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Robust Local Structure Visualization for Remote
Sensing Image Registration

Jiaxuan Chen , Shuang Chen , Yuyan Liu , Xiaoxian Chen, Yang Yang , Member, IEEE, and Yungang Zhang

Abstract—Image registration is a fundamental and important
task in remote sensing. In this article, we focus on feature-based
image registration. Existing attempts often require estimating a
transformation model or imposing relaxed geometric constraints to
establish reliable feature correspondences. However, a parametric
model cannot handle image pairs undergoing complex transforma-
tions, and relaxed methods discard a lot of structure information
and the results are often coarse. To solve the above issues, we
propose a local structure visualization descriptor to preserve the
original structure information, and cast the feature matching task
into an evaluation of the consensus of visual structure under a con-
volutional neural network. This strategy can effectively measure
the similarity of neighborhood structure for mismatch removal.
In summary, our method does not depend on a specific transfor-
mation model and can process arbitrary remote sensing images
(e.g., different deformations, severe outliers, various rotations, and
scaling changes). To demonstrate the robustness of our strategy for
image registration, extensive experiments on various real remote
sensing images for feature matching are conducted and compared
against nine state-of-the-art methods, where our method gives the
best performances in most scenarios.

Index Terms—Feature matching, image registration, mismatch
removal, remote sensing, visualization descriptor.

I. INTRODUCTION

IMAGE registration is an important fundamental research in
computer vision and pattern recognition, and it works as an

essential image preprocessing step for many remote sensing
tasks, such as image mosaic, image fusion, remote sensing
monitoring, and image analysis. The purpose of image registra-
tion is to find an optimal alignment between the sensed image
and the reference image. In real applications, image pairs to
be registered are normally captured from different viewpoints,
different sensors, or different times and inevitably include the
following issues: image distortion, low overlap, scaling, rotation,
multimodality, or their mixtures. Fig. 1 gives some registering
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Fig. 1. Registering examples for ground monitoring by small UAV. The above
inevitable factors will produce image distortion, low overlap, scaling change,
various rotations, and their mixtures between images captured by small UAV.

examples for ground monitoring by small unmanned aerial ve-
hicle (UAV). There are two common approaches used in image
registration: 1) area-based and 2) feature-based methods [1].
Area-based methods directly manipulate image intensity values,
and their subclasses in a broad sense include correlation-like
methods [2], Fourier methods [3], mutual information meth-
ods [4], and convolutional neural network (CNN)-based meth-
ods [5], [6]. Remarkably, Fourier-based image correlation is a
specific type of area-based technique, which has experienced
rapid development, especially in the field of photogrammetry
and remote sensing. Cross correlation in the frequency domain
(CCF) and the phase correlation (PC) are two primary types
of correlation forms. CCF tends to be sensitive to the intensity
variations since it does not involve any type of normalization.
PC weakens the dependence on image intensity and content
by using the phase information solely and, thus, invariant to
global linear variations in contrast and brightness. In the case
of subpixel shifts, the signal power in the PC is concentrated
in several coherent peaks and the most outstanding ones largely
adjacent to each other, which implies that PC leads to a down-
sampled 2-D Dirichlet kernel [7]. To solve the above problem,
various subpixel Fourier-based image correlation methods (e.g.,
peak centroid [8], upsampling [9], plane fitting [10], and line
fitting [11]) have been proposed over the years. However, area-
based methods are sensitive to image distortion, low overlap,
intensity change, and training samples [1], [12], [13].

Feature-based methods, which overcome above defects [14],
are, in general, more robust and have been widely used in
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TABLE I
RELATED WORK IN FEATURE-BASED METHODS

Their contributions mainly involve solving the following problems: O (outliers), D (deformation), R (rotation); M (missing or occlusion), N (noise), LM (local minima), IP
(ill-posed problem), IM (inliers maximization), MR (mismatch removal). Other abbreviations are: FM: feature matching; TPS: thin plate spline; MC: motion coherent; GMM:
Gaussian mixture model; EM: expectation-maximization; QNM: quasi-Newton method; LG: local geometrical; SMM: student-t mixture model; VB: variational Bayesian; KD:
Kullback–Leibler divergence; DGCD: dynamic Gaussian component density; SSCP: spatial structure and curvature preservation; TLMM: student-t latent mixture model.

remote sensing applications. In this article, we mainly focus on
feature-based methods. The procedure of feature-based method
for image registration can be summarized as follows: 1) detect-
ing and extracting features points from the reference image and
sensed image; 2) seeking reliable correspondence (i.e., feature
matching); and 3) estimating geometric transform matrix for
registration according to the matching results. The point set
registration and mismatch removal are the two main techniques
for seeking reliable correspondence. Obviously, the registration
result depends on the matching performance. In order to intro-
duce current representative methods and compare them more
clearly, their designed algorithms and contributions are listed in
Table I and are discussed as follows.

