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Research Progress on Few-Shot Learning for Remote
Sensing Image Interpretation
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Abstract—The rapid development of deep learning brings ef-
fective solutions for remote sensing image interpretation. Training
deep neural network models usually require a large number of
manually labeled samples. However, there is a limitation to obtain
sufficient labeled samples in remote sensing field to satisfy the data
requirement. Therefore, it is of great significance to conduct the
research on few-shot learning for remote sensing image interpre-
tation. First, this article provides a bibliometric analysis of the
existing works for remote sensing interpretation related to few-shot
learning. Second, two categories of few-shot learning methods, i.e.,
the data-augmentation-based and the prior-knowledge-based, are
introduced for the interpretation of remote sensing images. Then,
three typical remote sensing interpretation applications are listed,
including scene classification, semantic segmentation, and object
detection, together with the corresponding public datasets and the
evaluation criteria. Finally, the research status is summarized, and
some possible research directions are provided. This article gives
a reference for scholars working on few-shot learning research in
the remote sensing field.

Index Terms—Deep generative model, few-shot learning, meta-
learning, metric learning, remote sensing, transfer learning.

1. INTRODUCTION

N RECENT years, deep learning methods have been rapidly
developed, and the application in computer vision field is
remarkable [1]-[3]. Data, computing power, and algorithm are
three crucial factors for the development of deep learning. Due
to the complex structure as well as a huge number of parameters
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to be optimized [4], [5], the performance of the deep learning
model heavily relies on plenty of samples. In other words, data
are the booster for the rapid development of deep learning.

Inspired by the success of deep learning in computer vision,
preliminary studies have been carried out on deep learning
for remote sensing image interpretation and attain significant
progress [6]-[11]. Compared with natural scene images, the
application of deep learning in remote sensing images faces
three challenges: small geographic objects in high-resolution
images, large variations in the visual appearance of objects,
and complex background noise. Moreover, the total amount of
available training data in remote sensing field is far less than that
of natural scenes, which results from the following reasons.

1) Lack of raw data: Different from natural images, which
can be easily obtained via web resource, remote sensing
images are collected with high cost and long cycle owing
toits strict requirement on imaging sensors and conditions.
Besides, the number of high-value objects in remote sens-
ing images, such as aeroplane and ship, is smaller than
that of common objects in natural images. The scarcity
of target sources increases the difficulty in obtaining the
remote sensing data.

2) Difficulty of dataset annotation: Generally, the training
of deep learning model depends on the manually labeled
samples. However, the annotation of remote sensing sam-
ples requires high interpretation ability and even expert
knowledge, such as the aircraft type recognition. In addi-
tion, considering the annotation difficulty and huge data
requirement, the dataset construction process can be very
time-consuming and laborious.

3) Limitation of sensor characteristic: The imaging results
of the same object may differ greatly due to the sensor
factors, such as imaging angle and resolution, especially
in the synthetic aperture radar (SAR) field. However,
the fixed sensor parameters lead to the lack of imaging
diversity, which cannot fully reflect the complete target
characteristic based on the existing samples.

Although a series of publicly available remote sensing
datasets have been released, the number of images and object
categories are still relative small compared with the natural
scene dataset. Under this condition, the deep learning model
will encounter the overfitting problem [14]. It is difficult to
obtain the optimal parameters according to the rule of empirical
error minimization with limited data. Therefore, it is of great
importance to solve the overfitting problem and improve the
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generalization ability of the deep learning model on the basis
of limited data in remote sensing field. As a possible solution,
deriving from [15] and [16], the few-shot learning is proposed
with the goal of learning from a small number of labeled samples
and has gained significant improvement on the interpretation of
natural images, including image classification [17], [18], object
detection [19], [20], semantic segmentation [21], [22], etc.

Inspired by their successful applications in natural images,
extensive efforts had been made by researchers with the aim
of exploring effective few-shot learning methods for remote
sensing image interpretation.

The formal definitions of few-shot learning are provided as
follows. Given a learning task 7", few-shot learning learns from
the dataset D = { Dyyin, Diest } for the current task 7', which is
composed of the training set Dyin = { (2, y;) }E |, where K is
very small, and the test set Dicy = {;,y; }Jle The goal is to
approximate the optimal embedding function F'(-; ) from input
x to label y by the iterative training on the training set Diin.
Evaluation of the few-shot learning performance on the given
task 7" is conducted by the predefined loss function L(g, y) over

A

Pattern of remote sensing image interpretation with limited labeled data.

Metric learning

Meta learning

the test set Dy between the prediction § = F'(,z) and the
ground truth label y.

It is worth mentioning that in this review, we use the term
of “few-shot” as a general concept, which consists the narrow
sense where only limited labeled samples for novel classes can
be used (commonly adopted in computer version) and the broad
sense where limited labeled samples and a certain amount of
unlabeled samples for the target classes can be accessed.

As shown in Fig. 1, we divide the existing few-shot learning
methods into the following two categories in light of the prin-
ciples whether the amount of available labeled samples for the
target classes is increased.

1) Data-augmentation-based method: A straightforward
way to solve the few-shot learning problem is to enlarge
the number of training samples by data augmentation. Data
augmentation generally uses transformation operations,
simulation, or deep generative models to generate samples
without actually collecting new data. This kind of method
can improve the generalization ability of the model and
suppress the risk of overfitting. At present, the key of
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data argumentation-based method lies in generating new
samples automatically with high fidelity, which not only
expands the dataset in quantity, but also enriches the
semantic information of dataset.

2) Prior-knowledge-based method: This kind of method
mainly focuses on learning with limited labeled data,
which means making full use of prior knowledge and
experience to guide the learning progress of new tasks.
Human beings can learn a new concept from a few pictures
and even sometimes form the knowledge concepts without
seeing the pictures. Inspired by the human ability, re-
searchers hope that deep learning models can quickly learn
new categories with a small number of training samples,
which is the purpose of this method.

Considering the lack of a thorough survey of few-shot learning
for remote sensing image interpretation, we conduct a compre-
hensive review of the relevant research by the detailed biblio-
metric analysis of the existing works, systematically review the
few-shot learning approaches from the perspective of data aug-
mentation and knowledge reuse, and discuss several promising
future directions of few-shot learning for remote sensing image
interpretation. This article may provide a reference for scholars
working on few-shot learning research in the remote sensing
field.

The remainder of this article is organized as follows. Section I1
provides a quantitative analysis of the few-shot learning articles
in remote sensing field. Sections III and IV introduce the few-
shot learning methods from the perspective of data augmentation
and prior knowledge, respectively. Section V presents several
typical applications of few-shot learning in remote sensing
image interpretation. Section VI discusses the current issues to
be addressed and proposes some promising future directions.
Section VII concludes this article with final remarks.

