi) = 0 (21)

ξi ≥ 0, μiξi = 0. (22)

It is difficult and costly to solve the dual problem directly.
In our study, sequential minimal optimization (SMO) [25] is
considered a decomposition method to conquer this difficulty.
At each iteration, we solve a simple two-variable problem (αi

and αj) without needing any optimization software [25]

αr+1
j = αr

j +
y(j)((g(x(i))− yi)− (g(x(j))− yj))

Ki,i +Kj,j − 2Ki,j
(23)

αr+1
i = αr

i + yiyj(a
r
j − ar+1

j ) (24)

when αr+1
i is not at the bounds, b is calculated as follows [25]:

br+1 = g(x(i))− y(i) + yi(α
r+1
i − αr

i )Ki,i

+ yj(α
(r+1)
j − αr

j)Ki,j + br (25)

when αr+1
j is not at the bounds, b is calculated as follows [25]:

br+1 = g(x(j))− y(j) + yi(α
r+1
i − αr

i )Ki,j

+ yj(α
(r+1)
j − αr

j)Kj,j + br (26)

when neitherαr+1
i norαr+1

j is at bounds, (25) and (26) are equal.
When both αr+1

i and αr+1
j are at bounds, br+1 is halfway be-

tween (25) and (26). The k is the number of support vectors and
x(l) ∈ {x(1),x(2), . . . . . . ,x(k)} is the support vector. Notably,
the SMO optimizer [26] has been replaced with the SMO-type
optimizer since LIBSVM V2.8. The SMO-type optimizer may
speed up convergence and reduce the number of iterations. When
we consider the FPTC in one iteration, the difference in times
of the FPTC between SMO and the SMO-type optimizer can be
neglected.

In each iteration, all training samples are calculated and
judged whether they are in KKT conditions (19)–(22). We
selected the one that does not comply with KKT (x(i), y(j))
(21) and the one (x(i), y(j)) with the greatest distance from it.
We then solved αi, αj , θ, and b. The FPTC of each iteration is
F (nv + vk). KKT conditions are updated with every iteration,
and the loop is stopped when all training samples fit the KKT
conditions or we reach the maximum number of iterations we
set. Thus, the FPTC of iteration Q (the number of iterations
during the SMO process) is F (Qv(n+ k)).

Originally, SVM was designed for binary classification, and
it is not good at multiple classifications. There are still several
multiclassification methods for SVM; one-versus-one (OVO)
or pairwise is one of them. In OVO, an SVM classifier needs
to be built between each of the two classes, i.e., m(m− 1)/2
classifiers need to be built for m categories. Thus, the FPTC of
SVM for multiclassification is F (m2Qv (n+ k)). It is associ-
ated with the real running time t

′
SVM as follows, and the key steps

for derivating FPTC for SVM are shown in Fig. 5:

t′SVM = ωSVM × t∗SVM = ωSVM × F (m2Qv(n+ k)). (27)

III. STUDY AREA AND DATASETS

To test the accuracy of the FPTC derived previously, one study
area and the remote sensing data were selected.

A. Study Area

The study area is located in the middle of the Xinjiang Uygur
Autonomous Region, China (42◦7′–42◦13′ N, 86◦13′–86◦22′

E) (see Fig. 6). This area covers an extensive area of around
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Fig. 5. Deriving FPTC for SVM.

1 660 000 km2, mainly covered by grassland and sandy desert
with a typical continental climate. Forest areas are sparsely
scattered within the high mountains and along the rivers. Oasis
landscapes have developed within inland river deltas, alluvial–
diluvial plains, and along the edges of diluvial–alluvial fans.
Agricultural land and human settlements are distributed around
these areas.

With the rapid growth of the population in recent years, the
ecosystem in this area faces a great challenge in terms of the
dramatic change of land cover combined with changing precip-
itation patterns [27]. The frequency of the occurrence of natural
disasters, such as sandstorms, floods, and snowstorms, increases
as the global climate changes. Under these circumstances, a rapid
assessment of land cover change after a disaster not only limits
the loss of life and property but also provides data for emergency
managers to optimize the emergency response procedure.

