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Hyperspectral Image Classification With
Mixed Link Networks

Zhe Meng ", Member, IEEE, Licheng Jiao

Abstract—Convolutional neural networks (CNNs) have im-
proved the accuracy of hyperspectral image (HSI) classification
significantly. However, CNN models usually generate a large num-
ber of feature maps, which lead to high redundancy and cannot
guarantee to effectively extract discriminative features for well
characterizing the complex structures of HSIs. In this article, two
novel mixed link networks (MLNets) are proposed to enhance the
representational ability of CNNs for HSI classification. Specifically,
the proposed mixed link architectures integrate the feature reusage
property of the residual network and the capability of effective
new feature exploration of the densely convolutional network, ex-
tracting more discriminative features from HSIs. Compared with
the dual path architecture, the proposed mixed link architectures
can further improve the information flow throughout the network.
Experimental results on three hyperspectral benchmark datasets
demonstrate that our MLNets achieve competitive results com-
pared with other state-of-the-art HSI classification approaches.

Index Terms—Convolutional neural network (CNN), deep
learning, hyperspectral image (HSI) classification, mixed link
network (MLNet).

I. INTRODUCTION

EMOTE sensing hyperspectral image (HSI) usually en-
R compasses hundreds of spectral bands, which record abun-
dant and unique information of various objects on the surface
of the earth. Hence, HSIs have been employed in a wide vari-
ety of applications, including disaster monitoring [1], anomaly
detection [2], and precision agriculture [3]. Recently, the clas-
sification of HSIs has gained remarkable attention in the hyper-
spectral community, since many hyperspectral applications are,
in essence, classification tasks with the purpose of categorizing
the pixels of HSIs into meaningful classes [4].

The traditional HSI classification algorithms concentrate on
exploiting the spectral characteristic of a hyperspectral pixel to
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determine its class, such as multinomial logistic regression [5],
decision trees [6], and support vector machine (SVM) [7].
However, due to the high intraclass and low interclass spectral
variability, using spectral information alone makes the accurate
identification of different objects difficult [8]. Considering the
strong local space consistency in HSIs, methods that incorporate
spatial-contextual information were proposed, which allow the
joint exploitation of the spatial and spectral information to
differentiate each hyperspectral pixel and further enhance the
classification accuracy [9]. For instance, Li et al. [10] proposed
a multiple features-based HSI classification paradigm, in which
local spatial features extracted by the local binary pattern (LBP)
operator, global spatial features captured by a Gabor filter, and
original spectral features are combined for classification. In ad-
dition, multiple kernel learning (MKL) [11], superpixel [12], and
sparse representation algorithms [13], [14] have also been ex-
plored to integrate spatial-contextual information with spectral
signatures to achieve good classification accuracy. In [15], the
conventional spectral-spatial feature-based HSI classification
methods were systematically reviewed. However, the aforemen-
tioned approaches, such as LBP, superpixel, and sparse repre-
sentation, extract fixed pattern features from raw data, which are
highly dependent on prior knowledge and appropriate parameter
setting, generally resulting in unsatisfactory performance [16].

Nowadays, deep learning techniques, which allow the au-
tomatic extraction of robust and hierarchical features in an
end-to-end fashion, have made great breakthrough in many
computer vision tasks (e.g., image classification [17] and object
detection [18]). In the field of remote sensing, Chen et al. [19]
first introduced the stacked autoencoders (SAEs) to learn deep
spectral features together with deep spatial-dominated features
for HSI classification. After that, deep learning models such as
deep belief network (DBN) [20], convolutional neural network
(CNN) [21], recurrent neural network (RNN) [22], [23], and
capsule network (CapsNet) [24], [25] were also successfully
applied to deal with HSI classification. Owing to the capability
of automatically discovering spatial-contextual features, CNN
models have been attracting more attention from researchers for
HSI classification [26]-[28]. For instance, work in [26] jointly
made use of the balanced local discriminative embedding algo-
rithm and the CNN to conduct spatial-spectral HSI classification.
Pan et al. [29] proposed a multigrained network (MugNet),
which takes full advantage of different grains’ spectral and
spatial relationship for HSI classification. In [30]-[32], 3-D
CNN models were proposed to directly learn spatial-spectral
representations from raw hyperspectral data.
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Recently, through engineering more powerful CNN archi-
tectures, much progress have been achieved in accurate HSI
classification [33]—-[37]. For instance, in [33], Lee et al. in-
troduced residual learning to enhance the learning efficiency
of conventional CNN model and employed a multiscale con-
volutional filter bank to exploit local spatial-spectral relation-
ships of HSIs. In [34], Song et al. built very deep residual
networks (ResNets) to learn discriminative features and then
adopted a feature-fusing mechanism to achieve further perfor-
mance improvement. Paoletti et al. [38] proposed the use of
deep pyramid ResNet for HSI classification. In [39], an HSI
classification framework based on the densely convolutional
network (DenseNet) [40] was proposed, which introduces dense
connections in the network to strengthen feature propagation,
enhancing both the feature discriminability and the classification
performance. In [41] and [42], some improved deep networks
based on DenseNet were proposed, which can make full use of
the multiscale information of HSIs. Considering that shortcut
connections (also known as residual connections) in ResNets
contribute to effective feature reusage and dense connections are
effective for new feature exploration, Kang et al. [43] introduced
the dual path network (DPN) that inherits both advantages of
ResNet and DenseNet to learn more discriminative features
from hyperspectral data [44]. More recently, Wang et al. [45]
discovered and proved that both the ResNet and DenseNet are
derived from the same dense topology intrinsically, in which
each layer is connected with all the preceding layers. In addition,
they demonstrated that the only difference between the path
topologies of these two networks lies in the connection form,
i.e., addition in ResNet and concatenation in DenseNet.

In this article, inspired by [45], two novel end-to-end mixed
link networks (MLNets) are proposed for HSI classification. In
MLNets, the additive links and concatenative links are combined
by using mixed link architectures in order to enjoy benefits from
both sides. Specifically, concatenative links assembled in the
proposed networks could avoid repetitive learning of redundant
features but focus on some new and more effective feature
exploration, while additive links achieve reasonable feature
reuse and avoid unnecessary loss of previous information, all
of which help the model to extract discriminative features from
HSIs. The blending links improve the information flow through-
out the network. Moreover, by introducing shifted additions,
the modification of raw features in the proposed mixed link
architectures can alleviate feature redundancy to some extent.
Experimental results on three hyperspectral benchmark data sets
reveal that, compared to several state-of-the-art CNN models,
such as ResNet, DenseNet, and DPN, the proposed model can
achieve better performance in HSI classification. In particular,
the proposed MLNets require fewer parameters than the DPN
network whilst achieving better results. Notably, on University
of Houston dataset, MLNets surpass DPN while being 3.23 times
fewer parameters.

