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Downscaling MODIS Land Surface Temperature
Product Using an Adaptive Random Forest
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19-Years Spatiotemporal Trend Analysis Over Iran
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Abstract—MODIS land surface temperature (LST) product
(MOD11A1) has been widely used in analysing spatiotemporal
trends of LST. However, its applicability is limited, partially due to
its coarse spatial resolution (i.e., 1 km). In this study, an Adaptive
random forest regression (ARFR) method was developed for LST
downscaling at national scale. This study also provided a frame-
work to shift from downscaling single-time image sets to extensive
time-series of MOD11A1 LST images in an operational approach
(i.e., a 19-years spatiotemporal LST trend analysis over Iran) using
the Google Earth Engine (GEE) cloud computing platform. The
performance of ARFR was assessed by comparing the results of the
downscaled LSTs with the Landsat-8 LST data on different dates
of six consecutive years (2014-2019) over ten different sub-areas
in Iran. The results demonstrated the effectiveness of the proposed
method with an average root mean square error and mean absolute
error of 2.22 °C and 1.59 °C, respectively. The results of spatiotem-
poral LST trend analysis showed that 25.08%, 10.05%, 56.68 %,
1.04%, and 32.84% of Iran experienced significant positive trends
during a full year, spring, summer, fall, and winter, respectively.
Significant negative trends were also observed over the 3.09%,
23.84%, 7.54%, 17.38%, and 18.77% of Iran during a full year,
spring, summer, fall, and winter, respectively. In summary, the
outcomes of this study not only exhibit the spatiotemporal trends
of LST across Iran, but also reveal the substantial benefits of the
ARFR method in downscaling LST using GEE.

Index Terms—Adaptive random forest, downscaling, Google
Earth Engine (GEE), land surface temperature (LST), MODIS,
trend analysis.

1. INTRODUCTION

EMOTELY sensed land surface temperature (LST) data
is a unique source of information in climate change stud-
ies. Climate change has significant impacts on environmental
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conditions and human activities around the globe [1]. One of
the fundamental issues related to the climate change is severe
changes in LST of the earth’s surface [2], [3]. This issue has
negatively affected several regions of the world, especially dry
countries, such as Iran [4]-[6]. Thus, it is required to investigate
the spatiotemporal trend of LST changes over a long period of
time to obtain a better understanding of LST evolution in the
earth’s surface [7], [8].

The spatiotemporal variations of LST significantly depend on
the geographic location, topographic characteristics, soil mois-
ture, solar geometry, atmospheric conditions, and land cover
type [9]-[11]. Therefore, the spatiotemporal dynamics of LST
has been considered a key variable for modeling and understand-
ing the exchange of energy and water between the earth’s surface
and atmosphere from local to global scales [12], [13]. It has
also been successfully utilized for investigating different earth
surface processes, such as land cover changes [14], [15], urban
climate analysis [16], [17], and drought severity assessment [18].
Thus, due to spatiotemporal variations of LST, the investigation
should be conducted in both spatial and temporal contexts.

Remotely sensed thermal images, with frequent revisits and
global coverage at various spatial resolutions, are known as
the key sources of information for spatiotemporal LST analysis
[2], [3], [19]-[21]. The frequent satellite observations facilitate
trend analysis and provide more consistent results in the spa-
tiotemporal LST analysis. However, the tradeoff between spatial
and temporal resolutions of thermal satellite images brings a
challenge to explore the LST variations either at high spatial
or at high temporal resolutions. To overcome this limitation,
downscaling coarse-resolution LST data has become a common
solution in recent years [22]-[24].