II. QUANTITATIVE ANALYSIS OF ARTICLES

In order to systematically analyze the trend and research
hotspots of few-shot learning in remote sensing image interpre-
tation field, the relevant articles from Web of Science (WOS) and
China National Knowledge Infrastructure (CNKI) are collected
and quantitatively analyzed in this section. The core collection in
the WOS is selected, and the retrieval keywords are set as (title
= few shot) OR (title = zero shot) OR (title = limited data)
OR (title = semi-supervised) OR (title = limited labeled data)
OR (title = one-shot) OR (title = metric learning) OR (title =
transfer learning) OR (title = self-label) OR (title = generative
adversarial networks) OR (title = auto-encoders) And (subject
= remote sensing). The retrieval duration is from 2000 to 2019.
After manual selection, a total of 243 valid titles can be obtained.

In the CNKI database, SCI, EI, and the core journal database
are selected. The corresponding retrieval keywords are (key
words = few shot learning) OR (key words = limited data) OR
(key words = meta learning) OR (key words = transfer learning)
OR (key words = generative adversarial networks) OR (key
words = auto-encoders) AND (subject = remote sensing). The
retrieval duration is from 2000 to 2019. After manual selection,
a total of 40 valid titles can be obtained.
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Fig.2. Quantitative analysis of the published articles. (a) Number and propor-
tion of published articles by year on few-shot learning in the remote sensing field
(data source from WOS). (b) Number and proportion of published articles by
year on few-shot learning in the remote sensing field (data source from CNKI).

A. Quantitative Analysis of Published Articles

The published articles from 2000 to 2019 are counted and
analyzed. Data retrieved from WOS show that the number of
few-shot learning articles has increased year by year since 2003
and reached a peak of 64 in 2019, as shown in Fig. 2(a). Fur-
thermore, the red line in Fig. 2(a) denotes the percentage of the
few-shot learning articles in the number of remote sensing topic
articles each year. After comprehensive analysis, it can be found
that both the annually published articles and the proportion
of remote sensing few-shot learning articles have significantly
increased since 2014, and there is an obvious rising trend in
recent years. As for the Chinese journals, the relevant data are
collected from CNKI, and the corresponding statistical results
are shown in Fig. 2(b). It can be seen that Chinese articles related
to the remote sensing few-shot learning began to appear around
2010. Although the number is small, the overall trend was still
rising, and it reached a peak of 12 in 2018. Combined with the
data obtained in WOS, it can be concluded that the few-shot
learning has attracted more and more attention in both Chinese
and English remote sensing articles. The number of published
articles is increasing and will continue to increase in the next
few years.

B. Analysis of Journal (Conference)

In this subsection, a statistical analysis of the journal and
conference articles relevant to few-shot learning is presented.
Concretely, by means of the paper analysis tool named Histcite,
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TABLE I
NUMBERS OF PUBLISHED ARTICLES ON DIFFERENT JOURNALS AND THEIR TLCS AND TGCS IN WOS DATA

Ranking Journal / Conference Number of articles TLCS TGCS
1 IEEE International Geoscience and Remote Sensing Symposium 58 6 107
2 Remote Sensing 28 4 244
3 IEEE Transactions on Geoscience and Remote Sensing 12 7 664
4 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 8 179
5 ISPRS Journal of Photogrammetry and Remote Sensing 10 20 243
6 IEEE Geoscience and Remote Sensing Letters 5 2 72
7 Remote Sensing Letters 4 0 20
8 Sensors 4 0 29
9 Applied Soft Computing 3 5 89
10 IEEE Access 3 1 12
TABLE II TABLE III
NUMBERS OF PUBLISHED ARTICLES IN DIFFERENT JOURNALS STATISTICS OF HIGH-FREQUENCY CENTRAL WORDS AND HIGHLY
FroM CNKI DATA CENTRAL KEYWORDS
Ranking Journal Number of articles Ranking High-frequency Frequency High-centrality Centrality
1 Acta Geodaetica et Cartographica Sinica 4 keywords i keyvior{isj
. . rspectral im
2 Bulletin of Surveying and Mapping 3 1 classification 49 ypi]a?fi%cition e 034
3 Computer Science 3 . semi-supervised
4 Computer Engineering and Applications 3 2 transfer learning 42 learning 0.33
5 Journal of Image and Graphics 3 3 sem;—sup;rwsed 35 active learning 032
earning
4 semi-supervised 23 algorithm 0.29
classification
. . o 5 deep learni 21 i lassificati 0.24
the number of articles, the total location citation score (TLCS), 6 i eepl ear,?im“’;, 20 m:agefc aTl cation 03
o . image classification ransfer learnin .
and the total global citation score (TGCS) for each journal £ . £
. 5 K . 7 hyperspectral image 19 framework 0.21
or conference article were obtained and summarized in Ta- convolutional neural
. . 8 16 remote sensing 0.18
ble I. Table I shows that IEEE International Geoscience and network
Remote Sensing Symposium (IGARSS), Remote Sensing, and 9 generat}‘l‘é‘fv;‘ifrsa“al 14 classification 0.18
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10 change detection 13 change detection 0.18

(TGRS) have made the most contributions to the number of
published articles. The number of publications on IGARSS is
58, accounting for 23.87%. The number of published articles on
TGRS ranks the first. Although the number of published articles
in the ISPRS Journal of Photogrammetry and Remote Sensing
only ranks fifth, the corresponding TLCS and TGCS ranks first
and third, respectively.

Endnote, an article analysis tool, was used to analyze 40
articles retrieved from CNKI. As shown in Table II, we can
see that the number of Chinese articles is relatively small, and
corresponding journals are relatively scattered. It can be con-
cluded that the number of remote sensing few-shot learning in
Chinese journals is relatively average and significantly less than
that published in journals in the WOS database. Therefore, it can
be concluded that remote sensing few-shot learning articles in
Chinese journals have great growth potential both in the journals
and the number of articles.

C. Analysis of Keywords

In this section, the analysis tool Citespace [23] is used to
process the data obtained from WOS. The title, abstract, and
keywords are selected as the source of subject words. The
analysis results of high-frequency keywords and high-centrality
keywords are summarized. According to Table III, the most
commonly used methods include semisupervised classification

learning, transfer learning, convolutional neural network (CNN),
and generative adversarial network (GAN), etc.