The key of feature-based methods is to recover point-to-point
correspondences between an image pair. To this end, it is nec-
essary to construct two sets of feature points from two images.
Fortunately, various well-designed feature detection algorithms
have been developed, such as scale-invariant feature transform

(SIFT) [34] and speeded up robust features (SURF) [35]. Af-
ter obtaining the reliable correspondences, the transformation
parameters between two images can be calculated accordingly
with a predefined transformation model. In fact, the image
registration reduces to a feature matching problem [31].

Point set registration is the process of finding one-to-one
correspondence of two point sets, which includes two main
types: noniterative methods and iterative methods. Nonitera-
tive methods are difficult to accomplish a good matching re-
sult under a single estimation for large nonrigid transforma-
tions [18]. Iterative methods are designed to perform alternating
two steps: correspondence estimation and transformation up-
date. The key idea is to adjust the initial geometrical structure
and location of the source point set (by the transformation
update) so that it can gradually become more similar to the
target point set, and then, correspondence estimation using
geometrical features becomes easier. Normally, iterative regis-
tration methods need a robust estimation model (e.g., probability
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model [16], [17], [19], [23], [24]) and reliable transformation
update (e.g., global-local structure constraint [23], expectation-
maximum [16], [17], [20], [21], and variational Bayesian in-
ference [22], [24]). However, the weights between different
features, model adaptability, and nonadaptive optimization pa-
rameters are very sensitive to different registration patterns in
real applications. And they ignore the local structure information
among feature point sets. Therefore, their performance very
likely degrades in complicated registration patterns.

Mismatch removal involves two steps: 1) computing a set of
putative matches, which is considered an easy mission; and 2)
removing the outliers, which employ one or more additional
descriptors to further estimate inliers and outliers (i.e., identify
mismatches) based on a prematching result. Mismatch removal
can be roughly divided into two categories: parametric meth-
ods and nonparametric methods. The best-known parametric
methods are random sample consensus (RANSAC) [25] and its
variants. However, when the underlying image transformation
is nonrigid, parametric methods [25], [26] become less effi-
cient due to the dependence on a predefined parametric model.
Nonparametric methods are usually suitable for both rigid and
nonrigid transformation, and the recent trend has been toward
developing relaxed methods [28], [30], [31], [33] in exchange for
generality. In other words, the geometric constraint is made less
strict to accommodate complex matching patterns [36]. Many
deep-learning-based approaches have made dramatic progress
on computer vision tasks, such as keypoint detection and feature
description [37], stereo matching [38], [39], and image patch
matching [40], which motivates us to leverage deep learning
techniques to eliminate mismatches [26], [28]. However, remote
sensing images often involve local distortions due to ground
relief variations or viewpoint changes, resulting in complex
spatial relationships between image pairs. Existing methods do
not preserve or exploit complete local structure information,
which usually results in the inability to capture complex feature
interactions.

In order to solve the above problems in feature-based im-
age registration/matching, from a novel perspective, we cast
the mismatch removal into a consistency evaluation of visual
structure topology. First, complete local structure information
is mapped to a 2-D grid and then discard redundant structure
information through convolutional layers. Finally, the extracted
feature vectors are classified with a fully connected network.
The main contributions are listed as follows.

1) To capture complete structure topology information, we
design a local structure visualization (LSV) descriptor,
which maps the spatial distribution of feature points to a
regular grid. Such grid data can be efficiently evaluated
for similarity through CNN.

2) To screen out neighborhood mismatches, we introduce a
simple way to further enhance the representation ability of
LSV; we term this process as vortex-field-guided structural
deformation (VFGSD). After VFGSD processing, LSV
can effectively capture spatial dislocation information.

3) Our method only needs a small number of training sam-
ples to achieve satisfactory performance because the

Fig. 2. Feature point set registration/matching examples. denotes feature
points extracted by SIFT.

LSV descriptor is independent of the original image
content.

II. METHODOLOGY

In order to establish accurate correspondences between two
feature point sets extracted, respectively, from two images, we
focus on the construction of LSV descriptors and formulate it as a
two-class classification problem. In other words, the confidence
of putative correspondences is transformed into visual similarity
evaluation via CNN.

A. Overview of the Proposed Method

First, we present Fig. 2 to show large deformation, various
rotations, severe outliers, and their mixtures between two feature
point sets in low-altitude remote sensing images. Fortunately,
several off-the-shelf feature descriptors (e.g., SIFT and SURF)
can efficiently establish putative matches, which consider all
possible matches between two feature sets. It is advisable to
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Fig. 3. Proposed learning framework. First, constructing a set of putative matches and searching the k nearest neighbors for putative match (xi, yi). Then, rinse
neighborhood points and use vortex field to guide the local structure deformation. Subsequently visualize the local structure. Finally, a well-trained CNN produces
matching results.

filter out sufficiently different matches of the feature descriptor
vector.