Downscaling methods are often used to improve the spatial
resolution of LST products through utilizing ancillary variables
that can be acquired at finer spatial resolutions. A variety of
approaches have been adopted for LST downscaling, ranging
from statistical and machine learning (ML) techniques [25]-[29]
to physical methods [30] and spatiotemporal approaches [31],
[32]. In recent years, statistical and ML methods have received
huge attention in LST downscaling studies [24], [27]. In this
regard, random forest regression (RFR) has demonstrated a high
potential for LST downscaling because of its good adaptability
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and high accuracy [33]-[35]. For example, Hutengs and Voh-
land [34] successfully adopted RFR to downscale MODIS LST
product at regional scales. According to the authors, the RFR
method provided superior performance in comparison with the
benchmark methods. Following that research, Yang et al. [35]
used RFR regression based on the spectral indices to downscale
MODIS LST product over arid regions in Northwest China. Fur-
thermore, Ebrahimy and Azadbakht [33] compared the perfor-
mance of different ML algorithms in MODIS LST downscaling
and concluded RFR performed generally well for such a purpose
and outperformed benchmark and other ML algorithms includ-
ing support vector machines and extreme learning machines.

Although RFR provides promising results in small and/or
homogenous areas, its performance over large and heteroge-
neous areas like Iran may be insufficient because, RFR, as a
non-spatial ML algorithm, focuses on the global picture while
the level of importance and interaction of different variables
in LST downscaling is, most likely, not consistent throughout
the entire study area; and it has been well established that the
accuracy of a LST downscaling method largely depends on the
heterogeneity of the study area and varies across the area of
interest [33], [34], [36]. Therefore, development of an individual
RFR model for LST downscaling at large scales may not result
in an acceptable outcome. To overcome this challenge, this
article proposed an adaptive RFR (ARFR) method based on the
Ko6ppen climatic zones [37] for LST downscaling at regional
and national scales. The main assumption of ARFR is the fact
that it is more reasonable to build distinct RFR models for each
Ko6ppen climate zone due to the important role of climate status
in LST patterns [38]. In fact, utilizing the K&ppen climate zones
in LST downscaling provides a solid procedure to convert a
large heterogeneous area like Iran to several rather homogeneous
subsets in terms of the LST variation.

Another challenge for spatiotemporal analysis of downscaled
LST at national scale is related to the fact that acquiring,
downscaling, and analyzing of a long time-series of MODIS
LST product (MODI11A1) are computationally intensive and
time-consuming tasks using the conventional software packages.
However, with the advent of the cloud computing platforms, such
as Google Earth Engine (GEE), this issue has been effectively
resolved. GEE is a free big data processing platform to analyze
and explore open-access earth observation datasets at multi-
petabyte scales [39]-[41]. In fact, combining these massive
data sources over 40-years and more than 800 mathematical
and spatial functions within GEE facilitates interactive data
and algorithm development for a variety of earth observation
studies, including those related to spatiotemporal LST trend
analyses. Ravanelli et al. [42] investigated the potential of the
GEE platform for spatiotemporal LST trend monitoring over
the period of 1992-2011 and demonstrated the effectiveness of
GEE in this regard. Nill e al. [43] investigated the influence
of different physical surface properties on the LST trends in the
summer season using the all available Landsat-5, Landsat-7, and
Landsat-8 imageries acquired from 1985 to 2018 within GEE.

Given the above background, this study proposed and im-
plemented an efficient downscaling method (i.e., ARFR) to
downscale MODIS LST product. This method was specifically
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designed for LST downscaling at national scale, as opposed to
most of the previous studies that focused on LST downscaling
in small scale areas. Moreover, a comprehensive comparison
between the RFR algorithm and the proposed method at ten
sub-regions was performed to evaluate the robustness of the
proposed method. This article also employed GEE for spatiotem-
poral LST trend analysis in Iran over a long time period using
the downscaled MODIS LSTs. In summary, the main objectives
of this study are to: develop an efficient downscaling method
called ARFR to downscale MODIS LST product from 1-km to
240-m at a national scale; provide an efficient LST downscaling
framework to shift from handling single-time image sets to
extensive time-series of images within the GEE platform; and
determine the spatiotemporal LST trends at both annual and
seasonal scales over Iran from 2001 to 2019 with the downscaled
daily LST products.

II. STUDY AREA

This study was conducted in Iran which is one the most
populated and developed countries in the Middle East, Iran, with
an area of about 1648 195 km?, is extended from 25° to 40° N,
and from 44° to 63° E (see Fig. 1). Most parts of Iran are covered
by arid and semi-arid climate with an average annual rainfall of
250 mm [4], [S]. This country is extensively diverse in terms
of topography, land cover types, and climate zones [44]. Iran is
covered by typical land covers, such as grassland, barren, forest,
cropland, built-up, and water bodies.