B. Datasets

Sentinel-2 provides continuous high-resolution images with
a multispectral instrument. With the high revisit frequency (five
days combined with Sentinel 2 A and 2B), Sentinel-2 imagery
has been widely used for land cover mapping, change detection,
and emergency response [28]. Compared with other public and
free multispectral products, Sentinel-2 contains bands covering
the red edge [29], which can provide indispensable information
for land-cover mapping, land change detection, and the retrieval
of other geophysical variables [28], [29]. In our study, a Sentinel-
2 A image acquired on 8 September 2016 was downloaded from
the United States Geological Survey.1 This image corresponds to
Level-1 C products, which are radiometrically and geometrically
corrected top-of-atmosphere products with subpixel multispec-
tral registration [29]. This image is cloud free, so the atmospheric
correction procedure has little influence on classification in this
article [30], [31].

We selected an area (2048 × 2048 pixels) from the original
Sentinel-2 A image [see Fig. 6(c)]. The spatial resolutions of
B5, B6, B7, B8a, B11, and B12 were resampled to 10 m by
nearest-neighbor resampling [29].

Based on the field investigation, the land cover classification
system in the study area was established. Eight typical land cover

1[Online]. Available: https://earthexplorer.usgs.gov/

TABLE I
ALGORITHM PARAMETER SET UP AND SOURCE OF CODES

types, farmland, orchard, forest, grassland, water, residential
area, roadway, and idle land (see Fig. 7) were selected as land
cover types at the level-1 category, which remains the same as
the study from other groups in this area, such as Gong and
Howarth [32] and Gong et al. [33]. The image was manually
interpreted to create a digital land cover map through image
interpretation with intensive field samples (done in October
2016) over this area [see Fig. 7(b)]. Both imageries with 12 bands
and the land cover map provide sufficient training samples for
land cover classification in this area. To understand how time
consumption changes under the different bands or the different
training sample size, the training sample is divided into different
groups, with samples randomly selected over the land cover map.
Considering the slow training speed of SVM, only nine training
groups for 1000 to 10 000 samples were prepared for SVM.
Table I shows the details of the subtraining sample settings.

All classifiers are programmed by Python 3.6 (Python Soft-
ware Foundation. Python Language Reference, version 3.6).2

The SVM classifier is programmed using LIBSVM [34], while
the rest of the classifiers are programmed using Scikit-learn [35].
All experiments ran on the Ubuntu 14.03 platform, which was
equipped with an Intel Xeon e5-2620 CPU and four TITAN XP
graphics cards.

C. Assessment

To verify the accuracy of the FPTC, three assessments were
applied: 1) a 1:1 plot was used to compare the real running
time to the FPTC, 2) we estimated the running time by FPTC
and calculated the root-mean-squared error (RMSE) between the
estimated and the observed running time, and 3) we compared
the FPTC and the TTC with respect to the real observed running
time under different feature selections.

IV. RESULTS

A. Validation of the FPTC and Correction Coefficient

We selected subtraining samples randomly from the training
dataset and constructed sets of subtraining samples (see Table I).
These samples were classified, and the real running time was
recorded. As we can see from Fig. 8, the linear relationship

2[Online]. Available: https://www.python.org/
3[Online]. Available: https://ubuntu.com/

https://earthexplorer.usgs.gov/
https://www.python.org/
https://ubuntu.com/
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Fig. 6. Study area: (a) China, (b) Xinjiang Uygur Autonomous Region, and (c) location of the study area.

Fig. 7. Location of the selected image: (a) image; and (b) ground truth.
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Fig. 8. Relationship between FPTC and the real running time.

between the FPTC and the real running time indicates the
effectiveness of FPTC. The R-squared values for the 1:1 plot
of the five classifiers were all larger than 0.99 (kNN: 0.991,
LR: 0.997, CART: 0.999, RF: 1.000, and SVM: 0.999), which
indicates that the linear relationship between the algorithm part
of the FPTC, and the real running time is extremely strong (p <
0.001).