The rest of this article is organized as follows. Section II
reviews the DenseNet and ResNet briefly and reveals that both
of them are derived from the same dense topology. Section III
describes the proposed method. Section IV presents the exper-
imental results conducted on three benchmark HSI data sets.
Finally, Section V concludes this article.
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II. DENSE TOPOLOGY IN BOTH DENSENET AND RESNET

The network architecture plays a crucial role in the clas-
sification performance. For accurate HSI classification, much
progress have been achieved by engineering network architec-
tures [46]—[48]. In particular, most modern deep neural network-
based HSI classification frameworks are built based either on
the ResNet or on the DenseNet, both of which have obtained
state-of-the-art performance in many computer vision tasks
[18], [49].

ResNets can be built by stacking microblocks (also known as
residual blocks) sequentially. For each residual block, the input
features are element-wisely added to the output ones through
identity shortcut connection, which not only helps information
propagation but also eases the training of the network [50]. In
DenseNet, dense connections enable each layer to receive raw
information produced by all preceding layers, drawing repre-
sentational power through effective new feature exploration.
Specifically, the feature-maps learned by previous layers are
concatenated and inputted into all subsequent layers, which
further strengthens information flow [40].

Consider a network with L layers, each of which implements
a nonlinear transformation H;(-). [ refers to the layer index
and H;(-) could be a composite function of several operations
including convolution (Conv), linear transformation, batch nor-
malization (BN) [51], activation [52], and pooling [53]. Assume
that x; is the immediate output of H(-).

Fig. 1 (left) illustrates the connection pattern in the DenseNet.
For the [th layer in the network, it receives ¢;_; as input, which
is the concatenation result of all the previous outputs (i.e.,
o, X1, ---,2—1). Mathematically, the output of the [th layer
can be formulated as

= Hi(c-1)
= Hi(wo [ zy || -+ [| 21-1) (H

where || represents the concatenation operation. Equation (1)
indicates that DenseNet belongs to the dense topology clearly,
i.e., each layer in the network is connected with all the preceding
layers, and the connection function is concatenation, as shown
in the right of Fig. 1.

Fig. 2 (left) shows the connection pattern in the ResNet, where
shortcut connections are introduced to bypass each transfor-
mation H(-). Let r denote the addition result after shortcut
connection, and ry equals xo. We can formulate the residual
learning process as

rp = Hi(ri—1) + 1. (2)

Note that H;(-) takes r;_1 as input, and its immediate output
is xy, i.e., x; = H;(r;—1). Considering the recursive property of
(2), x; can be rewritten as
= H(r;-1)
= Hi(Hj—1(r1—2) +11-2)
= H(Hi_1(ri—2) + Hi_2(r1—3) + 11—3)
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Fig. 3. Flowchart of the proposed MLNet-based HSI classification method.
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Equation (3) reveals that ;_; is the element-wise sum of the
outputs of the preceding | — 1 layers, i.e., r;_1 = xo + 1 +
-+ + x;_1. The graphical view of (3) is illustrated in the right
of Fig. 2, and one can see that ResNet also belongs to the dense
topology. In addition, by comparing (1) and (3), we can find that
the only difference between the topologies of DenseNet and
ResNet is in the connection form, i.e., ““||” in DenseNet versus
“4” in ResNet.

III. METHODOLOGY

The extraordinary success of both DenseNet and ResNet
prove the effectiveness of dense topology. However, the addi-
tive connection in ResNet makes features from different layers
aggregated on the same feature space, which may impede the
flow of information throughout the network [40]. As for the
DenseNet, concatenative connection allows each layer receiving
raw features from all preceding layers, which are effective for
the exploration of new features, but there may be the same
type of raw features from different layers, resulting in feature
redundancy [43]. To combine the advantages of the additive
and concatenative connections and overcome their weaknesses,
two novel dense topology-based MLNets are proposed for HSI
classification.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

X X Cy X C

Hy =2 H, 1 " |2 ...
X X7 ry X r

H, 0 » O H, 2 _>. .o

Fig. 3 illustrates the flowchart of the proposed classification
approach. Image patches centered at the labeled pixels are
extracted and inputted to the MLNet, where a part of patches
are used to train the network and the rest of the patches are
used to evaluate the classification performance of the trained
network. As shown in Fig. 3, the mixed link block (MLB) is the
main part of the proposed MLNet. In this article, we propose two
different MLBs, i.e., MLB-A and MLB-B, in order to combine
the strengths of additive and concatenative connections, which
will be detailed as follows.

A. Mixed Link Blocks

Fig. 4(a) illustrates the architecture of MLB-A. Let us con-
sider X as the input of the MLB-A, which has K channels. The
upper additive link first takes X as input and produces k (k < K)
feature maps, which are added to the last k£ channels of the input
X. The computation process can be formulated as

X = X + Hpaa(X) )

where X refers to the interim learned features and H, Aadd()
denotes the function of generating feature maps for the additive
link. As for the concatenative link, it appends k new feature
maps outside the interim learned features X

Y = X H HConcal(X)

= (X + HAdd(X)) ” HConcat(X) (5)

where Y denotes the output of the MLB-A, || represents the
concatenation operation, and Hconea () denotes the function to
be learned in the concatenative link. Since the additive link does
not change the number of feature maps, both the input X and
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Fig.4. Architectures of the proposed two mixed link blocks (MLBs). (a) MLB-
A. (b) MLB-B.

the interim learned features X have K channels, and the output
Y contains K + k channels.

The mixed link architecture aims to utilize the strengths of
both additive and concatenative links. With this motivation,
an alternative architecture named MLB-B is proposed, which
performs the concatenative link before the additive link, as
shown in Fig. 4(b). Specifically, the concatenative link first takes
X as input and produces k feature maps, which are appended
outside the input X . The computation process can be formulated
as

X = X || Heonea(X). (6)

Then, the feature maps produced by the additive link are added
to the last k£ channels of the interim learned features X

Y =X + HAdd(X)
=X || HConcat(X) + HAdd(X). (7)

Therefore, in MLB-B, the number of channels of the interim
features X and the output Y is K + k.