Meanwhile, we analyze the data year by year and conduct
the co-citation analysis of keywords with Citespace. The time
range is set from 2000 to 2019. The node type is set as keywords,
and the clustering is conducted according to the frequency of
keywords. Finally, we obtain the evolution map of keywords as
shown in Fig. 3. Concretely, the horizontal axis represents the
earliest proposed time of the target keywords, and the vertical
axis corresponds to the name of the specific keywords. And
the circle size as well as the font size is proportionate to the
emergence frequency of the keywords in a given slice time,
which can reflect the research heat in some degree.

Based on the analysis of high-frequency keywords, high-
centrality keywords, and the evolution map of keywords, the
development of few-shot learning in remote sensing field can be
divided into the following three stages.

1) 2000-2007: At this stage, the main keywords were classi-
fication, remote sensing image, semisupervised learning,
etc. The concept of few-shot learning had just been formed
and the semisupervised learning began to appear. How-
ever, the relevant research progress was not great, and the
number of articles was also small.
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TABLE IV
COMPARISON OF DIFFERENT DATA AUGMENTATION METHODS
Methods Overview Pros Cons Typical
References
Data warping Perform basic image manipulations over Fast generation speeq and easy  Poor expansion Qf semantic [24]-126]
original data implementation information
- . . . . . Fast generation speed, high . .

. . Utilize simulation and virtual imaging - Domain gap between synthetic

Simulation . controlment of image [271-129]
technology to generate synthetic image . . data and real data
information

D ati Learn the probability distributions of image Automatic image generation Difficulty in generating images

eep generative P ¥ ; & £¢ & with very high resolution for [30]-[32]

model and generate fake samples with high fidelity

without human labor

complex scenes

2) 2008-2013: The keywords were semisupervised classifi-
cation, image classification, transfer learning, hyperspec-
tral image, etc. During this period, the semisupervised
learning methods were constantly improved. Additionally,
new methods such as transfer learning were introduced in
the remote sensing data processing.

2014-2019: The keywords were CNN, deep learning,
domain adaptation, object detection, GAN, etc. The rapid
development of deep learning made great contribution
to the research of few-shot learning in remote sensing
field, and many new few-shot learning methods emerged
successively.

3)

III. DATA-AUGMENTATION-BASED LEARNING METHOD

Data augmentation is a well-known technique to mitigate
data scarcity problem by increasing the volume and diversity
of the available data instead of actually collecting new data.
Based on the augmented dataset, the risk of overfitting can be
obviously decreased, and the generalization ability of model can
be effectively strengthened. Generally, as shown in Table IV, the
existing data augmentation methods designed for remote sensing

image can be divided into three categories: data-warping-based
method, simulation-based method, and deep-generative-model-
based method.

A. Data Augmentation Based on Data Warping

Data warping is a way of generating new samples by per-
forming basic image manipulations based on the existing data.
Commonly used transformation techniques include cropping,
flipping, filtering, rotation, and noising. These transformations
are easy to implement to increase the data scale. However, the
new semantic information cannot be generated to increase the
data diversity. The effect of this data augmentation method
on improving the model performance is very limited. Hence,
this kind of method cannot completely solve the sample limit
problem and usually is adopted as an auxiliary technique in data
preprocessing [24]—-[26].

B. Data Augmentation Based on a Simulation Technique

Another data augmentation strategy is to establish the com-
puting model and simulate the remote sensing imaging process,
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which can output the remote sensing images by a computer.
According to the scale of modeling target, the existing simulation
methods can be classified into two categories.

1) Instance modeling: Instance modeling indicates that the

3-D model of object is built and will be projected to
a certain remote sensing background by the simulation
system. This kind of method is widely adopted for syn-
thetic image generation in target recognition and object
detection tasks. Kusk et al. [28], [33] investigated the
generation of synthetic SAR data based on Computer
Simulation Technology Microwave Studio Asymptotic
Solver (CST). Concretely, a set of 3-D CAD models, which
contain the object radar reflectivity information, were
sent to the simulation system. Then, CST estimated the
complex scattered electric field components and generated
the corresponding synthetic samples. Similarly, Yan et
al. [29] proposed a simulation method for ship detection in
remote sensing images. Considering the texture difference
between the simulation target and the background image,
Wang et al. [34] designed a multiscale generator network
to perform domain conversion operation automatically.

2) Scene modeling: In a remote sensing image, the instance

modeling is utilized to generate the target information and
obtain its annotation. In order to acquire the pixelwise
label information, the scene modeling is investigated to
automatically generate the stimulated images of a certain
areain an efficient way. Kemker ef al. [35] conducted scene
modeling experiments on Trona to assist in multispectral
remote sensing image segmentation. With the support of
Digital Imaging and Remote Sensing Image Generation
modeling software, a large number of multispectral im-
ages and the corresponding label maps can be gener-
ated automatically. Besides, weather conditions, lighting
conditions, as well as imaging height can be adjusted
flexibly as required. To solve the problem of modeling
cost, Kong et al. [27] developed an approach to generate
synthetic overhead imagery rapidly and cheaply based on
CityEngine. They released a collection of synthetic dataset
Synthinel-1 for building segmentation and verified that
Synthinel-1 was consistently beneficial to augment real
images.

The main advantage of this augmentation method lies in its
fast image generation speed and high controllability of image
content information. Based on this technique, the remote sensing
images can be effectively augmented with high fidelity and low
cost, especially for some images that are hard to obtain in reality.
However, one limitation of this augmentation technique is that
there still exists the domain gap between the synthetic image
and the real image. To solve the domain shift problem caused
by the gap, it is required to combine transfer learning for further
optimization.

C. Data Augmentation Based on the Deep Generative Model

The deep generative model can be used to learn rich proba-
bility distribution over target images and generates new samples

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

with variations. One of the most commonly used deep genera-
tive models in remote sensing field are GANs [27]. Similar to
the game theory, the GAN can learn the distribution of target
data implicitly by finding the Nash equilibrium between the
generator and the discriminator. According to the source of the
generated samples, the existing deep-generative-model-based
methods designed for data augmentation can be classified into
two categories.

1) Sample synthesis: One typical approach of applying the
deep generative model for data augmentation is sample
synthesis. Specifically, the deep generative model is ex-
posed to a certain number of real images with the aim of
approximating the probability distribution characteristic
of the target classes. After training, the generator is ex-
pected to be capable of generating fake images with high
fidelity, which are not present in the training set, yet share
the same distribution. When the GAN was first applied to
the hyperspectral feature classification task, it was used as
aregularization to solve the overfitting problem under the
small-sample condition, and a collaborative training algo-
rithm was proposed to fuse the adversarial samples with
the real samples to improve the model performance [36].
Zheng et al. [32] designed vehicle synthesis GANs to
generate high-quality annotated vehicles from optical re-
mote sensing data and verified the synthesized vehicles
can benefit the training of CNN-based vehicle detectors.
Due to its strong deep modeling ability and high-fidelity
sample generation ability, the GAN was widely used for
sample synthesis in scene classification [30], [37], [38],
object detection [31], semantic segmentation [39], and
many other remote sensing interpretation tasks.