The coefficient ω of each algorithm can be found from the
slope of the regression line. For kNN, the correction coefficient
ωkNN = 6.90E − 8, which is obtained from the linear relation-
ship (t′kNN = 6.90E − 8t∗kNN, R2 = 0.991, p ≤ 0.001). This
relationship shows that the actual running time (in seconds) is
equal to FPTC kNN ×ωkNN [see Fig. 8(a)]. Similarly, for LR, the
coefficient ωLR = 1.70E − 9 has a linear relationship (t′LR =
1.70E − 09t∗LR, R2 = 0.997, p ≤ 0.001) [see Fig. 8(b)]. For

CART, the correction coefficient ωCART = 1.06E − 08, which
has a linear relationship (t′CART = 1.06E − 08t∗CART, R2 =
0.999, p ≤ 0.001) [see Fig. 8(c)]. For RF, the correction coeffi-
cient ωRF = 2.35E − 9, which has a linear relationship (t′RF =
2.35E − 9t∗RF, R2 = 1.000, p ≤ 0.001) [see Fig. 8(d)]. For
SVM, the correction coefficientωSVM = 2.66E − 9, which has a
linear relationship (t′SVM = 2.66E − 9t∗SVM, R2 = 0.999, p ≤
0.001) [see Fig. 8(e)].

The slope can be roughly estimated based on the two avail-
able datasets, regardless of the magnitude of the training data.
This means that this value can be obtained by prerunning the
algorithm under two small parts of the total dataset. As a result
that the coefficient ω represents the physical part of the FPTC,
this value only varies when the algorithm is applied to different
computational environments.
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TABLE II
ESTIMATED AND REAL RUNNING TIMES FOR EACH ALGORITHM

TABLE III
COMPARISON OF TTC AND FPTC

B. Estimating the Real Running Time With the FPTC

Based on the strong linear relationship provided by Fig. 8,
the running time can be estimated accurately. To calculate the
RMSE between the estimated and observed running time, we
fixed samples at 100 000 and recorded the real running time.
Table II shows the estimated and actual running times for each
algorithm.

Regarding the FPTC of each classifier, the highest FPTC
comes from SVM (3.05E+11), followed by RF (1.20E+10), LR
(1.09E+09), and CART (1.49E+08); the lowest FPTC, produced
by kNN, was 1.35E+06 (shown in Table II).

Table II shows that the real running time keeps a certain
consistency with the estimated running time. From Table II,
we can see that the highest real running time was achieved by
SVM (803.800 s), while the estimated running time of SVM
was 810.055 s. The next highest real running time was achieved
by RF (28.445 s), while the estimated running time of RF was
28.104 s. LR (1.741 s), CART (1.632 s), and kNN (0.081 s)
produced the lowest real running times, while the estimated
running times of LR, CART, and kNN were 1.850 s, 1.585 s,
and 0.093 s, respectively (see Table II). Regarding the RMSE
of each classifier, the highest RMSE came from SVM (15.76 s),
followed by RF (0.57 s), LR (0.18 s), CART (0.16 s), and kNN
(0.01 s) (shown in Table II). The average RMSE between the real
running time and the estimated running time was 3.34 s, which
shows that the real running time can be estimated accurately by
FPTC.

C. Comparing FPTC and TTC

How does the performance of FPTC compare to TTC? In this
section, we compare FPTC to TTC using both theoretical and
experimental methods.

Firstly, at a theoretical level, TTC has a limited ability to show
the difference in running time between the different algorithms.
For instance, the TTC of kNN and LR isO(n), while the TTC of
CART and RF is O(nlog2n) (see Table III). If we use TTC for

the evaluation of running time, there is no difference between
the running time of kNN and LR or between CART and RF.
From our experiments with 100 000 samples, the real running
time of kNN was 0.081 s, and the real running time of LR was
1.741 s. Similarly, a noticeable difference exists between CART
and RF. The real running time of CART was 1.632 s, while the
real running time of RF was 28.445 s (see Table III).

The TTC of LR is O(n), while the TTC of CART is
O(nlog2n). In terms of TTC, the running time of CART should
be higher than that of LR. The reality is just the opposite. The
real running time of CART was 1.632 s, which is lower than that
of LR (1.741 s). The reason is that, in TTC, many low-order
details and key parameters have been ignored. These details
and parameters may be negligible when comparing algorithm
time complexity at a theoretical level, but they are essential to
estimating running time at the operational level.

The FPTC we proposed can make up for the above shortcom-
ings of TTC. FPTC is derived by examining the overall structure
of the classifier program and its mathematical principles. As we
can see from Table III, the FPTC of the kNN is different from
the FPTC of the LR.