Ten fixed 80 x 80 km sub-areas (see Fig. 1) covering different
land covers, topographies, and climates were also selected to
discuss the downscaled LST products in more details. The
utilization of such diverse sub-areas led to a robust assessment
of the performance of the proposed ARFR method.

III. MATERIALS AND METHODS

The methodology of this research (see Fig. 2) comprises of
five phases, including data collection, data preparation, LST
downscaling, accuracy assessment, and spatiotemporal LST
analysis. Phase 1 (data collection) consists of acquiring daily
MOD11A1 products and different remotely sensed datasets from
GEE. Phase 2 (data preparation) includes preprocessing steps,
resampling all data to 240-m and 960-m pixel size using the near-
est neighbor method, and calculating the Normalized Difference
Vegetation Index (NDVI). Phase 3 (LST downscaling) involves
model fitting using the proposed ARFR method, implementation
of residual correction procedure, and downscaling MODIS LST
to 240-m pixel size. Phase 4 (accuracy assessment) includes de-
riving Landsat-8 LST and calculating standard accuracy metrics
by comparison of the retrieved Landsat-8 LST and downscaled
LST. Finally, Phase 5 (spatiotemporal LST analysis) comprises
of trend analysis of downscaled daily LST data from 2001 to
2019 at both seasonal and annual scales. In this study, phase
1 to 3 and some parts of phase 5 were implemented in the
GEE platform. Phase 4 and some other parts of phase 5 were
implemented in the R environment. The details of each phase
are discussed in the following five subsections.
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Fig. 1.
images). (b) Spatial distribution of Képpen climate zones in the study area.
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Fig. 2.
and software (R) which were used in each phase.

A. Phase 1: Data Collection

This article used MODIS daily LST product (MOD11A1)
[45], [46], MODIS daily surface reflectance product
(MODO09GQ) [47], MODIS yearly land cover product
(MCD12Q1) [48], and the Shuttle Radar Topography Mission
(SRTM) datasets, which are all available within the GEE
data catalog. MODI11A1 is a daily global LST product at
the spatial resolution of 1-km, which was retrieved using a
split-window algorithm [45], [46], [49]. MODI11A1 product
was utilized as the dependent variable. Therefore, in order to
account for cloud coverage issue and to improve efficiency of the
subsequent analyses, the MOD11A1 products with the available
LST pixels of lower than 75% were excluded from datasets.
Finally, a total of 3509 MOD11A1 images were accessed and
consequently downscaled within the GEE platform for the

Flowchart of the proposed method to downscale the MODIS LST products and spatiotemporal LST trend analysis. Colors indicate the platform (GEE)

period of 2001-2019. The MODO09GQ provides the red and
near infrared (NIR) spectral bands. The MCD12 which provides
global land cover data in 17 classes was accessed within GEE.
The SRTM data with 30-m spatial resolution was also retrieved
from GEE.

B. Phase 2: Data Preparation

Based on the previous studies [24], [27], [29], [33]-[35], five
predictor variables were selected for downscaling MOD11A1
from the pixel size of 1-km to 240-m. Selected predictor vari-
ables were the red and NIR bands, NDVI, land cover, and
altitude. The red and NIR bands were extracted from the daily
MODO09GQ product [47]. The NDVI index was calculated as
NDVI = NIR-red / NIR+red. The MCD12Q1 (the international
geosphere-biosphere program classification scheme) at the
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spatial resolution of 500-m [48] was used as the land cover
data. Finally, the altitude information was derived from the
SRTM dataset. All the predictor variables were resampled to
pixel sizes of 960-m and 240-m to be used in model fitting and
LST downscaling, respectively. The rationale for using the pixel
sizes of 960-m and 240-m was that these values correspond to
integer multipliers of the spatial resolution of the SRTM and
Landsat-8 datasets and also close to the source data’s native
resolution [34], [46].

