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A Hyperspectral Image Classification Method Based
on Weight Wavelet Kernel Joint Sparse
Representation Ensemble and β-Whale

Optimization Algorithm
Mingwei Wang , Zitong Jia, Jianwei Luo , Maolin Chen , Shuping Wang, and Zhiwei Ye

Abstract—Joint sparse representation (JSR) is a commonly used
classifier that recognizes different objects with core features ex-
tracted from images. However, the generalization ability is weak
for the traditional linear kernel, and the objects with similar fea-
ture values associated with different categories are not sufficiently
distinguished especially for a hyperspectral image (HSI). In this
article, an HSI classification technique based on the weight wavelet
kernel JSR ensemble model and the β-whale optimization algo-
rithm is proposed to conduct pixel-level classification, where the
wavelet function is acted as the kernel of JSR. Moreover, ensemble
learning is used to determine the category label of each sample by
comprehensive decision of some subclassifiers, and theβ function is
utilized to enhance the exploration phase of the whale optimization
algorithm and obtain the optimal weight of subclassifiers. Experi-
mental results indicate that the performance of the proposed HSI
classification method is better than that of other newly proposed
and corresponding approaches, the misclassification and classified
noise are eliminated to some extent, and the overall classification
accuracy reaches 95% for all HSIs.

Index Terms—β function, ensemble learning, hyperspectral
image (HSI) classification, joint sparse representation (JSR),
wavelet kernel, weight setting.

I. INTRODUCTION

IN RECENT years, hyperspectral remote sensing sensors
have been applied to collect images with enough spectral

Manuscript received November 6, 2020; revised December 16, 2020, January
10, 2021, and January 21, 2021; accepted January 28, 2021. Date of publication
February 2, 2021; date of current version February 24, 2021. This work was
supported in part by the National Natural Science Foundation of China under
Grant 41901296, Grant 41925007, and Grant 41801394, in part by the Key Labo-
ratory for National Geographic Census and Monitoring, National Administration
of Surveying, Mapping and Geoinformation under Grant 2018NGCM06, and
in part by the Fundamental Research Funds for the Central Universities, China
University of Geosciences (Wuhan), under Grant 26420190046. (Corresponding
author: Jianwei Luo.)

Mingwei Wang and Zitong Jia are with the Institute of Geological
Survey, China University of Geosciences, Wuhan 430074, China (e-mail:
wangmingwei@cug.edu.cn; jiazitong.1125@foxmail.com).

Jianwei Luo and Shuping Wang are with the Hubei Cancer Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan
430079, China (e-mail: wuljw@126.com; wsping52@126.com).

Maolin Chen is with the School of Civil Engineering, Chongqing Jiaotong
University, Chongqing 400074, China (e-mail: maolinchen@whu.edu.cn).

Zhiwei Ye is with the School of Computer Science, Hubei University of
Technology, Wuhan 430068, China (e-mail: weizhiye121@163.com).

Digital Object Identifier 10.1109/JSTARS.2021.3056198

resolution that contains hundreds of bands and allows the dis-
crimination of objects with similar attributes [1]. A hyperspectral
image (HSI) has been considered as an applicable tool for Earth
observation because of its ability to obtain independent and
continuous bands, analyze information from visible to near-
infrared wavelength ranges, and supply multiple features from
the fixed wavelength. It provides abundant spectral information
and has a huge potential for the interpretation of different ground
objects [2], [3]. As a result, the analysis of HSI has become a
subject of research interest in remote sensing, which has been
applied in a series of fields such as quantitative analysis [4],
environmental monitoring [5], and land-cover mapping [6]. In
addition, image classification is a significant step in identifying
object types on the Earth’s surface, and HSI classification aims to
distinguish each sample into a discrete group of specific category
labels [7], [8].

Existing HSI classification techniques are separated into two
scopes: unsupervised and supervised [9]. For unsupervised
techniques, fuzzy clustering [10], rough set [11], and iterative
self-organizing data analysis technique algorithm [12] have
been utilized to classify HSI samples. In these techniques, the
process of classification is only based on the characteristics of
feature values, and the misclassification is obvious as spectral
characteristics are similar for different objects. For supervised
techniques, active learning [13], random forest [14], and support
vector machine (SVM) [15] have been utilized to obtain the
category label of each pixel. Although these classifiers make
full use of spectrum difference, the category label of the current
pixel is usually impacted by the feature values on the neighbor.
Therefore, several ideas are presented to synthesize the spatial
and spectral characteristics of HSIs, and they are based on the
hypothesis that samples within a local space have approximate
spectral characteristics and express the same objects [16], [17].
In addition, HSI classification based on a deep learning model
has been proposed to sufficiently synthesize spatial and spectral
information, thus obtaining the category label of each pixel, but
it is supported by the sufficient number of training samples and
the sufficient amount of iterations, which is time-consuming as
the data dimension increases [18].