2) Sample migration: The goal of sample migration is to
learn suitable embedding functions between the samples
of source domain and target domain and constrain them
to share the similar distributions characteristics. Thus, the
existing dataset equipped with sufficient labeled samples,
which may be collected for other types of interpretation
tasks and possess large visual differences with the target
domain, can be utilized to join the training process of
current few-shot learning tasks after aligning. Different
from the traditional techniques [40]-[42], which usually
require manually assigning criterions on the distribution
similarities and designing mapping rules across domains,
GAN:Ss are capable of automatically modeling the complex
embedding relations across domains through the adversar-
ial training. Wang et al. [43] used the simulation results
as a conditional input source of GAN to generate SAR
samples by modeling embedding functions between sim-
ulation samples and authentic samples. Benjdira et al. [44]
used CycleGAN [45] to reduce the domain gap caused by
sensor variations for the task of semantic segmentation
on aerial imagery. Furthermore, considering the problem
of conversion inefficiency in the existing methods, Tasar
et al. [46] designed a color mapping GAN to translate
samples by learning elementwise matrix multiplication
and addition, which gains much improvement in terms
of accuracy and speed.
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TABLE V
COMPARISON OF DIFFERENT PRIOR-KNOWLEDGE-BASED LEARNING METHODS

Methods Overview Pros Cons Typical
References
. Perform basic image Easy implemenation and higher Require the source domain dataset high
Transfer learning manipulations over original data learning efficiency relatedness with the target domain data (48], [49]
Embed the samples to the an - . . . Performance degradation when dealing
- . Universally applicable for multiple . . .
Metri . optimal metric space and conduct . e o with novel tasks which exhibits large
etric learning . R tasks of differnet classes after training AR . . [501, [51]
learning in an similarity-based . . distribution discrepancy with the
without quadratic adaptaton .
contrast manner training set
Learn on the level of tasks and Lo L. . -
Meta learning accumulate the task-agnostic Powerful generalization ability across Require the support of an auxiliary (521, [53]

knowledge to enhance the learning

classes and fast adaptation speed

dataset with diverse object classes

In contrast to the data-warping- and simulation-based aug-
mentation methods mentioned above, deep generative models
can automatically generate a large number of samples without
human labor on the designing warping rules or computing
models. Besides, generated samples are ensured to retain similar
distributions to the original dataset, which can avoid the domain
shift problem. In addition to the strengths mentioned above, yet
there still exists several challenges for deep-generative-model-
based methods that remain to be solved. Especially, considering
the intraclass diversity characteristic of remote sensing images,
the fidelity of the generated images remains to be improved
when dealing with very high solution remote sensing imagery
with complex background information. Another prerequisite
should be taken into account that some more regularization
techniques should be explored to alleviate the mode collapse
problem [47] and improve the stability during the training of the
deep generative networks.

IV. PRIOR-KNOWLEDGE-BASED LEARNING METHOD

Human’s visual interpretation of remote sensing images de-
pends on the accumulation of empirical knowledge. Similarly,
as for the machine, few-shot learning on the current task can be
established based on the empirical knowledge obtained from the
previous tasks, which is called the prior-knowledge-based learn-
ing method. Specifically, the prior knowledge obtained from
the auxiliary dataset, which indicates the prelearned knowledge
of parts and relations and may exist in various forms (such as
parameter initializations, pre-extracted features, etc.), is utilized
to assist the current learning tasks by designing reasonable
learning strategies. In this section, as shown in Table V, the
prior-knowledge-based few-shot learning methods that emerged
recently are divided into three categories: the transfer-learning-
based-method, the metric-learning-based method, and the meta-
learning-based method.

A. Transfer-Learning-Based Method

The main idea of transfer learning is to improve a learner
in the target domain by transferring the knowledge from a
related source domain [54]. The target domain means the target
dataset to be interpreted, where only a small number of labeled
samples are available, and the source domain corresponds to an
auxiliary dataset, where labeled samples are sufficient. Based on

the relatedness across the domains, transfer learning can effec-
tively reduce the amount of data required on the target domain.
Generally, the existing transfer learning methods designed for
few-shot remote sensing image interpretation can be divided
into two categories based on the concrete operation level of the
transference.

1) Model-Based Transfer Learning: Assuming that the
source tasks and the target tasks share some parameters or
prior distributions of the models [55], the model based transfer
learning aims to transfer the knowledge by reusing the model
trained on the source task to the training of target task. Generally,
there exist two kinds of strategies on model reuse including
fixing the partial parameters of the pretrained model as feature
extractors or using them as model initialization in the target
domain. Both of them can effectively reduce the need for the
number of training samples and accelerate the training process.
In terms of the source to obtain the pretrained model, several
typical solutions are listed below.

1) Pretrain the model based on a similar dataset: The ideal
condition to obtain the pretrained model is from a dataset,
which is highly correlated with the target data. Taking the
building segmentation, for example, remote sensing im-
ages collected at different time instants, different sensors,
or even different geographic locations can be utilized as
the source domain dataset to pretrain the model. For some
cases where no auxiliary dataset is available, another alter-
native paradigm is to pretrain the model from the synthetic
images by additional simulation experiments [33], [35].

2) Pretrain the model from an unlabeled dataset: This
method corresponds to the situation where only unlabeled
data are available. The model can be pretrained from
the unlabeled data by conducting unsupervised learning.
Huang et al. [48] investigated the effects of this method
in SAR target recognition. Specifically, they designed an
assembled CNN architecture with the reconstruction path-
way integrated and pretrained the network with the stacked
convolutional autoencoders. Experiments demonstrated
that this method can lead to improving the performance
under small labeled sample conditions.