C. Phase 3: LST Downscaling

The basis of the proposed LST downscaling method was the
RFR method and, thus, it is first discussed. RFR, as an ensemble
and highly advanced ML method, uses bootstrap resampling
method to create a large number of random decision trees [50].
By using the bootstrap method, each tree trains on a random
subset with replacement of the entire training dataset [50], [51].
RFR is known as an effective ML method not only for its
good prediction accuracy, but also for its great ability to deal
with nonlinear and complex real world problems [52], [53].The
key initiative of RFR is the combination of a collection of
decision trees and selection of a subset of explanatory variables
at individual trees. Subsequently, each of the built decision trees
provides an individual value, and then the algorithm considers
the average value as the final prediction in regression tasks. Two
meta-parameters should be adjusted to obtain an optimal RFR
model: the number of decision trees in the forest (ntree) and the
number of predictor variables randomly selected on each node
of the trees (mtry). According to Belgiu and Dragug [53] and
the preliminary analyses in this article (e.g., trial and errors), the
values of ntree and mtry were set to 500 and 2, respectively.

The main assumption in development of the proposed ARFR
method is that the characteristics of LST values is different
at various climatic zones. Consequently, building specific RFR
model for each K6ppen climate zone can lead to a more accurate
LST downscaling outcome. Accordingly, to implement ARFR,
the whole study area was first masked by each Koppen climate
zone and a specific RFR was developed for each zone. For
each Koppen climate zone, the LST downscaling procedure was
conducted in three stages: First, the relationship between the
MOD11A1 LST product and the predictor variables was estab-
lished for the 960-m datasets using the RFR method. Second,
the developed RFR model was applied to the predictor variables
on the 240-m datasets to predict downscaled LST at pixel size
of 240-m. Third, a residual correction process [54] was adopted
to the LST downscaling procedure. To this end, a pixel-wise
residual between the predicted LST and original MODIS LST
for 960-m was first calculated. Then, the 960-m residual was
resampled to 240-m and was finally added to the downscaled
LST map. Finally, once this procedure was completed for all
Koppen climate zones, the results were mosaicked to produce
the final downscaled LST map.

D. Phase 4: Accuracy Assessment

Landsat-8 thermal imageries acquired at different dates of six
consecutive years (2014-2019) were employed for the accuracy
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assessment of the downscaled LST maps. Six Landsat-8 scenes
were processed for each sub-area (See Fig. 1). In total, 60
Landsat-8 images were used for accuracy assessment purposes.

The LST of Landsat-8 thermal images was retrieved in ac-
cordance with the proposed method by Duan et al. [55], using a
single-channel method. Additionally, because of the structural
differences of the MODIS and Landsat-8 sensors, direct compar-
ison between the downscaled and the reference Landsat-8 LSTs
is not reasonable [25], [34]. Therefore, to convert the Landsat-8
LSTtoits MODIS LST equivalent, inter-sensor conversion coef-
ficients were derived using linear regression between aggregated
Landsat-8 LST and MODIS LST at 960-m according to the
proposed method by Bindhu ez al. [25]. Then, these coefficients
were applied to 240-m Landsat LSTs.

Finally, the root mean sqaure error (RMSE) and the mean
absolute error (MAE), as two widely adopted evaluation metrics
in LST downscaling studies [24], were computed to evaluate the
accuracy of downscaled LSTs. The conventional RFR method
was also implemented to determine the reliability of ARFR in
comparison to the RFR methods.

E. Phase 5: LST Trend Analysis

LST trend analysis describes fluctuations of the LST values
of a given location over a specific period of time. A variety
of different experiments were accomplished to investigate both
seasonal and annual spatiotemporal variability of LST over Iran,
and its trends from 2001 to 2019 using the downscaled daily
LSTs at the pixel size of 240-m. To this end, per-pixel magnitude
of annual changes in LST values were first investigated by
comparing LST values across time series. Then, in order to
define the extent of changes in LST at pixel level, the Theil-Sen
slope [56], [57] of the LST trend was used as an indicator of
the extent of changes in LST per season/year, where positive
(negative) values indicate an upward (downward) or increasing
(decreasing) trend.