In addition, FPTC can also reflect changes in running time
with different parameters. When n training samples changed
from low to high and other influencing parameters were kept the
same, the FPTC of SVM was most vulnerable to the effects
of the change, followed by RF, CART, kNN, and LR. If n
changed from 1 to 128, the FPTC of LR increased 128-fold,
kNN a little more than 128-fold, CART and RF 896-fold, and
SVM more than 16 384-fold. When the number of catego-
rizations m changed from low to high and other influencing
parameters were kept the same, the FPTC of SVM and LR
was most vulnerable to the effects of the change, followed by
CART and RF; kNN was unaffected. For example, if m changed
from two classes to 200 classes, the FPTC of SVM and LR
increased 10 000-fold, and that of CART and RF increased
100-fold. When the number of features or bands v changed
from low to high and other influencing parameters were kept the



ZHENG et al.: FPTC: A METHOD TO EVALUATE THE RUNNING TIME OF MACHINE LEARNING CLASSIFIERS 2231

Fig. 9. Comparison between TTC (left column) and FPTC (middle column) to the real running time (right column).

same, the time complexities of SVM, LR, CART, and RF were
changed within a polynomial time, while that of kNN was less
affected.

Secondly, to further illustrate the difference between FPTC
and TTC from experiments, we analyzed the changing trends
of FPTC and TTC under all combinations of different

bands (v = 3, 4, 5, . . . , 10) and different sample sizes (n =
10, 20, 30, . . . , 100 000) and compared them with real running
time trends. The values of TTC, FPTC, and the real running
times are mapped from low to high in red to green in Fig. 9. The
results show that TTC does not respond to changes in v, while
FPTC can better reflect the variation of v.
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Fig. 10. Capacity of each algorithm.

As we can see, FPTC shows a similar pattern to the real run-
ning time under different bands and data sizes. The pattern of the
TTC is different since the impact of the different features/bands
is ignored by TTC.

D. Simple Application of FPTC

Without estimating the running time accurately, choosing
a classifier for a time-limited LULC classification task could
be blind and subjective. In this section, we create an urgent
classification task that should be done within 6 h. The natural
question is of how many training samples we should prepare for
different classifiers to fit this time limit.

Through FPTC and ω, we can estimate the maximum sample
size (MSS) that can be processed within the time threshold. A

larger maximum training sample means that the algorithm can
handle more samples, which will improve the overall classifi-
cation accuracy. Fig. 10 shows the relationship between sample
size and the running time calculated by FPTC with correspond-
ing coefficient ω. The exact number of training samples for each
hour is also shown in these figures.

Taking a 1-h training limit as an example, the results show
that the algorithm with the smallest MSS is SVM (0.21 million)
[see Fig. 10(e)], followed by RF (10 million) [see Fig. 10(d)],
CART (140 million) [see Fig. 10(c)], and LR (200 million) [see
Fig. 10(b)]. The algorithm with the maximum MSS is kNN (3.84
billion) [see Fig. 10(a)].

In our study, the main goal was to provide a quantitative
measurement for emergency managers to compare and filter
different classifiers under different time and resource limits.
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Threshold analysis can help us to perform classifier screening.
For instance, suppose we need to process a Sentinel-2 A image
(5000 × 5000 pixels). It would require 25 million pixels to
construct the model. With SVM, it is impossible to execute the
current task. If we only consider the running time, kNN could
be the optimal classifier.

V. DISCUSSION

A. Effect of Training Parameters on FTPC.

The parameters that affect the running time of an algorithm
can be classified into two major categories. One is a hyperpa-
rameter, which is set before starting the learning process (e.g.,
the number of trees s in RF). The other is a training parameter,
which can only be obtained after running (e.g., the total iterations
Q and the number of support vectors k in SVM). These training
parameters can only be obtained after the program runs. Thus,
it will be difficult to estimate the running time of these classi-
fiers without running them. Fortunately, the characteristics of
the training parameter can be estimated by other pre-obtained
parameters such as the sample size. Fig. 11 shows that the total
iterations Q in SVM has a linear correlation with the number
of samples (R2 = 1.00) [see Fig. 11(a)]. The hyperparameter k
also has the same significant linear correlations (R2 = 1.00) [see
Fig. 11(b)]. According to these linear correlations, parameters
Q and k can be removed from F (m2Qv (n+ k)) in SVM. The
real running time t′SVM in (27) can then be rewritten as (28),
where ωSVM