Note that although there are many additive positions can be
chosen, learning variable positioning is currently unavailable
due to the fact that their arrangement is not derivable directly.
Therefore, we make a compromise and in MLB-A, we choose
to align the position of additive part with the growing boundary
of entire feature embedding, as shown in Fig. 4(a). In MLB-B,
the position of additive part is aligned with the newly added
channels caused by the concatenative link, as shown in Fig. 4(b).
In addition, as shown in Fig. 4, Hagq(-) and Hcopea(+) are
implemented with a bottleneck composite layer, i.e., BN-ReLU-
Conv(1l x 1)-BN-ReLU-Conv(3 X 3), in order to improve com-
putational efficiency as in [50] and [40]. In our experiments, the
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Fig. 6. Illustration of the shifted additions in the proposed two mixed link

architectures.

number of feature maps produced by the 1 x 1 and 3 x 3 Conv
layers are 4 k and k, respectively, with k = 36.

In MLB-A, only K — k number of channels remain unaltered
between the input X and output Y. The rest of the channels in
Y will be either modified or new features, as shown in Fig. 4(a).
As for MLB-B, the input X with K channels stays unaltered,
resulting in higher number of unmodified features being passed
to subsequent layers, as shown in Fig. 4(b). Therefore, compared
with MLB-A, MLB-B has higher feature redundancy. However,
in MLB-B, the features produced by the concatenative link also
undergo update because of the upcoming additive link, which
helps to learn more complex features. Hence, compared with
MLB-A, MLB-B is better in feature exploration. Overall, both
of the integration way in our proposed architectures present
their advantages. This is further confirmed in our subsequent
experiments.

Considering that in ResNet and DPN, too many features
are merged together by addition over the same feature space
(called fixed additions in this article), which may impede the
information flow [40], [43]. As shown in Fig. 5(a), for residual
architecture, all the extracted features are merged together by
addition. For dual path architecture in the DPN [see Fig. 5(b)],
the additive features (denoted by purple color) are merged over
the same fixed space. However, for the proposed mixed link
architectures, the shifting of additive positions (denoted by red
color) in subsequent feature spaces along multiple MLBs can
alleviate this problem, as shown in Fig. 6.
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TABLE I
NUMBER OF TRAINING AND TEST SAMPLES ON THE INDIAN PINES DATASET

No Class Name Number  Training  Test
1 Alfalfa 54 15 39
2 Corn-notill 1434 50 1384
3 Corn-mintill 834 50 784
4 Corn 234 50 184
5 Grass/pasture 497 50 447
6 Grass/trees 747 50 697
7 Grass/pasture-mowed 26 15 11
8 Hay-windrowed 489 50 439
9 Oats 20 15 5

10 Soybean-notill 968 50 918
11 Soybean-mintill 2468 50 2418
12 Soybean-clean 614 50 564
13 Wheat 212 50 162
14 Woods 1294 50 1244
15  Buildings-Grass-Trees-Drives 380 50 330
16 Stone-Steel Towers 95 50 45
Total 10366 695 9671

B. MLNets for HSI Classification

Based on the MLBs, this article designs two networks, in-
cluding MLNet-A and MLNet-B. For instance, the MLNet-A is
constructed by stacking several MLB-As. Fig. 3 illustrates the
proposed MLNet-based HSI classification framework. Taking
the Indian Pines scene as an example, the proposed network
aims to classify each hyperspectral pixel into a certain land
cover category. As can be seen, it takes image patch centered
at each pixel as input. In this way, for each hyperspectral pixel,
in addition to its own unique spectral characteristic, the spectral
information of adjacent pixels and the spatial contextual infor-
mation can be considered simultaneously, which reduces the
intraclass variability and label uncertainty [38]. The extracted
image patch is first fed into a 3 x 3 Conv layer to learn the initial
spectral-spatial features. The number of output feature maps of
the initial Conv layer is set as 2 k. Then, the obtained features
are further processed by three MLBs. Finally, a global average
pooling (GAP) [54] layer is utilized to transform the extracted
spectral-spatial feature (with 5 k& channels) into a 1-D vector for
classification. Specifically, we employ a fully connected (FC)
layer followed by a softmax function to predict the conditional
probability of each category, and the category with the maximum
probability is the prediction result.

IV. EXPERIMENTS
A. Hpyperspectral Datasets

Three well-known hyperspectral benchmark datasets, Indian
Pines, University of Pavia, and University of Houston, were
used in the experiments. The standard training and test sets were
adopted as recommended in [55]. Tables I-III summarize the
number of training samples and test samples of the three datasets.

Indian Pines dataset was captured by the AVIRIS instrument
over the northwestern Indiana with spatial resolution of 20 m per
pixel (mpp). It includes 145x 145 pixels and 200 spectral bands
covering the range from 400 to 2450 nm after discarding 20
bands corrupted by water absorption and four null bands. This
scene contains 16 classes of interest. The false color composite
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TABLE II
NUMBER OF TRAINING AND TEST SAMPLES ON THE UNIVERSITY OF
PAVIA DATASET

No. Class Name Number  Training Test
1 Asphalt 6852 548 6304
2 Meadows 18686 540 18146
3 Gravel 2207 392 1815
4 Trees 3436 524 2912
5 Painted metal sheets 1378 265 1113
6 Bare soil 5104 532 4572
7 Bitumen 1356 375 981
8 Self-Blocking Bricks 3878 514 3364
9 Shadows 1026 231 795

Total 43923 3921 40002
TABLE I
NUMBER OF TRAINING AND TEST SAMPLES ON THE UNIVERSITY OF
HOUSTON DATASET

No. Class Name Number  Training Test
1 Healthy grass 1251 198 1053
2 Stressed grass 1254 190 1064
3 Synthetic grass 697 192 505
4 Trees 1244 188 1056
5 Soil 1242 186 1056
6 Water 325 182 143
7 Residential 1268 196 1072
8 Commercial 1244 191 1053
9 Road 1252 193 1059
10 Highway 1227 191 1036
11 Railway 1235 181 1054
12 Parking lot] 1233 192 1041
13 Parking lot2 469 184 285
14 Tennis court 428 181 247
15 Running track 660 187 473
Total 15029 2832 12197

Corn-notill

Corn-mintill Corn Grass/pasture

Grass/trees Grass/pasture-mowed
I Oats Soybean-notill
I Wheat
Stone-Steel Towers

. Unknown I Alfalfa

Hay-windrowed
Soybean-mintill

Soybean-clean Woods

Buildings-Grass-Trees-Drives

Fig. 7. Indian Pines dataset. Top (left to right): False color composite image,
the training map, and the test map. Bottom: The legend.

image, the training map, and the test map of Indian Pines are
shown in Fig. 7.

University of Pavia dataset was gathered by the ROSIS senor
over the city of Pavia, Italy, with spatial resolution of 1.3 mpp.
It consists of 640x340 pixels and 103 spectral bands covering
the range from 430 to 860 nm after discarding 12 noisy bands.
This scene has nine reference classes. The false color composite
image, the training map, and the test map of University of Pavia
are shown in Fig. 8.