Moreover, for both seasonal and annual series of LST, the
per-pixel significance of trends was calculated at the 95% con-
fidence level. In this regard, the nonparametric Mann—Kendall
test [58], [59] was applied to LST time series due to the possible
effects of temporal autocorrelation on estimated significance of
trends. Finally, the LST time-series data were used to assess
temporal variability of LST across Iran in different seasons.
The seasons were defined in the standard climatological routine:
spring defined as March to May, summer as June to August, fall
as September to November, and winter as December to February.

IV. RESULTS AND DISCUSSION

In this part, after providing a comprehensive accuracy assess-
ment of the ARFR method in LST downscaling in Section I'V-A,
the results of the overall, spatial and temporal trend analyses are
presented in Section I'V-B.

A. LST Downscaling Using the Proposed ARFR Method

In this section, first the visual comparison of the downscaled
LST maps with original MODIS LST product and Landsat-8
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Fig. 3. Visual comparison of the downscaled LST maps with the origi-
nal MODI11A1 and Landsat-8 LST for the acquired image on 02/10/2018.
(a) Downscaled MOD11A1 of Iran using ARFR with 240-m pixel size;
(b) MOD11A1 with 960-m pixel size of $9. (c) Landsat-8 with 240-m pixel
size of S9. (d) Downscaled MODI11A1 using ARFR with 240-m pixel size of
59, (e) Downscaled MOD11A1 using RFR with 240-m pixel size of S9.

LST data is presented. The accuracy assessment results over ten
different sub-areas are then provided.

To visually evaluate the downscaled LST maps, the visual
comparison of the downscaled LST maps using ARFR and
RFR with the original MODIS LST and the Landsat-8 reference
LST in S9 for 02/10/2018 is presented in Fig. 3. Although the
downscaled LST maps with ARFR and RFR provided similar
spatial distribution with those of the MODIS and Landsat-8
LST data, ARFR provided much more details than RFR. As
shown in Fig. 3, ARFR not only retrieved much of the LST
variation visible in the Landsat-8 LST map, but also substan-
tially improved visual information in comparison to the original
MODI11A1 image. On the other hand, RFR provided less details
in comparison to ARFR and tended to overestimate the LST
values.

The calculated accuracy indicators (i.e., RMSE and MAE) for
the selected sub-areas (see Fig. 1) on different dates are given in
Table I. The results demonstrated the robustness and the better
performance of the proposed ARFR method with an average
RMSE of 2.22 °C and MAE of 1.59 °C in comparison to RFR
with an average RMSE of 3.13 °C and MAE of 2.51 °C. The
RMSE and MAE values on different dates obtained from ARFR
varied from 1.1 °C to 3.86 °C and from 0.61 °C to 2.77 °C,
respectively. On the other hand, RMSE and MAE values of
RFR were in the range of 1.34 to 4.94 °C and 1.03 to 3.9 °C,
respectively.

On average, the highest accuracies of ARFR among the
selected sub-areas were obtained for S5 (RMSE = 1.52 °C,
MAE = 0.91 °C) and S9 (RMSE = 1.88 °C, MAE = 1.28 °C),
while the lowest accuracies were observed for S2 (RMSE =
3.45 °C, MAE = 2.6 °C) and S10 (RMSE = 291 °C, MAE =
1.95 °C). A possible reason for the errors might be related to the
potential uncertainties in the developed ARFR and RFR models
associated with input data, as well as the primary accuracy
level of the MODIS LST product which was reported to be
approximately 1 °C -2 °C [45], [49], [60]. Moreover, several
studies [61], [62] reported that the MODIS LST product showed
noticeable uncertainties in the regions covered by barren land.

With regards to the RMSE and MAE values, performance of
the downscaling procedure was in agreement with other studies
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Fig. 4. (a) Spatial distribution of averaged LST over 2001-2019 and (b) LST
differences between 2001 and 2019. The black rectangle in (b) indicates the
Urmia lake.

which attempted to downscale MODIS LST using RFR [33]-
[35]. In summary, it can be concluded that the ARFR method
had satisfactory performance in LST downscaling in different
settings. Therefore, the downscaled LST maps with ARFR can
be used in spatiotemporal LST trend analysis over Iran.