Suppose a set of putative matches S = {(xi, yi)}ni=1 is ex-
tracted from the sensed image Is and the reference image Ir by
SIFT. There are a number of mismatches in S due to various
nonrigid transformations. Our goal is to eliminate mismatches
in S. Due to the physical constraints in a small region around
a point, most feature points would keep the distribution of their
neighboring point pairs after transformation [41], the key of
which is to recognition the local neighborhood structures of
those potential inliers. Human vision can easily identify local
neighborhood structures of those potential inliers. Thus, we
leverage LSV and CNN to simulate this recognition process.

There is no obvious local structure definition for a point
set. Searching the k nearest neighbors for each point in the
corresponding feature set under the Euclidean distance is our
strategy, i.e., for each putative match (xi, yi), Nk

xi
and Nk

yi

(k = 20 in this article) are used to build LSVxi
and LSVyi

descriptors. Confidence probability of (xi, yi) is formulated as

MCPi = CNN (LSVxi
,LSVyi

) (1)

where CNN (·) denotes the trained convolutional neural net-
work. The cross-entropy loss function L is used to train the
network, and it is defined as

L = − 1

n

n∑
i=1

[ti · log(MCPi) + (1− ti) · log(1− MCPi)]

(2)
where ti ∈ {0, 1} represents the correctness of putative match
(xi, yi). Specifically, ti = 1 indicates an inlier, and an outlier
otherwise.

From what has been discussed above, the framework of our
proposed method consists of the following three steps, as shown
in Fig. 3.

1) Image feature extraction: An image pair (the sensed image
Is and the reference image Ir) is given, and a set of pu-
tative matches S = {(xi, yi)}ni=1 is then calculated using
the SIFT algorithm, where xi and yi denote the spatial
position of putative match.

2) Local structural visualization: It consists of mapping the
local structure of putative match (xi, yi) to a 2-D grid by
the midpoint Bresenham algorithm [42].

3) Matching using CNN: LSVxi
and LSVyi

are combined to
a series of two-channel images and given to a modified

LeNet-5 network [43]. Finally, more accurate matches
between Is and Ir are determined.

B. Local Structure Visualization

The key of our method is the LSV descriptor, which is
constructed by the following three steps.

Step 1: Reconstruct a reliable neighborhood relation by rinse
of neighborhood points for rejecting most outliers.

Step 2: VFGSD is designed to further solve the neighbor-
hood mismatches, which can be considered as a special outlier
problem.

Step 3: Retain topology information by LSV, which can solve
other remaining problems such as deformations, rotations, and
scales.

1) Rinse of Neighborhood Points: In complex nonrigid trans-
formations, Nk

xi
and Nk

yi
are unstable. In other words, many

xj ∈ Nk
xi

cannot find their corresponding points in Nk
yi

. This
kind of noncorrespondence in a fixed neighborhood is usually a
mismatch because of disobedience to the smoothness of motion.
Therefore, removing noncorresponding points can reject most
outliers and improve the stability of neighborhood relation.
Toward this goal, we use a simple set operations to rinse such
noncorresponding points in local region:

RLSi = S ∩ (Nk
xi

×Nk
yi
) (3)

RLSxi
= {xj |(xj , yj) ∈ RLSi} (4)

RLSyi
= {yj |(xj , yj) ∈ RLSi} (5)

where × is the Cartesian product, and RLSxi
and RLSyi

rep-
resent a more reliable neighborhood relation for xi and yi,
respectively.

The neighborhood relations RLSxi
and RLSyi

have the fol-
lowing properties: for a putative match (xi, yi), if it is an inlier,
they will have a similar neighborhood feature point structure.
Conversely, neighborhood points of an outlier will be different
in their spatial structures. To enhance the visual effect, we
apply a simple way to represent the local structure for xi and
yi, as shown in Fig. 4, which is simply to connect selected
neighbors (RLSxi

and RLSyi
) in turn, and these neighbors are

not necessary to be sorted. However, the jth connected points
in neighbors of xi and yi are corresponding to each other. It can
be seen from Fig. 4 that most common mismatches in putative
matches S = {(xi, yi)}ni=1 have relatively large and different
local structures or nonstructures [see Fig. 4(d) and (e)] and can
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Fig. 4. Neighborhood structures of inliers and outliers. denotes noncor-
responding point. (a) Inlier. (b) and (c) Special outliers (neighborhood mis-
matches). (d) and (e) Common outliers.

Fig. 5. Neighborhood mismatch problem. In (a), local regions of outlier ( )
have very-similar-structure-based feature points and the tiny differences appear
in the first connection. In (b), inlier ( ) also have similar structures, but the tiny
differences appear in the last connection.

be easily removed by comparing the structure similarity between
RLSxi

and RLSyi
.