University of Houston dataset was collected by the CASI
sensor over the campus of the University of Houston and the
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Trees
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Bricks

Shadows

Fig. 8.  University of Pavia dataset. From left to right: False color composite
image, the training map, the test map, and the legend.

-

Unknown Grass Healthy Grass Stressed . Grass Synthetic
I Tree Soil Water Residential

Commercial Road Highway . Railway

Parking Lot 1 Parking Lot 2 I Tennis Court Running Track

Fig. 9. University of Houston dataset. From top to bottom: False color com-
posite image, the training map, the test map, and the legend.

neighboring area. It comprises 349 x 1905 pixels and 144 spec-
tral bands covering the range from 380 to 1050 nm. The spatial
resolution is 2.5 mpp. This dataset contains 15 classes. The false
color composite image, the training map, and the test map of the
University of Houston are shown in Fig. 9.

B. Experimental Setup

We set both the batch size and the training epochs to 100
and chose the Adam algorithm [56] to optimize the proposed
network. The initial learning rate and the weight decay penalty
were set to 0.001 and 0.0001, respectively. In addition, a cosine
shape learning rate schedule was adopted, starting from 0.001
and gradually reducing to 0. The proposed network was designed
and implemented using the Pytorch framework. Note that before
fed into the network, the input HSI data were standardized to
zero mean and unit variance. All the experiments were carried
out on a personal computer equipped with AMD Ryzen 7 2700X
CPU and a single Graphical Processing Unit (GPU) of NVIDIA
GeForce RTX 2080.

To assess the classification performance, the overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (k) were
used. All the experiments were repeated five times and the
averaged classification accuracies were reported.
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C. Classification Results

To validate the effectiveness of our MLNet-A and MLNet-B
for HSI classification, the proposed models were compared
with two different kinds of approaches: 1) three classical
methods, including SVM [7], extended morphological profiles
(EMP) [9], and 3-D discrete wavelet transform (3DDWT) [57];
and 2) eight deep learning based approaches, including 3-
D CNN [31], hybrid spectral convolutional neural network
(HybridSN) [58], fully convolutional layer fusion network
(FCLFN) [59], DenseNet [39], deep pyramid ResNet (pRes-
Net) [38], MixNet [45], DPN [44], and spatial-spectral squeeze-
and-excitation based ResNet (SSSERN) [60].

SVM is a spectral classifier that uses the radial basis function
(RBF) as the kernel. For EMP and 3DDWT methods, they are
used to extract spatial features from HSIs. The extracted features
are concatenated with the original spectral features and fed
into the SVM classifier for spectral-spatial classification. 3-D
CNN uses 3-D convolution to extract the spectral and spatial
information from HSIs simultaneously without relying on any
preprocessing. HybridSN is a hybrid 3-D and 2-D model, which
reduces the model complexity compared to 3-D CNN alone.
FCLFN fuses spectral-spatial features extracted by all Conv
layers in the CNN for HSI classification. DenseNet introduces
concatenative links between layers, in which each layer is
connected with every other layer in a feed-forward fashion.
pResNet is an improved ResNet, which introduces additive
links in plain CNN and gradually increases the feature map
dimension at all Conv layers. MixNet contains three stages
each of which is made up of a large number of blocks that
have the similar architecture as MLB-A. DPN also combines
the advantages of the additive link and concatenative link for
HSI classification. However, in DPN the additive features are
merged together over the same fixed space, which may impede
the flow of information. SSSERN uses spatial-spectral squeeze-
and-excitation module to adaptively refine features learned by
the residual block, extracting more discriminative features of
HSIs.

For all CNN-based compared methods, the network architec-
tures were set according to the corresponding references. Con-
sidering that the spatial size of input HSI patch has a great impact
on the classification performance, for the sake of fairness, we
fixed the input patch size to 11 x 11 when comparing different
CNN-based approaches as in [38], [39], and [60].

Table IV and Fig. 10 present the numerical and visual results
of different methods on the Indian Pines dataset. The number of
training and test samples used for this experiment is summarized
in Table I. As shown in Table IV, the values of OA, AA, and
of the proposed MLNet-A and MLNet-B are higher than that of
other compared approaches. Specifically, our MLNet-A is able
to reach the best OA (97.27%), AA (98.38%), and ~ (0.9687)
values. The MLNet-B achieves very similar values, being its OA,
AA, and x only 0.07%, 0.06%, and 0.0008 lower than MLNet-A,
respectively. In addition, compared with other methods, the
increases of OA scores obtained by the proposed MLNet-A are
22.91% (SVM), 9.15% (EMP), 8.54% (3DDWT), 5.73% (3-D
CNN), 6.31% (HybridSN), 3.67% (FCLFN), 3.44% (DenseNet),
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TABLE IV
CLASSIFICATION ACCURACIES OF DIFFERENT APPROACHES ON THE INDIAN PINES DATASET

No. SVM  EMP 3DDWT 3D CNN HybridSN FCLFN  DenseNet pResNet MixNet DPN  SSSERN  MLNet-A  MLNet-B
1 82.05 9231 92.31 99.49 96.41 99.49 100 98.97 97.44 100 100 100 100
2 72.69  83.09 86.63 85.14 80.91 88.86 91.75 91.72 89.57 93.77 90.51 94.81 94.90
3 70.66  93.75 91.96 96.68 96.58 98.37 98.80 99.39 99.23 99.03 99.08 99.29 99.29
4 86.41  94.57 96.74 99.89 97.83 100 100 100 100 100 100 100 100
5 91.72  93.06 97.54 97.49 97.76 95.93 97.14 98.12 97.81 97.27 96.42 95.70 95.35
6 85.80  93.69 89.10 94.35 96.56 97.88 99.31 99.63 99.83 99.77 99.20 99.68 99.66
7 90.91 100 100 100 100 100 100 100 100 100 100 100 100
8 94.08  98.86 100 99.82 99.82 99.73 99.91 99.91 99.68 99.82 99.91 99.86 99.77
9 100 100 100 100 100 100 100 100 100 100 100 100 100
10 7549  88.13 88.02 91.39 94.58 92.40 90.85 90.02 92.27 92.22 95.97 96.41 96.12
11 59.31  77.79 79.57 86.42 84.57 89.33 87.73 91.63 90.33 95.33 96.62 96.69 96.58
12 78.19  85.28 85.82 88.83 85.78 88.90 93.09 89.68 91.52 91.28 91.31 92.34 92.13
13 9691  98.77 98.15 100 100 100 100 99.88 100 100 100 100 100
14 80.63  97.83 97.75 95.16 97.17 98.02 97.22 97.23 98.33 99.52 99.31 99.34 99.37
15 70.30  93.33 90.61 98.67 98.73 99.15 99.82 99.70 100 100 100 100 100
16 97.78 100 100 100 100 100 100 100 100 100 100 100 100
OA (%) 7436  88.05 88.73 91.54 90.96 93.60 93.83 94.63 94.45 96.40 96.52 97.27 97.20
AA (%) 8331 93.15 93.39 95.83 95.42 96.75 97.23 97.24 97.25 98.00 98.02 98.38 98.32
Kk x 100 71.05 86.39 87.15 90.34 89.70 92.67 92.95 93.86 93.64 95.87 96.00 96.87 96.79

: i J
| # .