Although ARFR provide good performance in MODIS LST
downscaling at national scale, the suitability of the proposed
ARFR method for different satellite imageries across differ-
ent spatial scales ranging from continental to global should
be investigated in future studies. Finally, it is worth noting
that the accuracy of LST downscaling could be decreased by
increasing the heterogeneity or complexity of a given area [33],
[34], [36]. Thus, it is recommended to investigate the impact
of heterogeneity on the accuracy of downscaled LST products
using the ARFR method in the future studies.

B. Spatiotemporal LST Trend

This section comprises three subsections. Subsection IV-B-1
is presented to investigate the overall LST trend over the exam-
ined period. The succeeding subsection IV-B-2 and subsection
IV-B-3 are provided to further discuss the spatial and temporal
LST trends.

1) Overall LST Trends: The downscaled daily LSTs from
2001 to 2019 were used to estimate both seasonal and annual
spatiotemporal trends of LST. The annually averaged LST dur-
ing the period of 2001-2019 is represented in Fig. 4(a). Based
on the results, the LST varied from -1.4 °C to 52.7 °C over Iran,
with a mean value of 35.4 °C. The LST values increased from
northwest to southeast.

In order to determine the overall magnitude of changes, the
mean annual LST of 2019 was subtracted from that of 2001,
and the results are illustrated in Fig. 4(b). An increasing trend
was observed in most parts of the study area, while minor
parts experienced a decreasing trend. Nevertheless, a general
increase in LST is the main pattern in Iran, which has also
been reported in other studies [5], [6]. The highest increasing
trends were observed in areas covered with barren, cropland,
and residential areas. This pattern can be attributed to urban
growth, climate change, human activities, and potential changes
in farming systems during the examined period.

2) Spatial LST Trends: To provide an analytical explanation
for the spatial LST trends, both the slope and p-values of the



2108

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
RMSE (MAE) VALUES OF THE SELECTED SUBAREAS ON DIFFERENT DATES USING ARFR AND RFR METHODS

S1 S2 S3

Date ARFR RFR Date ARFR RFR Date ARFR RFR
14/08/2014 1.50 (0.88) 1.94 (1.51) 08/12/2014 3.44(2.73)  4.19(3.30) 09/05/2014 245(1.72)  3.57(2.84)
17/08/2015 2.38(1.76)  3.53(3.01) 24/10/2015 3.43(2.66)  4.80(3.78) 19/10/2015 1.80(1.28)  2.20(1.71)
06/10/2016 1.56 (1.01) 2.42(2.27) 23/08/2016 3.86(2.80)  4.61(3.47) 05/10/2016 1.73 (1.26)  2.13(1.78)
22/08/2017 1.81(1.30)  2.59(2.49) 26/08/2017 3.09 (2.10)  4.10(3.18) 21/08/2017 1.83(1.29)  3.12(2.50)
25/08/2018 1.10 (0.61)  2.61(1.05) 29/08/2018 332(2.54) 446 (3.60) 24/08/2018 1.86 (1.31)  2.74(2.27)
15/10/2019 1.80 (1.20) 1.34 (1.03) 03/10/2019 3.60(2.77)  4.64(3.76) 27/08/2019 1.97 (1.60)  2.38(2.07)
Average 1.69 (1.13)  2.41(1.89) Average 3.46 (2.60)  4.47 (3.53) Average 1.94 (1.41)  2.69 (2.20)
S4 S5 S6

Date ARFR RFR Date ARFR RFR Date ARFR RFR
31/08/2014 2.60(1.98)  2.85(2.33) 17/09/2014 1.62(0.88)  2.37(1.70) 26/12/2014 1.95(1.33)  2.60(1.98)
05/10/2015 2.70(2.08)  3.16(2.72) 19/08/2015 1.60 (1.05)  2.04(1.57) 10/10/2015 237(1.82) 3.31(2.74)
21/09/2016 2.10(1.54)  2.47(2.03) 05/08/2016 1.32(0.72) 1.72 (1.29) 25/08/2016 321(2.74)  4.14(3.75)
24/09/2017 1.80 (1.18)  2.28 (1.83) 25/09/2017 1.45(0.89)  2.03(1.59) 31/10/2017 1.52(0.99)  2.37(1.83)
27/09/2018 1.78 (1.07)  2.78 (2.19) 27/08/2018 1.43(0.99)  2.19(1.78) 02/10/2018 1.81(1.51)  2.25(1.76)
16/10/2019 1.87(1.28)  2.38(2.05) 01/10/2019 1.69 (0.94)  2.38(1.66) 24/12/2019 1.76 (1.09)  2.73(2.22)
Average 2.14 (1.52) 2.65 (2.19) Average 1.52 (0.91)  2.12 (1.60) Average 2.10 (1.58) 2.90 (2.38)
S7 S8 S9