2) Feature-Based Transfer Learning: AsshowninFig. 4, the
intuitive idea of this approach is to select and learn the feature
representations that are generally suitable for both the source
domain and the target domain. Thus, the knowledge can be
transferred in the form of shared feature representation through
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Fig. 4. Illustration of feature-based transfer learning.

designing specific strategies to align the feature representations
across domains. By making the model focus on learning the
shared feature representation in the source domain, the need for
labeled training samples in the target domain can be reduced.
The core issue of the feature-based transfer learning lies in
the way of finding and learning the shared feature represen-
tations for the model across different domains. Bruzzone and
Persello [56] proposed an approach to select the spatial invariant
features for hyperspectral image classification. Specifically, a
multiobjective to evaluate the feature discrimination capability
as well as the feature shift across domains is explicitly optimized.
The commonly adopted criteria for measuring domain distri-
butions include Bhattacharyya distance [57], Jeffries—Matusita
distance [58], maximum mean discrepancy (MMD) [59], and
multikernel MMD [60]. Rostami et al. [49] designed a net-
work with two deep encoders that were coupled to transfer
the electrooptical (EO) domain knowledge to the SAR domain.
Based on the sliced Wasserstein distance (SWD) [61], the sam-
ples were mapped to a shared embedding space and aligned
class-conditionally. As a result, the model trained in the EO
domain can be well generalized in the SAR domain. However,
selecting and designing criteria for distribution measurement
heavily depend on the laboratory experiments. Considering this
disadvantage, Xu et al. [62] utilized the adversarial training
technique to automatically select and learn the feature repre-
sentation that is applicable across the domains. Concretely, a
domain classifier was added to the network to distinguish the
domain of input features. In addition, the model was trained to
generate the feature representations that were indistinguishable
enough across the domain to cheat the domain classifier. As a
result, feature representations shared across the domains were
learned.

Transfer learning provides a desirable paradigm to deal with
the small-sample problem for remote sensing image interpreta-
tion. However, before applying transfer learning techniques, one
prerequisite should be taken into account that a source domain
dataset is required, which has sufficient labeled information and
high relatedness with the target domain. Transferring knowledge
from unrelated source data can gain little improvement and
sometimes even lead to a negative impact on the target learner.
To avoid this problem, the relevant research on the measurement
of the transferability across the remote sensing datasets from
multisources should be further studied.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

e N

Prior knowledge

ol p

]

.| Embedding

network Similarity E)::>.

2
Embedding

Weight sharing network
Support set
pp NG T
oS

Query set p e

Fig. 5. Illustration of metric-learning-based few-shot learning methods.

B. Metric-Learning-Based Method

The metric-learning-based method aims to find an optimal
metric space, where the distribution of similar samples is com-
pact, while the distribution of dissimilar samples is alienated.
Specifically, as illustrated in Fig. 5, a set of project functions are
learned to encode the samples into lower dimensional feature
embeddings. Combined with the suitable similarity measure-
ment for feature embeddings, the samples can be easily classified
in the metric space. This method can be interpreted as training
the model to “learn to compare” and is capable of obtaining a
good performance when dealing with a small number of samples.

Koch et al. [63] used the Siamese neural networks [64] as the
feature extractor for few-shot learning. This two-branch archi-
tecture learned a common project function for both training sam-
ples and test samples and was proved to be suitable for the paired
metric comparison. Vinyals ef al. [65] designed the episode
mechanism to mimic few-shot learning tasks by repeated sub-
sampling classes and samples. This method can effectively im-
prove the model’s generalization ability and is widely used as the
standard data organization strategy for few-shot learning. Based
on the prior works mentioned above, Snell et al. [66] further
assumed that there exists a prototype representation clustered by
sample points within each category, and thus, test samples can
be recognized with a fixed-nearest-neighbor classifier over the
test embeddings and prototypes. Comparing this idea with the
3-D-CNN-based [67] spatial spectrum feature extraction mech-
anism, Tang et al. [50] applied the metric learning to few-shot
scene classification in the hyperspectral images. The commonly
used distance metric criteria for nearest-neighbor classification
algorithms include Euclidean distance, cosine similarity, Man-
hattan distance, etc. Furthermore, Rao et al. [51] utilized a
parameterized classifier to perform adaptive metric learning on
the distance metric criterion, which effectively alleviated the
defects of manually selecting metric criterion.

The main advantage of this framework lies in its simplicity
and generalization ability. Concretely, a trained model can be
directly applied to various kinds of learning tasks simultane-
ously without fine-tuning. This characteristic is based on the
assumption that novel tasks share similar distribution with the
previous learning tasks during training stage. Nevertheless, for
new learning tasks with large discrepancy to previous learning
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tasks, the generalization ability of the model can be greatly de-
creased. Considering the intraclass diversity and scale variations
in remote sensing imagery, the techniques on enhancing the
model’s within-class generalization ability remain to be further
studied.

C. Meta-Learning-Based Method

Based on the meta-learning, the model can automatically
accumulate general knowledge during the process of continuous
training. The learning ability of the model will be more proficient
with more experience. With the assistance of the obtained gen-
eral knowledge, the model is capable of fulfilling fast learning
with a small amount of labeled data. The basic learning unit of
meta-learning is composed of several few-shot learning tasks in
a minibatch. In each task, the meta-train data, the meta-val data,
and the meta-test data are randomly split without overlapping. As
shown in Fig. 6, the meta-learning framework consists of several
base learners and a meta-learner. The former base learners are
expected to achieve quick knowledge learning for a single task.
Then, the latter meta-learner is used to accumulate the general
knowledge gradually, which can be shared across different tasks.
This learning schema divides the process of learning into the
task-specific adaptation and the cross-task generalization.

Ravi and Larochelle [68] analyzed the weakness of the tra-
ditional gradient update mechanism under small-sample condi-
tions and proposed a network named Meta-LSTM for few-shot
image classification. Meta-LSTM selected LSTM [69] as the
meta-learner to provide the initial parameters shared among
tasks. The base learner was implemented by a deep CNN
classifier. The task-specific parameter update provided by the
meta-learner is regarded as input. The base learner can realize
quick convergence over multiple novel tasks. Different from
the prior meta-learning methods that usually designed special
networks to learn update functions, Finn et al. [52] proposed a
model-agnostic meta-learning (MAML) algorithm. As a widely
used meta-learning framework, MAML retains the compatibility
of the traditional gradient-based learning mechanism and is ap-
plicable for any model architecture with the SGD optimization.
The model parameters are meta-learned by MAML through
the optimization so as to obtain the maximal accuracy within
several iterations in the new tasks. Based on MAML, several
improvements have been made recently. Li e al. [70] further
proposed to train the learnable learning rates for each parameter
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in the base learner. Both the update direction and the step size
of the model’s parameters can be simultaneously optimized in a
single meta-learning process, which significantly improved the
automation and capacity of MAML. Lee et al. [71] investigated
the linear classifiers as the base learner for MAML. Based on the
linear classifier rule, the optimization objective in the inner loop
is convex and can be effectively solved according to the theories
of dual formulation and Karush-Kuhn—Tucker conditions. Ala-
jaji and Alhichri [53] introduced MAML to the task of remote
sensing scene classification and verified the effectiveness of
MAML through a series of few-shot classification experiments.
Compared with the transfer-learning-based method, the meta-
learning-based method can train a meta model applicable for
multiple tasks with the characteristic of fast adaptation. This
method avoids manually selecting the source domain data with
high correlation in transfer learning. Furthermore, meta-learning
can be integrated with multiple models for classification, regres-
sion, and reinforcement learning. Due to these advantages, meta-
learning becomes a desirable paradigm for few-shot learning of
remote sensing image interpretation. However, one limitation of
this method is that meta-learning requires an auxiliary dataset
that is rich in category diversity to ensure the generalization
ability of the meta-model. Nevertheless, the existing publicly
available remote sensing datasets only contain a small number
of geospatial object categories. The high requirement of dataset
seriously limits the application of meta-learning algorithms.