′ is the new coefficient. The total FPTC of SVM is
F (m2vn2). After this, the estimated running time is no longer
influenced by the training parameters.

t′SVM = ωSVM × t∗SVM = ωSVM × F (m2Qv(n+ k))

= ω′
SVM × F (m2vn2). (28)

Another classifier with training parameters is LR. The total
iterations Q in LR is generated in the SAG algorithm, which
can only be obtained after iteration. Fig. 11(c) shows that the
total iterations Q is stable with an average of 18.02 ± 1.16; it
changes as the sample size n increases [Fig. 11(c)). Therefore,
in the derivation of FPTC, Q can be approximated as a constant
and combined with coefficient ω. After this correction, the total
FPTC of LR is corrected to F (m2vn) (29). Thus, the estimated
running time is no longer influenced by the training parameters

t′LR = ωLR × t∗LR = ωLR × F (Qm2vn))

= ω′
LR × F (m2vn). (29)

B. Determining Coefficient ω With a Pre-Experiment

As mentioned before, the coefficientω is the key to estimating
the actual running time of classifiers. This parameter is more
related to the physical computational environment, such as the
compiling programs and computer hardware. Fig. 8 shows that
the coefficient ω (the slope) will not change as the input data
size increases, even when the data size is small. Based on this
finding, the coefficient ω can be calculated through two small-
scale pre-experiments. The coefficient ω can then be reused in
other estimates with a larger sample size. Once the physical
computational environment changes, the coefficient ω should

Fig. 11. Correlations between the training parameters and the number of
samples.

be reevaluated under the new circumstances. This may limit the
application of FPTC to a cloud computing environment since
the physical computational environment may change during
the realization process. How the coefficient ω is related to the
computational resource (CPU or GPU frequency) still needs to
be quantitatively evaluated in the future.

VI. CONCLUSION

In emergency response to natural disasters, accurate time
predictions help emergency managers to choose a classification
algorithm with limited time and resources. In this article, we
proposed FPTC and the coefficient ω to estimate the running
time of each classifier. The FPTC of five common classifiers
(kNN, LR, CART, RF, and SVM) was derived by examining the
overall structure of the classifier program and its mathematical
principles. A linear regression model was built based on the
relationship between the real running time and the FPTC, and
the coefficient ω was obtained from the linear regression. We
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then accurately predicted the running time of each classifier
and filtered out the appropriate classifier. The results can be
summarized as follows.

1) We proposed a method to quantitatively evaluate the time
efficiency of machine learning classifiers called FPTC. We
derived the FPTC of five general classifiers. The results
show that the FPTC of kNN isF (nv + nlog2 u), the FPTC
of LR is F (Qm2vn), the FPTC of CART is F ((m+
1)nvlog2n)), the FPTC of RF is F (s(m+ 1)nvlog2n),
and the FPTC of SVM is F (m2Qv (n+ k)).

2) A strong linear relationship between the FPTC and the
running time was found in our study (R2 ≥ 0.991, p ≤
0.001). This linear relationship verifies the correctness of
the FPTC derivation process. The correction coefficient
ω of each algorithm can be found from a strong linear
regression.

3) The running time of each classifier was estimated by co-
efficient ω with FPTC. Our study showed that the average
RMSE between the real running time and the estimated
running time is 3.34 s, which shows the feasibility and
accuracy of using FPTC to predict the running time of
algorithms.

4) Our study showed that training parameter Q in SVM had
significant linear correlations with the number of samples
(R2 = 1.00), andQ in LR was stable and did not alter with
n. According to the abovementioned rules, the total FPTC
of SVM was corrected to F (m2vn2) and the total FPTC
of LR was corrected to F (m2vn). The updated FPTC was
not affected by whether the program was run in advance.

In a future study, we plan to derive more FPTC values for
algorithms. A suitable algorithm with good accuracy and low
FPTC can be quickly filtered for an emergency task, which
helps emergency managers make quick decisions in response
to natural disasters based on the amount of remote sensing data
available.
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