Alfalfa Corn-notill Corn-mintill Corn

Oats Soybean-notill Soybean-mintill Soybean-clean

Fig. 10.

Classification maps for the Indian Pines dataset.

2.64% (pResNet), 2.82% (MixNet), 0.87% (DPN), and 0.75%
(SSSERN). The enhancements of AA scores are 15.07% (SVM),
5.17% (EMP), 4.99% (3DDWT), 2.55% (3D CNN), 2.96%
(HybridSN), 1.63% (FCLEN), 1.15% (DenseNet), 1.14% (pRes-
Net), 1.13% (MixNet), 0.38% (DPN), and 0.36% (SSSERN).
The improvements of x values are 0.2582 (SVM), 0.1040
(EMP), 0.0972 (3DDWT), 0.0653 (3-D CNN), 0.0717 (Hy-
bridSN), 0.0420 (FCLFN), 0.0392 (DenseNet), 0.0301 (pRes-
Net), 0.0323 (MixNet), 0.0100 (DPN), and 0.0087 (SSSERN).
In addition, as can be observed from Fig. 10, the classification
maps obtained by our models are close to the ground truth map.
These encouraging results demonstrate the effectiveness of the
proposed models for the Indian Pines dataset.

Table V and Fig. 11 illustrate the numerical and visual results
of different methods on the University of Pavia dataset. The
number of training and test samples used for this experiment
is summarized in Table II. From the observation of Table V,
we can easily find that the proposed MLNet-B and MLNet-A
achieve the best and the second best results in terms of the
OA, AA, and k scores. Compared with other approaches, the
OA values’ improvement obtained by the proposed MLNet-B

. Hay-windrowed
Stone-Steel Towers

Grass/pasture
Wheat

G Grass/p
Woods Buildings-Grass-Trees-Drives

are 17.34% (SVM), 16.25% (EMP), 7.68% (3DDWT), 15.68%
(3-D CNN), 10.32% (HybridSN), 4.34% (FCLFN), 4.52%
(DenseNet), 4.06% (pResNet), 4.61% (MixNet), 4.99% (DPN),
and 1.74% (SSSERN). The AA values’ enhancements are
7.48% (SVM), 8.73% (EMP), 4.36% (3DDWT), 8.76% (3-D
CNN), 4.89% (HybridSN),4.98% (FCLFN), 6.13% (DenseNet),
5.74% (pResNet), 6.19% (MixNet), 5.32% (DPN), and 0.64%
(SSSERN). The « values’ increases are 0.2149 (SVM), 0.2049
(EMP), 0.0998 (3DDWT), 0.1964 (3D CNN), 0.1312 (Hy-
bridSN), 0.0598 (FCLFN), 0.0631 (DenseNet), 0.0562 (pRes-
Net), 0.0643 (MixNet), 0.0693 (DPN), and 0.0227 (SSSERN).
In addition, as shown in Fig. 11, our MLNet-A and MLNet-B
reduce misclassified pixels and provide cleaner classification
maps (particularly, compared with the 3-D CNN and HybridSN).
These results demonstrate that the MLNet-A and MLNet-B
models are effective for the University of Pavia dataset.

Table VI and Fig. 12 show the numerical and visual results
of different approaches on the University of Houston dataset.
The number of training and test samples used for this exper-
iment is summarized in Table III. As shown in Table VI, our
MLNet-A achieves the best performance from the overall aspect.
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TABLE V
CLASSIFICATION ACCURACIES OF DIFFERENT APPROACHES ON THE UNIVERSITY OF PAVIA DATASET
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No. SVM  EMP 3DDWT 3D CNN HybridSN FCLFN DenseNet pResNet MixNet DPN  SSSERN  MLNet-A  MLNet-B
1 84.76  95.78 82.49 82.34 81.78 84.15 88.61 85.49 89.22 86.94 92.63 90.10 91.23
2 6531  67.79 86.57 70.65 80.02 97.88 98.87 98.91 98.47 97.90 94.15 98.36 97.88
3 7399  63.25 79.89 68.25 78.83 78.34 71.36 73.29 72.55 82.98 86.72 90.44 90.71
4 96.63  98.97 99.18 85.03 88.39 97.60 96.57 96.74 97.23 95.99 95.77 95.53 95.32
5 99.46  99.46 99.01 99.08 99.60 98.90 99.23 99.14 98.94 98.92 98.72 98.74 98.83
6 9438  76.77 89.15 99.33 99.43 72.59 63.84 72.10 63.22 61.44 93.99 93.21 95.53
7 90.72  97.04 95.31 89.48 97.55 95.15 95.11 90.87 93.90 96.55 99.84 98.57 98.49
8 90.99  98.78 96.82 94.17 96.99 97.01 97.57 97.30 97.65 97.45 98.85 98.42 98.50
9 99.50  86.67 95.47 95.92 96.53 96.68 96.81 97.58 96.18 97.06 96.68 96.93 96.63
OA (%) 78718  79.87 88.44 80.44 85.80 91.78 91.60 92.06 91.51 91.13 94.38 95.90 96.12
AA (%) 8842 87.17 91.54 87.14 91.01 90.92 89.77 90.16 89.71 90.58 95.26 95.59 95.90
xx 100 7329 74.29 84.80 75.14 81.66 88.80 88.47 89.16 88.35 87.85 92.51 94.47 94.78

Ground Truth

Asphalt

Fig. 11.  Classification maps for the University of Pavia dataset.
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. Trees
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TABLE VI
CLASSIFICATION ACCURACIES OF DIFFERENT APPROACHES ON THE UNIVERSITY OF HOUSTON DATASET