D. Other Methods

In addition to the three few-shot learning approaches men-
tioned above, there exist other complementary solutions for
data scarcity problems. The lightweight design and structural
optimization of models [72], [73] can be used to reduce the
risk of overfitting by decreasing the amount of model param-
eters. Moreover, the self-taught learning [74], [75] and self-
training [76] techniques can be utilized to conduct knowledge
mining from unlabeled data and enhance the supervised learning
process on the limited training set.

V. TYPICAL APPLICATIONS OF FEW-SHOT LEARNING IN
REMOTE SENSING IMAGE INTERPRETATION

In this section, this article summarizes the applications of
few-shot learning for remote sensing image interpretation, in-
cluding scene classification, semantic segmentation, and object
detection. The research status of application is introduced below
from the perspective of experimental datasets, application cases,
and evaluation metrics.

A. Experimental Datasets

This article collects and summarizes the existing published
few-shot learning datasets for scene classification, semantic
segmentation, and object detection. The final statistical results
of experimental datasets are shown in Table IV. For detailed
information about these datasets, the corresponding references
listed in the tables can be referred. In terms of the interpretation
task, the existing work mainly focuses on the study of scene
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TABLE VI

SUMMARY OF PUBLIC DATASETS FOR EVALUATING FEW-SHOT LEARNING ALGORITHMS

Information of datasets

Datasets Type of data - - - Applications References
Categories Images Resolution(m) Bands Image size
UC Merced Land Use Optical image 21 2100 0.3 RGB 256x256 Scene classification [77]
S 600 %600 s [78]
WHU-RS19 Optical image 19 1013 up to 0.5 RGB Scene classification
600 %600
AID Optical image 30 10000 0.5~8 RGB 600600 Scene classification [79]
NWPU-RESISC45 Optical image 45 31500 0.2~30 RGB 256x256 Scene classification [80]
Military object
MSTAR SAR image 10 5950 0.3 X-band 128x 128 recognition and [81]
classification

OpenSARShip SAR image 3 11346 - IW mode - Ship recognition [82]
BUAA-SID1.0 Simulation image 20 9200 - grf;s)étlle 320x240  Space object recognition [83]
RIT-18 Hyperspectral image 18 3 0.047 6 90006000  Semantic segmentation [35]
Indian Pines Hyperspectral image 16 1 20 224 145x145 Semantic segmentation [84]
Salinas Hyperspectral image 16 1 3.7 224 512x217 Semantic segmentation [84]
Pavia University Hyperspectral image 9 1 13 103 610x610 Semantic segmentation [84]
Pavia Centre Hyperspectral image 9 1 13 102 1096x 1096  Semantic segmentation [84]
Ke“‘g:gtesrpa“ Hyperspectral image 13 1 18 24 512x614  Semantic segmentation (85]
Chikusei Hyperspectral image 19 1 2.5 128 2517x2335  Semantic segmentation [86]
Botswana Hyperspectral image 14 1 30 242 1476x256  Semantic segmentation [85]

classification and semantic segmentation. For the object detec-
tion task, there is lack of publicly available datasets suitable
for few-shot learning. In terms of the remote sensing data to
be interpreted, the existing few-shot learning research appears
unbalanced. The scene classification task mainly focuses on the
optical images, and the semantic segmentation task focuses on
the hyperspectral images.

B. Typical Applications of Remote Sensing
Image Interpretation

1) Scene Classification: Scene classification, which aims to
automatically assign remote sensing images with the predefined
semantic labels, is of great importance for the comprehension of
huge and complex remote sensing images and has been widely
used in many fields such as urban planning, environment moni-
toring, and land resource management. Considering the cost of
collecting and labeling large amounts of data, exploring practical
scene classification algorithms under small-sample conditions
has become an important research topic.

For the scene classification task in optical images, Marmanis
et al. [87] designed a two-stage transfer learning framework
to investigate the potential of using the large pretrained neural
network for earth observation classification. The experimental
results proved that this method can lead to a significant per-
formance improvement as well as alleviating the overfitting
problem. Since there exists a severe limitation on collecting
sufficient annotation datasets in the field of remote sensing,
Han et al. [88] presented a semisupervised generative frame-
work, which combined the deep learning features, a self-label
technique, and a discriminative evaluation method to finish the
task of scene classification of high-resolution remote sensing
images. As a result, the valuable knowledge can be effectively
learned from unlabeled samples to improve the classification

ability. Similarly, Yao et al. [89] proposed a local manifold
constrained self-paced deep learning method. The model was
trained in an incremental manner by gradually selecting and
feeding the easy samples from generated pseudo samples. Mean-
while, to guarantee the credibility of pseudo samples, a local
manifold constraint was introduced to ensure the consistency
between the pseudo labels and the true labels. This technique
can significantly improve the model accuracy and reduce the
cost on manually labeling. In recent years, metric learning and
meta-learning were investigated to address the small-sample
problems and became an important focus in the field of remote
sensing image interpretation. Cheng et al. [90] introduced a
metric learning regularization term on the CNN features to
make the model more discriminative and verified that the model
in this method can obtain more information from the training
data of smaller size. Yang et al. [91] presented a discriminative
deep nearest-neighbor neural network for fine-grained few-shot
space target recognition. They further introduced a center loss
as an intraclass compactness principle to increase the feature
robustness to the intraclass variation of space target. With lim-
ited space target samples, their algorithm was more efficient
than the traditional few-shot learning methods and produced
the state-of-the-art results. Zhai et al. [92] designed a lifelong
few-shot learning model for remote sensing scene recognition.
Based on the meta-learning framework, the model was able to
recognize new classes using only a few labeled images. Besides,
the knowledge learned from one dataset can be easily and rapidly
applied to another dataset in spite of big disparities among
images from various sources, which is of great significance for
lifelong learning.