2) Vortex-Field-Guided Structural Deformation: After the
above local structure reconstruction, there are still some special
mismatches. Such mismatches generally have very similar local
structures [see Fig. 4(b) and (c)], which easily lead to a neigh-
borhood mismatch by using current similarity measurement
approaches. Even trickier, both inliers and outliers may have
this tiny differences between two local structures. This issue is
one of the most challenging tasks in feature representation and
matching, as shown in Fig. 5.

In neighborhood mismatches, xi and yi have a very similar
neighborhood structure since a more reliable neighborhood re-
lation for xi and yi is reconstructed, and elements in RLSxi

and RLSyi
correspond to each other. Based on our observation,

similar neighborhood structures means that most of the neigh-
borhood elements are inliers, and the tiny differences are always
caused by individual outliers. Therefore, if putative match is an
outlier, the relative position between putative match and most
neighborhood features (inliers) is quite different; conversely, if
putative match is an inlier, this difference of relative position
only exists in a fraction of the features (outliers). For instance, in
Fig. 5(a), the sequence of neighboring elements of xi from near
to far is [1, 5, 4, 2, 3], while that of yi is [5, 4, 1, 3, 2], i.e., none
of the numbers match. On the contrary, in Fig. 5(b), the sequence
of neighboring elements of xi from near to far is [1, 2, 3, 4, 5],

and that of yi is also [1, 2, 3, 4, 5], i.e., all of the serial numbers
match.

In order to enhance the tiny differences in these special
mismatches [see Fig. 5(a)] and maintain the structural similarity
of inlier pairs [see Fig. 5(b)]. We propose a VFGSD to solve the
above problems so that the similarity measurement can easily
identify these neighborhood mismatches. Simultaneously, the
similarity measurement of inlier is not affected. To guide this
structural deformation, each point xj ∈ RLSxi

can be trans-
formed by

x̃j = (1− αj
i )

(
I2×2 αj

ixi

0 1

)(
Rj

i (θij) O2×1

0 1

)(
xj

1

)
(6)

where αj
i is the decay coefficient, I denotes an identity matrix,

and Rj
i (θij) ∈ R2×2 represents the rotation matrix. The move-

ment of each point consists of simple rotation and translation,
and the degree of transformation is determined by its relative
position to the center point. This difference in relative position
is captured by αj

i , which is formulated by

αj
i (σ) =

1√
2πσ

exp(− (λj
i )

2

2σ2
) (7)

where λ
j
i is the normalized Euclidean distance between xi and

xj . If (xi, yi) is an inlier, corresponding points have close decay
coefficient due to similar spatial distribution. On the contrary,
if (xi, yi) is neighborhood mismatch, the relative position dif-
ference between the neighborhood point and the center point
will result in different decay coefficients. In our experiments,
we empirically fixed σ as 0.5.

For Rj
i (θij), θij can be defined as

θij(σ) = αj
i (σ)‖Dxi

−Dyi
‖2 (8)

where Dxi
and Dyi

represents standardized SIFT feature de-
scriptors (128-D vector) of xi and yi, respectively. By applying
the same transformation to yj ∈ RLSyi

, ỹj can be obtained.
Intuitively, for neighborhood mismatch, moving track of neigh-
borhood points will be different due to the larger SIFT feature
distance and spatial dislocation, thereby destroying its origi-
nal structure. Conversely, the deformation of inlier tends to
be consistent, as shown in Fig. 6. This design can effectively
solve the most challenging neighborhood mismatch problem and
decreases the difficulty of training the neural network.

3) Visualization of Local Structure: After the VFGSD, the
new positions of RLSxi

and RLSyi
are updated, and the dif-

ferences between neighborhood mismatches are enhanced. The
LSV descriptor is visualized in two steps. It is shown in Fig. 7.

3) Adaptive coordinate system: The coordinates based on
the original image are very sensitive to rigid deformation, espe-
cially the rotation problem. Thus, we use an adaptive coordinate
system for angle compensation, e.g., for LSVxi

: 1) the geometric
center of RLSxi

as the origin, 2) −−−→oxi
xi as the y-axis positive

direction, where oxi
is the geometric center, and, finally, 3) the

direction of the x-axis are determined by the distance between
the neighbor points and the y-axis; if the sum of the distances
from the feature points that locate in the right region of the y-axis
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Fig. 6. Schematic illustration of the VFGSD. For each putative match
(xi, yi) ∈ S, xi and yi are the centers of the vortex field. In the left group, the
deformation of inlier tends to be consistent due to similar spatial distribution.
In the right group, the visual similarity of outliers is destroyed. Note that the
numbers are sorted according to the distance from the center point, and denotes
the order change due to the misalignment of the center point.