. Bare Soil

. Bitumen

. Bricks

Shadows

No. SVM EMP  3DDWT 3D CNN  HybridSN  FCLFN  DenseNet pResNet MixNet DPN  SSSERN  MLNet-A  MLNet-B
1 82.34  81.77 91.55 82.89 82.45 82.05 82.34 82.03 82.77 81.56 85.58 81.77 81.79
2 83.36  83.65 96.52 84.34 84.38 84.40 85.15 84.27 85.11 84.38 85.06 85.11 85.00
3 99.80  99.60 99.21 91.13 96.36 96.75 93.35 89.43 88.71 96.04 99.60 99.17 99.13
4 98.96  90.06 96.31 87.16 91.93 91.78 90.64 91.53 91.31 91.95 90.93 90.74 90.06
5 98.96  99.24 99.62 99.41 99.98 99.68 99.68 99.24 99.92 99.32 99.87 99.96 100
6 99.30  99.30 97.90 92.45 97.48 94.97 93.99 96.22 93.85 93.43 96.22 95.80 95.80
7 77.33  87.97 78.92 80.06 85.65 87.48 81.66 84.68 85.43 86.90 83.84 82.74 83.58
8 64.48  65.81 69.42 67.12 71.57 71.00 70.29 76.14 71.66 71.55 74.61 71.43 70.85
9 69.41 80.08 70.25 83.97 82.55 78.43 71.27 78.96 73.88 78.05 79.34 81.95 82.49
10 63.13  63.13 51.06 65.00 63.38 59.73 59.69 61.49 61.12 63.55 60.97 64.69 63.90
11 79.13  75.24 75.62 78.90 81.76 77.50 82.07 74.71 77.53 82.60 84.76 97.95 96.53
12 7743  76.95 81.27 87.95 98.16 92.49 91.57 90.30 91.70 91.12 91.72 95.08 93.95
13 68.77  68.42 90.18 88.91 87.79 81.75 80.00 78.60 79.16 84.00 82.25 86.95 86.88
14 100 100 100 95.71 99.60 98.46 97.17 93.04 92.87 99.35 100 99.84 99.92
15 97.25 100 97.04 93.87 99.96 86.72 81.01 69.98 79.66 97.72 99.28 96.62 98.22
OA (%)  81.41 82.33 83.27 83.15 86.39 83.70 82.37 82.47 82.55 84.70 85.41 86.65 86.43
AA (%) 8398 8475 86.32 85.26 88.60 85.55 83.99 83.37 83.65 86.77 87.60 88.65 88.54
xx 100 7993 8091 81.85 81.74 85.24 82.40 80.95 81.04 81.13 83.48 84.25 85.56 85.32
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TABLE VII
NUMBER OF PARAMETERS OF DIFFERENT NETWORKS

Data Set 3D CNN  HybridSN  FCLFN  DenseNet pResNet MixNet DPN SSSERN  MLNet-A  MLNet-B

Indian Pines 100 856 534 656 195408 1668992 1994776 1508 812 685968 165 404 509 128 509 128

University of Pavia 50 289 533 753 176 813 1 650 705 1964 537 1485459 669 305 152 085 308 673 308 673

University of Houston 72 055 534 527 186 623 1660 311 1978319 1496373 677 519 158 107 210 075 210 075
The OA, AA, and « scores are 86.65%, 88.65%, and 0.8556, TABLE VIII

respectively. As for MLNet-B, the values of OA, AA, and &
are as high as 86.43%, 88.54%, and 0.8532, respectively, which
demonstrates that the architecture of MLB-B can also capture
discriminative features. Besides, compared with other methods,
the increases of OA scores obtained by the proposed MLNet-A
are 5.24% (SVM), 4.32% (EMP), 3.38% (3DDWT), 3.50% (3D
CNN), 0.26% (HybridSN), 2.95% (FCLFN), 4.28% (DenseNet),
4.18% (pResNet), 4.10% (MixNet), 1.95% (DPN), and 1.24%
(SSSERN). The improvements of AA scores are 4.67% (SVM),
3.90% (EMP), 2.33% (3DDWT), 3.39% (3-D CNN), 0.05%
(HybridSN), 3.10% (FCLFEN), 4.66% (DenseNet), 5.28% (pRes-
Net), 5.00% (MixNet), 1.88% (DPN), and 1.05% (SSSERN).
The enhancements of « values are 0.0563 (SVM), 0.0465 (EMP),
0.0371 (3DDWT), 0.0382 (3-D CNN), 0.0032 (HybridSN),
0.0316 (FCLEN), 0.0461 (DenseNet), 0.0452 (pResNet), 0.0443
(MixNet), 0.0208 (DPN), and 0.0131 (SSSERN). In addition,
as can be seen from Fig. 12, the proposed MLNet-A and
MLNet-B can predict most of the categories well. For example,
the proposed models show better connectivity for “Railway”
category, which is consistent with the numerical results in Ta-
ble VI. Specifically, for “Railway” category (class 11), the
highest performance among all of the comparisons is 84.76%
(SSSERN). However, our MLNet-A and MLNet-B can achieve
performance as high as 97.95% and 96.53%, respectively. These
positive results demonstrate that the proposed MLNets are also
effective for the University of Houston dataset.

Table VII provides the total number of parameters of different
networks. From Table VII, it is easy to observe that the number

CLASSIFICATION RESULTS OF THE FCLFN, HYBRIDSN, AND THE PROPOSED
MLNET-A AND MLNET-B ON THE INDIAN PINES DATASET WHEN USING 10%
OF THE LABELED PIXELS AS TRAINING SAMPLES

Method OA (%) AA (%) r x 100
HybridSN* 98.39 98.16 98.01
FCLFN* 98.56 95.94 98.36
MLNet-A 99.03 98.10 98.90
MLNet-B 99.05 98.54 98.91

Note That Accuracies Obtained by the Network Denoted
With * Are the Best Results Reported in the Original Paper.

of parameters in the proposed MLNets is significantly fewer than
thatin the DenseNet, pResNet, and MixNet. In addition, MLNets
outperform DPN while being 1.35 times, 2.17 times, and 3.23
times fewer parameters on Indian Pines, University of Pavia,
and University of Houston datasets, respectively. Although our
MLNets contain more parameters than SSSERN, they are able
to achieve better classification performance.

From Tables IV-VI, one can see that the HybridSN, FCLFN,
and DPN methods produce unsatisfactory classification accu-
racies. The main reason is that these networks need a larger
input HSI patch for spatial feature extraction. Next, we further
compare the proposed MLNet-A and MLNet-B with these three
methods. Note that the best results reported in the corresponding
references are used for comparison in this experiment. Table VIII
reports the classification accuracies obtained by HybridSN,
FCLFN, MLNet-A, and MLNet-B on the Indian Pines dataset.
Following HybridSN [58] and FCLFEN [59], 10% of the available
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TABLE IX
CLASSIFICATION RESULTS OF THE DPN AND THE PROPOSED MLNET-A AND MLNET-B ON THE UNIVERSITY OF HOUSTON DATASET WHEN USING DIFFERENT
NUMBER OF TRAINING SAMPLES PER CLASS

30 40 50
Method OA (%) AA (%) kK x100 OA (%) AA (%) ~x100 OA (%) AA (%) K x 100
DPN* 93.93 94.72 93.44 94.99 95.53 94.58 96.40 96.78 96.10
MLNet-A 94.60 95.06 94.16 95.59 96.00 95.23 96.50 96.79 96.21
MLNet-B 94.16 94.71 93.69 95.28 95.68 94.89 96.46 96.77 96.17

Note That Accuracies Obtained by the Network Denoted With * Are the Best Results Reported in the Original Paper.