Date ARFR RFR Date ARFR RFR Date ARFR RFR
31/08/2014 2.08(1.62) 3.88(3.49) 19/09/2014 238 (1.71)  3.11(2.41) 04/08/2014 1.81 (1.18) 2.51(1.94)
18/08/2015 2.92(2.33)  3.60(3.18) 21/08/2015 2.69(1.91)  3.57(2.79) 26/10/2015 2.41 (1.68) 3.39 (2.75)
20/08/2016 1.87(1.77)  2.82(2.79) 23/08/2016 246 (1.69)  3.71(2.87) 09/08/2016 1.94 (1.33) 2.74 (2.13)
26/10/2017 1.44 (1.26) 2.94(2.87) 29/10/2017 2.39(1.62)  3.66(2.83) 28/08/2017 1.72 (1.19) 2.47(1.92)
26/08/2018 2.17(1.96)  3.59 (3.54) 13/08/2018 2.09 (1.40) 3.20(2.45) 02/10/2018 1.40 (0.91) 2.28(1.75)
16/10/2019 2.18(2.01)  3.69 (3.62) 03/10/2019 2.52(1.58)  3.52(2.46) 05/10/2019 2.01(1.41) 2.41(1.85)
Average 2.11(1.83) 3.42(3.25) Average 242 (1.65)  3.46(2.64) Average 1.88 (1.28) 2.63 (2.06)
S10

Date ARFR RFR

18/10/2014 3.72(2.57) 4.62(3.25)

18/08/2015 3.10(2.01)  4.75(3.63)

23/10/2016 2.79(1.93)  4.93(3.90)

26/10/2017 2.64(1.82)  4.63(3.49)

26/08/2018 2.19(1.32)  4.94(3.70)

30/09/2019 3.03(2.07) 327(2.42)

Average 2.91 (1.95) 4.52 (3.40)

LST trend over time were calculated based on the annual time
steps from both annually and seasonally aggregated values of
the entire interval (2001-2019) (see Fig. 5). For this purpose, the
slopes and p-values were classified into four classes as follows:

1) SNT: Significant negative trend (slope < 0 and p-value <
0.05).

2) NSNT: Nonsignificant negative trend (slope < 0 and p-
value > 0.05).

3) NSPT: Nonsignificant positive trend (slope > 0 and p-value
> 0.05).

4) SPT: Significant positive trend (slope > 0 and p-value <
0.05).

The analysis of the results indicated multiple strong inconsis-
tencies in inter-seasonal trends as well as between annual and
seasonal trends over time. At the annual scale, most parts of
the study area (57.67%) were associated with NSPT and SPT
classes. Approximately 39% of the study area was covered by
NSNT class, mostly in the southern parts of the region. More-
over, 3.09% of the areas exhibited the SNT class. This showed
that the overall LST trend was incremental through the studied
period and the areas with significant trends (either negative or
positive) were mostly related to the barren, agricultural and
residential areas, respectively.

At the seasonal scales, the variability of the defined classes
at different seasons was rather complex. In spring, for example,
33.89% of the study area represented a significant trend, most