Fig. 7. Schematic illustration of the visualization of local structure. The
first row represent visualization of RLSxi , where represent RLSxi and
is used to represent the geometric centers of RLSxi . The second row represent
visualization of RLSyi , where represent RLSyi and is used to represent the
geometric centers of RLSyi .

to the y-axis is less than the left region, the right region is the
positive direction of the x-axis; otherwise, the left region is the
positive direction of the x-axis. Reconstruct the coordinates of
LSVyi

in the same way.

Fig. 8. Two image pairs used for training in our network, which contains in
total 2072 SIFT putative matches (1349 inliers) as the training samples with
1349 positive samples and 1349 (including 626 misalignment samples) negative
samples.

3) Visualize and resize: We initiate at xi and yi points to
connect their neighbors in turn, respectively, and output the two
images LSVxi

and LSVyi
. Due to scaling, the size of the LSV

descriptor is not consistent; thus, all LSV descriptors are resized
to the same size. To avoid floating-point calculations, we use the
midpoint Bresenham algorithm [42] to draw the LSV. The basic
principle of the midpoint Bresenham algorithm is to take one
step in the main displacement direction each time, and the other
direction depends on the value of the midpoint error term.

C. Training and Testing

There are several widely used network structures for image
similarity measurement, such as siamese network [44], pseudo-
siamese network, and triple network [45]. In this article, we
choose the two-channel network as an instance. This network
provides greater flexibility compared to the other models as it
starts by processing the two patches jointly. Furthermore, it is
fast to train [46].

The LSV descriptors (48 × 48 binary image) are used to rep-
resent the structural features of point xi and yi and are combined
as a series of two-channel images (i.e., LSVi ∈ Z2×48×48) given
into a two-channel modified LeNet-5 network for matching. This
visualization of local structure and matching using a CNN can
avoid the difficulties in similarity measurement by handcrafted
features. For the two-channel network, specific architecture and
parameters are as follows:

1) (3× 3)× 32 convolutional layer with 0 padding, 2 × 2
max pooling, ReLU activation function;

2) (3× 3)× 64 convolutional layer with 0 padding, 2 × 2
max pooling, ReLU activation function;

3) (3× 3)× 32 convolutional layer with 0 padding, 2 × 2
max pooling, ReLU activation function;

4) for three full connection layers, the number of neurons was
256 (ReLU), 256 (ReLU), and 2 (Softmax), respectively.

Our training scheme does not depend on different image types
since only neighborhood structures are used without original
pixel information of the image. Therefore, a small training set
(normally two to five image pairs) is enough to train our network,
and negative samples (i.e., outliers) can be easily generated by a
series of misalignments, such as (LSVx1

, LSVy2
) and (LSVx1

,
LSVy3

). In the training phase, we selected two image pairs
from the Small UAV Image Registration Dataset (SUIRD) as
the training set (as shown in Fig. 8, from which we extract
approximately 2000 SIFT putative matches as training samples)
and used mini-batch stochastic gradient descent for optimizing
cross entropy loss function (2). Specifically, the learning rate is
1e-3, the batch size is 50, and the max iteration is 5000.
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Algorithm 1: Robust Local Structure Visualization.
Input: Training image pairs S , testing image pairs T
Output: Matching results on T

1: Training phase:
2: Extract putative matches on S;
3: Generate training samples using local structural

visualization descriptors;
4: Training the network;
5: Testing phase:
6: Extract putative matches on T ;
7: Main process of LSV descriptor generation;
8: Step 1 Rinse of neighborhood points;
9: Step 2 Vortex field guided structural Deformation;

10: Step 3 Visualization of local structure;
11: Matching with the network;

During the testing phase, we extract a set of putative matches
S and construct a series of LSV descriptors. Then, we use
the trained CNN to generate a output ([MCPi, 1− MCPi]) for
LSVi(i = 1, 2, . . . , |S|). The MCPi can be seen as the confi-
dences of the putative match being an inlier. The final decision
is whether the MCPi is greater than 0.5. The pseudocode of the
proposed method is outlined in Algorithm 1.

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of our LSV, we con-
duct experiments on feature matching for various real image
pairs and apply it to the image registration. The open-source
VLFeat toolbox [47] is employed to determine the putative
correspondence of SIFT and to search the k nearest neighbors
using K-D tree [48]. The experiments are conducted on a lap-
top with 2.80-GHz Intel Core i7-7700HQ CPU, 16-GB RAM,
MATLAB, and C++ code. Nine representative algorithms are
used for comparison, including GS [29], VFC [49], KVLD [50],
MODS [51], GLPM [31], LPM [30], LMR [28], SIR [32], and
LFGC [26], where all the competitors are implemented based on
their publicly available codes and their own parameter settings.