For the classification task in SAR images, the few-shot learn-
ing in this field is still dominated by the transfer-learning-
based method. Zhang et al. [93] investigated the effect of
the model-based transfer learning technique by fine-tuning the
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model pretrained on MSTAR for the task of ship recognition.
Huang et al. [48] presented an assembled CNN to perform the
knowledge transfer from the sufficient unlabeled SAR scene
images to limited labeled SAR target data. Specifically, a large
amount of unlabeled SAR data were used to train the recon-
struction pathway with the stacked convolutional autoencoders.
In addition to using the pretrained convolutional layers as part
of the model initializations, they introduced a reconstruction
loss as a regularization term to preserve the information of
input images. Shang et al. [94] presented a memory CNN to
record the spatial features of training samples and used the
spatial similarity mechanism to predict unknown sample labels.
Besides, a transfer parameter technique was utilized to solve
the issue of nonconvergence during training. Rostami ez al. [49]
explored to conduct the knowledge transfer from optical images
to SAR images. Based on the SWD criterion [95], the model was
constrained to learn a shared invariant cross-domain embedding
space. Experiments on ship classification validated that the
trained classifier generalized well in both the optical domain and
the SAR domain. Based on the metric learning paradigm, Tang
et al. [96] proposed a Siamese network architecture for few-shot
SAR target recognition and achieved a significant improvement
in the inference time as well as the classification accuracy.

In general, the research of few-shot scene classification in
remote sensing shows an evolutionary trend from specialization
for a single task to generalization for multiple tasks. The prereq-
uisite of few-shot learning methods also becomes more realistic
with the adaptive transitions to the practical applications. De-
signing algorithms with higher learning efficiency and stronger
generalization ability for small-sample datasets is an important
direction for future research in this field.

2) Semantic Segmentation: In contrast to the scene classi-
fication task that assigns each image with a single semantic
label, semantic segmentation aims to extract multiple classes
of geospatial objects within a single image and finish the dense
prediction task in pixel level. Under small-sample conditions,
the main challenge of this task is to extract the discriminative
features for multiple classes of targets effectively and ensure the
strong generalization of the learned features.

For the semantic segmentation task of multi/hyperspectral
image data, two main strategies have been adopted in the existing
few-shot learning works. The first typical solution is to utilize
the transfer learning technique to conduct knowledge transfer to
augment the supervised experience. Kemker et al. [35] investi-
gated using the simulation techniques to generate synthetic im-
agery as the source domain to provide the pretrained models for
multispectral remote sensing images. The experimental results
verified that this method can decrease the probability of model
overfitting. Considering the issue of performance degradation
caused by the domain gap, Zhou and Prasad [97] employed
a feature-based alignment mechanism to realize the learned
feature transfer from the source domain to the target domain.
Furthermore, Luo and Ma [98] and Peng et al. [99] proposed to
combine the MMD strategy and the manifold regularization to
align per-class features in the mapped subspace as well as pre-
serve the local manifold structure of data. Experimental results
demonstrated that this combination can lead to a performance
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boost for unsupervised domain adaptation in hyperspectral im-
ages.

One necessary prerequisite for transfer learning techniques is
that there exists a source domain dataset that has strong relevance
to the target domain dataset. Many algorithms even require that
the source domain has the same label space as the target domain
since the alignment process is conducted class-by-class (e.g.,
ship samples of the source domain to those of the target domain),
which will bring much inconvenience in practical applications.
Considering this disadvantage, the metric-learning-based meth-
ods emerged. For the target categories that do not exist in the
source domain, they can still realize fast learning under small-
sample conditions. Zhang et al. [100] proposed to learn a generic
metric space that was generalizable across domain and then
generate the predicted labels by performing the nearest-neighbor
algorithms in the metric space. Rao et al. [51] further suggested
that using the convolution-based parameterized classifier as
the metric criterion can lead to better performance than the
nonparametric nearest-neighbor classification methods.

In terms of remote sensing data type that have been stud-
ied, the existing work related to few-shot segmentation mainly
focuses on the interpretation of hyperspectral images, where
abundant spectral information is provided. For other types of
remote sensing data where only limited spectral information
can be available (e.g., SAR images and optical images), the
corresponding research of few-shot segmentation appears more
challenging and remains uninvestigated. Although some meth-
ods have been proposed to deal with the small-sample problem in
the remote sensing image semantic segmentation, the accuracy
and generalization ability of the model remain to be improved.

3) Object Detection: Object detection is another challenging
task for remote sensing image interpretation with the aim of
localizing ground objects of interest and assigning the prede-
fined category labels to the detected regions. In the research of
few-shot object detection where only a few annotated samples
are available, the main difficulty lies in avoiding the overfitting
problems under small-sample conditions as well as learning
discriminative features that are robust to the multiscale problems
in remote sensing images.

For object detection tasks in optical images, Chen et al. [101]
proposed to jointly use data augmentation and transfer learn-
ing techniques for aircraft detection. They emphasized the
compatibility of rotation and affine transformation augmenta-
tion techniques for remote sensing object detection. Besides,
VGG16 [102] pretrained on ImageNet was used for model
initialization, which can effectively reduce the risk of overfit-
ting problem caused by small samples. However, it still took
some time for data augmentation and model training, which
can lead to poor learning efficiency. Considering this problem,
Zhang et al. [103] proposed a training-free one-shot geospatial
object detection framework. Concretely, VGG16 pretrained on
NWPU-RESISC45 was selected as the feature extractor and
fixed to provide the remote sensing domain knowledge. Based
on metric learning techniques, the similarity scores between
query vectors and target features were computed by a series
of convolutional operations to locate and classify the regions of
interest in the target image. Experiments on sewage treatment
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TABLE VII
EVALUATION METRICS FOR FEW-SHOT LEARNING ALGORITHMS

Common scenes

Indicators Overview Scene Semantic Object
classification ~ segmentation  detection
Confusion The records in the data set are summarized in a matrix form according to the real v v v
Matrix category and the classification judgment made by the classification model.
Precision Ratio of true positive (TP) and the total number of predicted positives. v v v
Recall Ratio of true positive (TP) and the total number of ground truth positives. v v v
F1 score A weighted average of precision and recall. v v v
Reflect the probability that a sample will be correctly classified. Calculated by the
Overall sum of the true positives plus true negatives divided by the total number of v v
Accuracy individuals tested.
Average The average calculation result of per-class accuracy. v v
Accuracy
Kappa A statistical analysis to measure the agreement between existing classification results
Coefficient and random classification results.
PR curve A statistical graph with precision values on the y-axis and recall values on the x-axis. v v v
AP (Average The corresponding area under the PR curve. v
Precision)
mAP (mean Statistically average the AP values of all classes to suppress evaluation deviation v