TABLE X
CLASSIFICATION RESULTS OF NETWORKS WITH DIFFERENT BUILDING BLOCKS
ON THE INDIAN PINES DATASET

Block Name OA (%) AA (%) k x 100  Parameters
Resdual Block 96.51 98.07 96.00 532 392
Dense Block 96.99 98.32 96.55 555 280
Dual Path Block 97.01 98.34 96.57 543 156
MLB-A 97.27 98.38 96.87 509 128
MLB-B 97.20 98.32 96.79 509 128

labeled pixels (randomly selected per class) are used as train-
ing samples. Table IX illustrates the results obtained by DPN,
MLNet-A, and MLNet-B on the University of Houston dataset.
Following DPN [44], various numbers of labeled samples (i.e.,
30, 40, and 50) are randomly selected from each class as training
samples. As we can see in Table VIII, the proposed MLNets
achieve better performance than the HybridSN and FCLFN.
Specifically, the proposed MLNet-B reaches an OA that is 0.66
percentual points higher than the HybridSN, and 0.49 percentual
points higher than the FCLFN. In addition, from Table IX, one
can see that our MLNet-A consistently outperforms DPN in
terms of the OA, AA, and « values when using different number
of training samples. These comparison results again verify the
effectiveness of our MLNets.

To sum up, MLNet-A and MLNet-B can obtain similar supe-
rior performance on the three real HSI datasets, indicating the
effectiveness of the proposed two mixed link architectures for
HSI classification.

D. Comparison With Other Popular Building Blocks

Modern deep neural networks utilize modular design to re-
duce the complexity of neural architectures. Layers are generally
grouped into blocks, e.g., residual block in the ResNet. In this
section, the proposed MLB-A and MLB-B are compared with
three popular building blocks, including residual block, dense
block, and dual path block. This experiment is implemented
on the Indian Pines dataset. Specifically, we set the number of
blocks to 3 and construct networks on the basis of different
building blocks. The number of parameters of different networks
is roughly the same for fair comparison. The results are shown
in Table X. We find that networks based on the MLB-A and
MLB-B can achieve better performance.

E. Effect of Proportion of Training Data

Fig. 13 summarizes the OAs of the proposed MLNet-A and
MLNet-B with different percent of training data on the Indian
Pines and University of Pavia datasets. Specifically, 1%, 3%,

100 100.00

99.75
95
99.50
99.25

99.00

OA (%)

98.75
85

—=- DPN 98.50 —=— DPN
—4— SSSERN —4— SSSERN
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—— MLNet-B —— MLNet-B

98.00
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(a) (b)

Fig. 13.  OAs of various approaches with different training percent over the
(a) Indian Pines and (b) University of Pavia datasets.

5%, 10%, 15%, and 20% of samples per class are randomly
chosen for training. Then, the rest of the samples are used for
testing. Here, the DPN and SSSERN models are adopted as the
reference, which perform well in the previous experiments.

As can be seen, as the proportion of training samples in-
creases, the performance of all approaches improves. Especially,
when the training percent changes from 1% to 10%, the OAs
of different methods increase dramatically. It is also observed
from Fig. 13 that MLNet-A and MLNet-B outperform the other
two compared methods in most cases, in particular when the
training set is very small. For example, with only 1% of training
samples per class, MLNet-A and MLNet-B achieve the best and
the second best performance on the two datasets. These results
demonstrate the excellent performance of the proposed approach
for HSI classification.

F. Effect of Shifted Additions

In this section, the effectiveness of shifted additions in the
proposed MLNet-A and MLNet-B is analyzed on the Indian
Pines, University of Pavia, and University of Houston datasets.
Specifically, we construct an MLNet with fixed additive posi-
tions (denoted by MLNet-F) for further comparison. For MLNet-
F, the features learned by the additive link are always added to the
first k£ channels of the input. Therefore, the additive features are
always merged over the same fixed space, which may impede
the information flow. To ensure a fair comparison, we make
different networks contain the same number of parameters. The
only difference among these three networks lies in the additive
positions. Table XI shows the experiment results, from which we
can easily find that shifted additions have positive contributions
to the classification task, demonstrating the effectiveness of the
proposed mixed link architectures.
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TABLE XI
OA (%) AND THE NUMBER OF PARAMETERS OF THE MLNET WITH AND WITHOUT SHIFTED ADDITIONS

Indian Pines

University of Pavia ~ University of Houston

Shifted Additions OA Parameters OA Parameters OA Parameters
MLNet-F X 96.97 656 224 94.30 591 849 85.30 777 291
MLNet-A v 97.14 656 224 94.49 591 849 85.64 777 291
MLNet-B v 97.06 656 224 94.58 591 849 85.94 777 291
100 100 compared with the pResNet and DPN, one can see that the
- 8 ——8— & — —a
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Fig. 14.  OAs obtained by the proposed (a) MLNet-A and (b) MLNet-B with
different k settings over the three hyperspectral datasets.

Fig. 15. Feature maps extracted by different networks on a metal sheet sample.

G. Effect of Parameter k

In this section, the parameter k is analyzed by using three
datasets. The parameter k controls the number of feature maps
generated by each link, which decides the representation capac-
ity of the proposed MLNets. Fig. 14 shows the OAs obtained
by MLNet-A and MLNet-B on three datasets under different
k ={12,24,36,48}. It can be observed that MLNet-A with
k = 36 has achieved the best performance on the Indian Pines
and University of Houston datasets. For the University of Pavia
dataset, the best choice for parameter & is 24, which is slightly
better than that of 36. As for MLNet-B, the curves reach the
best OA values when the parameter & is set to 36 for all the
three datasets. For the sake of consistency and the generalization
of our models, we choose 36 as the default setting of the
parameter k.