A. Results on Feature Matching

In this section, we focus on establishing feature correspon-
dences for real images. First, we further analyze the contribution
of each component to LSV. Then, we test the robustness of our
method to different viewpoint changes. Finally, we demonstrate
the performance of LSV in low-inlier-ratio scenarios. Recall,
precision and F1-score are employed as the criteria. To achieve
a direct and fair comparison, we provide the experimental results
in the following three datasets.

1) SUIRD [36]: The test dataset is provided for image regis-
tration/matching research. The SUIRD includes 60 pairs
of images (800 × 600) and their ground truth (each pair
contains 274–2385 pairs of feature points). These image
pairs contain viewpoint changes in horizontal, vertical,
mixture, and extreme patterns, which produce problems of

severe outliers, illumination variations, various rotations,
and image deformation.

2) The Oxford Buildings Dataset (OBD) [52]: The OBD1

consists of 5062 images collected from Flickr,2 which
were collected by searching for specific Oxford land-
marks. Image pairs taken under different extreme condi-
tions (i.e., low inlier ratio) can be found in this dataset.

3) The Mixture-Type Image Registration Dataset (MTIRD):
The dataset consists of small UAV image pairs, remote
sensing image pairs, fingerprint image pairs, hyperspec-
tral and visible image pairs, and multimodal MR image
pairs that involve different image transformations, includ-
ing affine, homography, nonrigid deformation, and light
changes. This dataset was collected by us in order to
comprehensively evaluate the image registration results
of our LSV.

In all comparative experiments, the size of the images is
800 × 600, the SIFT feature points are extracted with default
parameters, and the nearest neighbor distance ratio (NNDR)
threshold for constructing putative matches is 0.9. These settings
are consistent with the public dataset SUIRD.

1) Ablation Studies: First, we test the effect of number of
common elements (i.e., the cardinality of RLSi) without consid-
ering the spatial structure. For convenience, the ratio of common
elements of neighborhood (RCN) can be used to calculate the
similarity of the neighborhood; it is defined as

t =
|RLSi|
|Nk

xi
| . (9)

In order to determine a suitable threshold t, we compare two
common prematching strategies: threshold-based matching and
NNDR. Fig. 9 illustrates the linear separability of the three
prematch methods. From the results, the RCN achieves the
best performance at the threshold t = 0.2 (second coordinate
system), the distance threshold of the SIFT descriptor is almost
indivisible (third coordinate system), and the NNDR achieves
better results when the threshold is equal to 0.7 (the last coor-
dinate system). Clearly, the RCN manifests the optimal linear
separability, and most prematches are outliers when t < 0.2.

Second, to determine the contribution of various components
to LSV, we test the RCN (we choose the optimal threshold),
LSV1 (without VFGSD), and LSV2 (add VFGSD) together.
Randomly selected ten image pairs from SUIRD are used for the
test, as shown in Fig. 10. Each group of results schematically
shows the matching result, and motion field provides the decision
correctness of each correspondence in the putative set. From the
results, using only RCN produces satisfying results, whereas
the LSV did even better; especially for LSV with VFGSD, it
minimizes mismatches; this is in line with our expectations.

In order to provide a comprehensive quantitative evaluation,
we selected all image pairs from extreme viewpoint changes
(not only rotation occurred, but also low overlap, distortion,
and scaling are mixed together) in SUIRD and randomly add
one image pair from each of the other viewpoint changes

1[Online]. Available: http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
2[Online]. Available: http://www.flickr.com/

http://www.robots.ox.ac.uk/&sim;vgg/data/oxbuildings/
http://www.flickr.com/
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Fig. 9. Schematic illustration of RCN performance. Putative matches are
calculated based on the minimum distance of the SIFT descriptor (1243 putative
matches from three pairs of image).

TABLE II
RESULTS OF F1 CAUSED BY DIFFERENT NEIGHBORHOOD SIZES

(horizontal rotation, vertical rotation, scaling, and mixture).
The contribution of various components on LSV is shown in
Fig. 11. From the boxplot, the vortex field can improve precision
without sacrificing recall. It is demonstrated that the effect of
vortex field ensures that the inlier structure is not destroyed
and removes the neighborhood mismatches at the same time.
Additionally, there is a considerable performance amelioration
for abnormal values.3 Finally, we also provide the impact of
different neighborhood sizes on LSV, summarized in Table II.

2) Robustness on Viewpoint Changes: Remote sensing im-
ages often involve local distortions caused by imaging viewpoint
changes, resulting in complex spatial relationships between
image pairs. Therefore, this experiment focuses on matching
images that are obtained from the same scene in different views.
We first conducted quantitatively comparison of normal view-
point changes (horizontal rotation, vertical rotation, scaling, and
mixture) with nine state-of-the-art algorithms. Recall, precision,
and F1-score are summarized in Table III. In view of the result
of Table III, LSV achieves optimal performance or comparable
performance to the state of the art on all four viewpoint changes.
GLPM and LMR are very close to our method; they achieve the
same performance as ours on three viewpoint changes. SIR and

3Abnormal values are defined as value less than Q1 − 1.5× IQR or greater
than Q3 + 1.5× IQR, where Q3 and Q1 represent the upper and lower quar-
tiles, respectively, and IQR = Q3 −Q1 denote interquartile range.