of which were related to the SNT class that were spatially
incomparable with the annual trends. In the summer season,
the SPT class covered most parts of the study area (56.68%),
while the SNT and NSNT classes covered 7.54% and 12.87%
of the study area, respectively. Similar to spring season and
in contrast to other seasons, inspection of the results in fall
indicated a decreasing LST trend. In this season, the NSNT
(63.53%) and SNT (17.38%) classes dominated a large portion
of the country. Finally, in the winter season, approximately 58%
of the region experienced increasing LST trend, a part of which
(32.84%) corresponded to the SPT class. By investigating the
results of the fall and winter seasons, it was observed that these
seasons were affected by LST variability the most. These results
were reasonable due to the potential impacts of the climate
change (e.g., temperature anomalies, extreme weather events,
and drought) and shifting in seasons, which usually leads to
lower LST values in fall (the earlier emergence of winter) and
higher LST values in winter (the earlier emergence of spring).
As an example, the Urmia Lake located in the northwest part
of Iran experienced a substantial warning trend (see Fig. 4). The
rate of the LST change over this lake from 2001 to 2019 was
remarkably high, especially along the shallow shoreline areas.
The LST of shallow shoreline areas increased by around 10 °C,
while the LST of the central areas of this lake increased ap-
proximately by 3 °C. Moreover, based on the LST trend classes
(see Fig. 5), the Urmia Lake was covered by SPT class in both
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annual and seasonal scales. This was reasonable given the fact
that this area was experienced a severe drought period in recent
decades, mainly because of the climate change impacts and
human activities (e.g., agricultural water management activities)
[63].

In summary, spatial representation of LST changes showed
an uneven distribution mostly related to the heterogeneity of the
study area, in which it was difficult to precisely interpret LST
trends that need to be further investigated in order to analyze
other potential causes. Additionally, since this study demon-
strated the complexity and variability of the spatiotemporal LST
trends in both annual and seasonal scales, it would be worthwhile
to thoroughly investigate what factors influence these trends and
whether these influences are constant over time in future studies.

3) Temporal LST Trends: Temporal variability of LST was
investigated by seasonally averaged LST values over the entire
period, and the results are demonstrated in Fig. 6. Seasonal LST
trends, apart from fall and spring, showed fairly increasing trends
(see Fig. 6), which was in agreement with the annual trend.
Spring and winter showed larger variations in the LST values
compared to summer and fall. The LST values in spring, summer,
fall, and winter varied between 31.8 °C -37.6 °C, 45.8 °C —
479 °C, 33 °C =35 °C, and 12.6 °C —-18.4 °C, respectively.
The highest LST values were observed in summer of 2017 and
2015, reaching up to 47.9 °C and 47.5 °C, respectively. The
lowest LST values were observed in winter of 2008 and 2006,
reaching down to 12.6 °C and 14.1 °C, respectively. Based on
the results, substantial LST variations between different years
were observed in all the seasons. As an example, in spring, a
sharp increase was observed from 32.3 °C in 2007 to 36.9 °C
in 2008 and thereafter a sharp drop was observed to 32.9 °C
in 2009. The significant variation might be related to the fact
that the adopted approach computed only one average for all
downscaled LST values in each season of a given year, which
in turn, reduced the possibility of comprehensive trend analysis.
Therefore, in future studies and in order to analyze LST trends
more specifically, it is necessary to use daily downscaled LST
and local models simultaneously.

V. CONCLUSION

This article investigated the spatiotemporal LST trends at both
annual and seasonal scales during the period of 2001-2019 over
Iran using a proposed downscaling algorithm, called ARFR.
ARFR was developed using RFR and based on Koppen climate
zones to downscale MODIS LST products (MOD11A1) in both
spatial (240-m pixel size) and temporal (daily) resolutions. The
results of this article demonstrated that the application of ARFR
within the GEE platform was efficient to downscale MOD11A1
in terms of accuracy (average RMSE of 2.22 °C and MAE
of 1.59 °C) and computational performance. Furthermore, the
downscaled daily LST maps at 240-m pixel size were used
to investigate spatiotemporal LST trends in Iran. In general,
although an increasing trend of LST with uneven spatial pattern
was observed in the study area except for fall season, variability
of the LST trends indicated inconsistencies in inter-seasonal
trends as well as between annual and seasonal trends over
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the examined period. The results of spatiotemporal analysis
of daily LST trends over 19 years would be useful for better
understanding climate change and land processes. In summary,
the results of this study suggest that the proposed downscaling
method along with the freely available datasets within GEE
platform can be beneficial for studies related to spatiotemporal
LST trend analysis and climate change.
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