H. Visualization of Features Extracted by Different Networks

For more direct comparison of the effectiveness for feature
learning, we randomly select 16 feature maps from each net-
work, which all take from the final discriminant features before
GAP, and visualize their distribution in Fig. 15. In Fig. 15,
we can see that feature maps learned by the DenseNet and
MixNet are coarse because of the downsampling of input HSI
patch, presenting local fine spatial information loss. In addition,

feature maps extracted the proposed MLNet-A and MLNet-B
present finer local representation and spatial position, which are
helpful for distinguishing objects occupying much smaller areas.

1. Effect of the Number of MLBs

From Fig. 3, one can observe that the proposed MLNets are
mainly constructed by stacking several MLBs. The number of
MLBs determines the network depth, which has an important
impact on the representative capacity of the proposed model.
Increasing the number of MLBs can generally improve the
classification performance, but more MLBs in the network may
suffer from overfitting.

Table XII summarizes the OAs of the proposed MLNet-A
and MLNet-B with different number of MLBs over the three
datasets. This experiment is conducted using the standard train-
ing and test sets, and the number of training and test samples are
shown in Tables I-III. As can be observed, the best choice of the
number of MLBs for the Indian Pines, University of Pavia, and
University of Houston datasets are 3, 2, and 1, respectively.

In order to find a suboptimal value for the number of MLBs for
all datasets, we further carry out extensive experiments. Specif-
ically, we compare the classification accuracy (in terms of OA)
of different number of MLBs with different amount of training
data. For the Indian Pines dataset, the percentage of training
data varies in the set {10%, 20%, 30%}. For the University
of Pavia and University of Houston datasets, the percentage of
training data varies in the set {1%, 2%, 3%}. The number of
MLBs varies in the set {1, 2, 3,4, 5, 6}. The corresponding OAs
obtained by the proposed MLNet-A and MLNet-B are reported
in Tables XIII and XIV. As can be observed, when the number of
MLBs is larger than 2, the proposed MLNet-A and ML Net-B are
able to achieve relatively stable high accuracy for all datasets.
Considering that a larger number of MLBs will cause higher
computational cost, it is recommended that the number of MLBs
should be set to 3 in more general scenarios.

J. Effect of the Size of Input HSI Patch

As mentioned in Section III, image patches centered at each
pixel are selected as the input of the proposed MLNets. In this
section, our MLNets with different patch sizes are studied over
the three data sets. Table XV reports the OAs of the proposed
MLNet-A and MLNet-B when the patch size varies from 5 x 5
to 13 x 13. As shown in Table XV, for each dataset, the OA
values first climb with the increasing of patch size. It is reason-
able because input patches with larger size allow more spatial
and spectral information to be utilized for feature extraction.
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TABLE XII
OA (%) OBTAINED BY THE PROPOSED MLNET-A AND MLNET-B WITH DIFFERENT NUMBER OF MLBS

Number Indian Pines University of Pavia University of Houston

of MLBs MLNet-A  MLNet-B  MLNet-A  MLNet-B  MLNet-A  MLNet-B
1 97.03 96.78 93.84 93.77 86.65 86.43
2 96.95 96.93 95.90 96.12 86.03 85.49
3 97.27 97.20 94.02 95.63 85.74 85.31
4 97.14 97.06 94.49 94.58 85.26 85.34
5 97.03 97.16 94.24 94.58 85.64 85.94
6 96.86 97.03 93.32 93.75 85.42 84.97

TABLE XIII

OA (%) OBTAINED BY THE PROPOSED MLNET-A WITH DIFFERENT NUMBER OF MLBS WHEN USING DIFFERENT PERCENTAGES OF TRAINING SAMPLES

Number of MLBs

Data Set Training Percentage 1 2 3 4 5 6
10% 98.86 9897 99.03 99.06 99.11 99.08
Indian Pines 20% 99.63  99.66  99.69  99.67 99.66  99.68
30% 99.82 99.84 99.85 99.87 99.85 99.86
1% 98.60 9899 9890 98.89 99.00 98.87
University of Pavia 2% 9930  99.40 99.48 99.49 99.49  99.45
3% 99.47  99.63 99.70  99.66 99.70  99.68
1% 87.44 89.89 90.67 90.50 9030  90.25
University of Houston 2% 8795 89.42 90.55 91.30 9091 91.19
3% 9441 94775 9477 9498 9492 94.77

TABLE XIV

OA (%) OBTAINED BY THE PROPOSED MLNET-B WITH DIFFERENT NUMBER OF MLBS WHEN USING DIFFERENT PERCENTAGES OF TRAINING SAMPLES

Number of MLBs

Data Set Training Percentage 1 2 3 4 5 6
10% 98.66 98.87 99.05 99.05 99.04  99.09
Indian Pines 20% 99.63  99.66  99.65 99.66  99.65  99.67
30% 99.80 99.85 99.83 99.86 99.86  99.85
1% 0822 98.88 98.85 98.83 9897 98.88
University of Pavia 2% 99.23 9935 9949 99.44 9949 99.44
3% 99.45 99.63 99.68 99.64 99.68  99.67
1% 84.13 8935 90.58 9044 90.14 90.43
University of Houston 2% 86.04 89.01 9024 90.22 9092  90.99
3% 94.01 9453 94.63 94.64 9484 94.82

TABLE XV

OA (%) OBTAINED BY THE PROPOSED MLNET-A AND MLNET-B WITH DIFFERENT PATCH SIZES

Indian Pines

University of Pavia

University of Houston

Patch Size MLNet-A  MLNet-B  MLNet-A  MLNet-B  MLNet-A  MLNet-B
5x5 94.84 95.26 93.93 93.96 83.03 83.55
Tx7 97.59 97.67 94.42 94.64 83.49 84.67
9%x9 97.94 97.82 94.84 95.19 85.36 86.11

11x11 97.27 97.20 95.90 96.12 86.65 86.43
13x13 96.48 96.50 95.40 96.37 87.04 86.13

However, too large patch size also results in the degradation of
performance, especially for the Indian Pines dataset. The reason
behind this is that, multiple materials from different categories
might be included in an HSI patch with large size, which will
harm the classification tasks.

V. CONCLUSION

In this article, by embracing both additive links and con-
catenative links, the proposed MLNets enable effective feature

reusage and new feature exploration, which not only reduce the
relearning of redundant features but also help extract informative
spatial-spectral features. Furthermore, through shifted additions,
the proposed blending connections further enhance the flow of
information between layers in the network. To verify the per-
formance of the proposed MLNets, experiments based on three
hyperspectral benchmark datasets are conducted. Experimental
results demonstrate the superiority of the proposed MLNets over
several state-of-the-art methods, such as DenseNet, ResNet, and
DPN.
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In the future works, we will carry out further research and
try to figure out the importance of each link by integrating
attention mechanism, which may be helpful for extracting more
discriminative features from HSIs.
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