Average Precision)

caused by class imbalance.

plant and airport detection tasks verified the effectiveness of this
method. The main advantage of this algorithm was that it unified
the training process of small-sample detection tasks for various
types of targets on the pretraining of the feature extractor and
highly simplified the procedure of model deployment. In terms
of detection tasks in SAR images, Wang ez al. [104] presented a
target detection framework based on the single-shot multibox
detector [105] architecture. Two kinds of data augmentation
methods suitable for SAR target detection was proposed to deal
with the problem of insufficient labeled images. Besides, the
subaperture decomposition technique was utilized to transform
one-channel SAR images into three-channel images so that the
pretrained network model on natural images can be reused in
SAR target detection tasks. The experimental results on SAR
vehicle detection tasks verified that this method can achieve
fewer false alarms and higher accuracy.

At the present stage, the task of few-shot object detection for
remote sensing images is still in its infancy, and there is a lack
of public available remote sensing datasets for supporting the
relevant research. The existing methods usually have some strict
prerequisites on auxiliary datasets, which can be hardly satisfied
in reality. These problems are worthy of future research.

C. Evaluation Metrics

In traditional learning tasks with sufficient training samples,
the dataset is randomly split into the training set and the test
set, and the specific evaluation metrics are obtained on the
basis of the fixed test set, which is a widely used evaluation
pipeline. However, this kind of evaluation method is not suitable
for few-shot learning algorithms since data distribution appears
extremely imbalanced between the training set and the test set
in small-sample conditions. For example, in one split result of
the original dataset, easy samples may concentratedly emerge
in the training set, while in another split result, hard samples
are allocated to the training set. This variability may decrease
the persuasiveness of the evaluation results for measuring the

models’ few-shot learning ability. To make the evaluation results
more reliable, one reasonable evaluation strategy is to repeatedly
conduct the evaluation algorithms over multiple dataset split
results and take the average of evaluation indexes as the final
result. To help researchers conduct further studies and perform
fair comparisons, this article also summarizes evaluation metrics
that have been utilized in the existing few-shot learning works
in Table VII.

VI. FUTURE WORKS

Considering the development of earth observation technique
and research progress of few-shot learning, some unaddressed
tasks as well as the promising future directions are suggested in
this section.

1) Build remote sensing datasets with more diversity in cate-
gory and unify the experimental evaluation protocols: Al-
though various large-scale datasets have been constructed
for the development of interpretation algorithms, the cat-
egory information is limited, which can hardly satisfy
the requirement of few-shot learning. On the one hand,
the diversity of object category in the training set is of
great importance since the model’s learning ability under
small-sample conditions is gained by repeated training
over various kinds of learning tasks. On the other hand,
based on the dataset with rich category information, the
evaluation experiments can be conducted over more test-
ing categories, which can prove the effectiveness of few-
shot learning algorithms. Besides, in the existing works of
few-shot learning for remote sensing image interpretation,
the experiment settings as well as evaluation protocols
appear disorganized, which block the fair comparison
between different algorithms. Therefore, the construction
of public experiment datasets and the unification of the
standard evaluation criterions are essential for the future
development of few-shot learning research.
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2)

3)

4)

)

Improve the generalization ability of algorithms: The
existing data-augmentation-based approaches and the
transfer-learning-based approaches are designed to apply
to the specific learning tasks with fixed category. This
setting is somewhat unrealistic and inefficient due to the
diversity and variability of learning tasks in reality. Rela-
tively, the metric learning and the meta-learning provide a
more desirable paradigm with strong generalization ability
as they can be applied over multiple categories. In the
future, the model generalization can be strengthened from
the following two aspects. In the situation of domain shift
caused by the difference of imaging time, locations, and
platforms, the performance of model learning needs to be
robust enough under small-sample conditions. Addition-
ally, a feasible few-shot learning paradigm can not only
target at the specific object category with fixed types, but
also generalize for multiple objects learning task with the
fast adaptation ability.

Enhance the robustness of algorithms to withstand the
label noise: Considering the impact of imaging quality and
human annotation error, there usually exist some inaccu-
rate labeled samples in the practical scenarios, especially
for the densely prediction tasks such as object detection
and semantic segmentation. However, most of the existing
few-shot learning techniques lack the ability to deal with
the noisy labels since they are originally developed based
on the publicly benchmark dataset equipped with ideal
imaging conditions and accurate labels. Due to the severe
dependence on the precise supervisory information, the
few-shot learning algorithms can be easily disturbed by
the irrelevant noisy features and lead to poor learning
effects. Consequently, it is necessary to improve the ro-
bustness of algorithms to learn from the coarsely labeled
samples.

Few-shot learning and zero-shot learning: The existing
algorithms usually define the small samples as hundreds of
labeled samples. This experiment setting can be unrealistic
sometimes. When only dozens of images can be gained,
the number of training samples required by the algo-
rithms is still large compared with the real applications.
Moreover, the existing algorithms still suffer from the
burden of data labeling, especially for some interpretation
tasks with dense prediction requirements, such as semantic
segmentation and object detection. Considering these is-
sues, few-shot learning and zero-shot learning suitable for
remote sensing images are promising directions as they
are corresponding to the urgent need for decreasing the
training samples for image interpretation.

Expand the research field of remote sensing image in-
terpretation under small-sample conditions: Currently,
the research of few-shot learning remains in the initial
stage, and its distribution over target data type as well as
application type appears unbalanced. Considering the ap-
plications of few-shot learning, the existing works mainly
focus on the scene classification task, while other typical
interpretation tasks, such as semantic segmentation and
object detection, can be further explored.
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VII. CONCLUSION

In this article, we gave a comprehensive overview of the
recent research progress in few-shot learning for remote sensing
image interpretation. Through a bibliometric analysis, we first
presented a systematic review of the existing works related to this
field. Subsequently, we categorized the existing methods into
two groups, including data-augmentation-based methods and
prior-knowledge-based methods, and described them, respec-
tively. Besides, we also introduced the application of few-shot
learning for remote sensing image interpretation by summa-
rizing and listing the experimental datasets, application cases,
and evaluation metrics. Finally, we discussed the challenges of
current studies and gave some promising research directions
in future. Generally, the few-shot learning for remote sensing
image interpretation is in its infancy and is of great need for
further improvements. This survey can be beneficial for the
researchers to better understand this research field.
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