TABLE III
QUANTITATIVE COMPARISON ON NORMAL VIEWPOINT CHANGES

Normal viewpoint changes include: HR (horizontal rotation), VR (vertical rotation),
S (scaling), and M (mixture). The values in the table represent the mean and standard
deviation.
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Fig. 10. Feature matching results of our method (including RCN, LSV1, and LSV2 on ten image pairs involving different types of transformations (blue = true
positive, black = true negative, green = false negative, and red = false positive). For visual convenience of image pairs, at most 200 randomly selected matches
are drawn, and we do not show the true negatives.

GS have advantages in precision, while recall is significantly
behind other methods. Due to the limitation of the parameter-
ized model (eight-point algorithm), the performance of LFGC
deteriorates drastically under large viewpoint changes.

In fact, LSV is designed to solve the tougher mismatch re-
moval task (e.g., extreme scenarios). Quantitative comparison
in extreme viewpoint changes is shown in Fig. 12. As expected,
we observe that LSV does have appreciable advantage in terms
of F1-score compared with other methods in extreme viewpoint
changes; LSV can maintain a 95.28% precision at 99.26% recall.
The precision of LMR (the second best method) is generally
close to LSV, but only 95.35% recall. Furthermore, LMR needs
relatively more neighborhood points to build the structure de-
scriptor and performs poorly when only fewer feature points
are given. GLPM is an improvement on LPM, which uses a
small putative set with a low threshold (e.g., NNDR threshold)
to guide the matching on a large putative set and construct a
relatively stable neighboring preservation. GLPM has higher
precision than LPM. LSV has no advantage in precision because
other methods usually exchange recall for precision, especially
for SIR. In general, LSV comprehensive performance is even
better.

3) Robustness on Low Inlier Ratio: Inlier ratio can be used
to represent the difficulty of removing mismatches. To evaluate
robustness of LSV in exceptionally difficult circumstances, five
low-inlier-ratio (22.41% average inlier ratio) challenging image

pairs involving different types of transformations (including
homography, epipolar geometry, nonrigid deformation, and ex-
treme light changes) were selected from ODB. The representa-
tive matching results are shown in Fig. 13 . For convenience, the
results are summarized in Table IV.

GLPM, LPM, and SIR usually have high recall or precision,
but not simultaneously; the gap between them and LSV is further
widened. These algorithms rely on low-threshold prematching.
However, low-threshold prematching is usually unreliable on
low-inlier-ratio scenarios. In the previous experiment, GS had
the worst performance and achieved the third best result in
low-inlier-ratio image pairs. The major cause is that its per-
formance is related to the number of feature points (GS is a
graph matching method), and the number of pairs of feature
points in this experiment is only 442–691. LFGC has achieved
satisfactory results under low-degree-of-freedom deformation.
Table IV shows that LSV is the exclusive algorithm, where recall,
precision, and F1-score all exceed 80%.

B. Results on Image Registration

In this section, we focus on image registration according to the
feature matching results and follow the same evaluation in [1]
and [53]: the root mean square error (RMSE), maximum error
(MAE), and median error (MEE). The evaluation criteria are
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Fig. 11. Quantitative comparisons of contribution of various components. The
middle line of the box is the median of the data, the upper and lower limits of the
box are the upper and lower quartiles of the data, respectively, and × denotes
average. The mean of F1-score of three methods is 96.41%, 97.23%, and 97.57%.
The mean of recall of three methods is 98.71%, 99.44%, and 99.44%. The mean
of precision of three methods is 94.38%, 95.27%, and 95.92%.

Fig. 12. Quantitative comparisons of ten methods on extreme viewpoint
changes. Initial inlier ratio, recall, precision, and F1-score with respect to the
cumulative distribution.

defined as follows:

RMSE =

√
1

M

∑M
n=1(Sn −Rn)2

MAE = max
{√

(Sn −Rn)2
}M

n=1

MEE = median
{√

(Sn −Rn)2
}M

n=1
(10)

where Sn and Rn denote the corresponding landmarks and M
denotes the number of selected landmarks. max(·) and median(·)
return the maximal and median of a set, respectively.

TABLE IV
QUANTITATIVE COMPARISON WITH SIR [32], GLPM [31], LMR [28],

LPM [30], GS [29], VFC [49], LFGC [26], MODS [51], AND KVLD [50] ON

LOW-INLIER-RATIO SCENARIOS

The values in the table represent the mean and standard deviation.

Suppose that a set of inlier Q = {(Xi, Yi)}ni=1 is calculated
from the putative matches S, where Xi = (xi, yi) and Yi =
(x′

i, y
′
i) represent 2-D coordinates. The following two transfor-

mation models are used for image registration.
1) Projective Transformation (Homography): In this model,

the objective function is defined as⎛
⎜⎝x′

i

y′i
1

⎞
⎟⎠ = H

⎛
⎜⎝xi

yi

1

⎞
⎟⎠ . (11)

The direct linear transformation algorithm [54] are used to
estimate a homography matrix H; (11) can be written as⎛

⎜⎜⎜⎜⎝
A1

A2

...

An

⎞
⎟⎟⎟⎟⎠ vec(H) = 0 (12)

where

Ai=

(
−xi −yi −1 0 0 0 xix

′
i yix

′
i x′

i

0 0 0 −xi −yi −1 xiy
′
i yiy

′
i y′i

)
,

i = 1, 2,..., n, and vec(·) is the matrix vec operator. First,
calculate the least squares solution of H using the singular
value decomposition algorithm [55]. Finally, sample pixel from
the sensed image Is based on bilinear interpolation to obtain
the transformed image It.

2) Thin-Plate Spline (TPS) Transformation [56]: In this
model, the transformation coefficient θ(n+3)×2 is found by solv-
ing the linear system

θ =

(
K X ′

X ′T O3×3

)−1(
Y

O3×2

)
(13)
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Fig. 13. Feature matching results on low inlier ratio scenarios (blue = true positive, black = true negative, green = false negative, and red = false positive). For
each group of results, the first value is the initial inlier ratio, while the rest three values are the recall, precision, and F1-score, i.e., (inlier ratio, recall, precision,
and F1-score). For visibility, in the image pairs, at most 200 randomly selected matches are shown, and we do not show the true negatives.

Fig. 14. Representative image registrations of ten methods on six UAV image pairs. The first row is sensed (left image) and reference (right image) images,
respectively. Red rectangles indicate the misalignments.
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Fig. 15. Representative image registration results of LSV on three datasets. In each category, the first row is sensed (left image) and reference (right image)
images, respectively. The first to third categories (i.e., landmark, terrain, and building) are selected from the SUIRD, the fourth category is selected from OBD, and
the last category is from MTIRD.

where Kn×n is a radial basis kernel with each entry computed
by Kij = ‖Yi − Yj‖2log‖Yi − Yj‖, X ′ = (1, X) is the n× 3
homogeneous coordinate. Finally, sample pixel from the sensed
image Is based on bilinear interpolation to obtain the trans-
formed image It. The bicubic interpolation [57] is used to
improve the smoothness and precision of It.

TPS transformation is a more extensive transformation model
than homography, but also more sensitive to set Q, that is, if
there are a few false correspondences in Q or insufficient true
correspondence, it will result in poor registration. However,
this property can be used to intuitively reflect the robustness
of the algorithm. Fig. 14 shows the registration results of four
different types of UAV images using TPS transformation. From
the registration results, clearly, a very small proportion of falsely
matched can degrade the registration result . VFC and RVLD
secure a very close performance to our LSV on the low-altitude
remote sensing images. However, in the second pair of images,
although most areas are aligned correctly, there is a marked
deviation at the junction of the sky and the mountains. Such
texture areas, which relatively lack control feature points, are
more likely to suffer poor registration results. LPM is clearly
unable to satisfactorily align the images since the poor precision
results in a lot of image distortion (unsmooth control points can
cause intolerable image distortion). SIR proposes a strict local
dissimilarity measure, which results in a higher precision, so it

TABLE V
QUANTITATIVE COMPARISON OF IMAGE REGISTRATION

The values in the table represent the mean and standard deviation.

has a more ideal registration results using TPS. Our method is
superior to the other nine methods. The quantitative comparison
results are summarized in Table V.
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Finally, extensive image registration results of our method (in-
cluding low-altitude image registration, satellite remote sensing
image registration, hyperspectral and visible image registration,
fingerprint image registration, and multimodal MR image reg-
istration) are shown in Fig. 15. Note that fingerprint image pair
and multimodal MR image pairs use TPS transformation, and
the others use projective transformation.

IV. CONCLUSION

In this article, we have introduced a novel LSV descrip-
tor for image matching/registration, and it can simultaneously
guarantee local structure invariant of feature points in different
deformations, severe outliers, various rotations, scaling changes,
as well as their extreme mixtures. Experimental results show that
our method gives the most stable performance and outperforms
the nine state-of-the-art methods on image matching/registration
accuracy. Meanwhile, our method is more simple and can be
easily implemented, and only requires fewer images as the
training set compared with the other methods.
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