As a well-behaved supervised classification model, sparse
representation (SR) is used to recover the original data and
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report class discriminative information, which has been widely
used in the field of pattern recognition [19]. In addition, joint
representation is presented to promote the stability of SR and
boost its capability [20]. For HSI classification, samples with
the same category are theoretically located in a low-dimensional
subspace, and joint SR (JSR) makes associative decision on
neighbor pixels as to which are feasible and particularly suitable
for HSIs [21]. For the classification process, a testing sample is
similarly expressed by a certain number of rules from the training
dictionary, and the reconstructed matrix is utilized to determine
the category label by searching for the minimum [22]. For
instance, Peng et al. [23] designed a local adaptive JSR (LAJSR)
technique for HSI classification; the dictionary construction and
SR phases were improved by choosing representative rules from
an additional dictionary. Tu et al. [24] proposed an HSI classi-
fication approach based on the balance of JSR and correlation
coefficient (JSR-CC), which synthetically considered both local
spatial and spectral similarities. Furthermore, the reconstructed
matrix is usually computed by a linear kernel, making it difficult
to reflect the inner product of nonlinear mapping between input
spectral features and output category labels. Hence, Zhang et
al. [25] proposed a novel HSI classification technique using
JSR and nonlinear kernel extension, which mapped the input
into a high-dimensional space to separate different objects and
reflect better performance than that using the linear kernel.
However, the category label is determined by kernel computing
of higher order polynomial; the misclassification for specific cat-
egories will be enlarged if the order is uncertain within effective
time.

The category label is obtained by the probability of kernel
computing for JSR, and it is the same as other nonlinear classi-
fiers in mechanism, such as k-nearest neighbor (KNN) and SVM.
Moreover, the wavelet function is a series of formulations that
are based on wavelet analysis and adequately keeps regularity
and orthogonality; it has been employed in the field of HSI
classification as the kernel of KNN and SVM to substitute for
a linear kernel [26], [27]. As a result, the wavelet function is
able to act as the kernel of JSR in theory. Ensemble learn-
ing is a machine learning paradigm that synthesizes multiple
subclassifies to solve the same problem; better discrimination
ability is obtained than the single classifier according to different
emphases of subclassifiers especially for indeterminate objects
and has been applied for HSI classification [28], [29]. However,
the category label is usually obtained by the voting strategy for
ensemble learning; the discrimination is confused if the votes
are similar for two categories. As for JSR, the category label is
assigned by searching for the minimum of reconstructed error for
each sample, and the reconstructed matrix of ensemble learning
can be updated by that of subclassifiers with weight setting.
A higher weight means that the subclassifier produces more
contribution for classification, and a suitable weight setting is
able to balance the reconstructed error of subclassifiers [30]. In
general, how to obtain the optimal weight of subclassifiers is seen
as a combination optimization problem, and it can be solved by
the swarm intelligence algorithm with heuristic search guiding
strategies [31]. Among them, the whale optimization algorithm
(WOA) is a newly proposed swarm intelligence algorithm and

has been widely used in diverse applications especially for
weight optimization [32], [33]. However, the convergence rate
is not fast enough with a fixed population updating equation and
the small probability of local search. Nowadays, the factorial
function with a single parameter has been combined with the
swarm intelligence algorithm to enhance the exploration phase,
but it is not adapted to various population updating conditions
such as WOA with multiple parameters [34], [35]. Here, the
β function is combined with the WOA, two parameters are
corresponding to two evolution processes, and the weight is
adaptively located on the range of [0,1].

Therefore, an HSI classification technique based on the weight
wavelet kernel JSR ensemble (W2 JSRE) model and theβ-WOA
is proposed to conduct pixel-level classification for HSIs. Be-
cause the spectral feature is output by 16 bits, the discrimination
is not significant for different categories, and the misclassifica-
tion is obvious as the dataset is mapped into the linear kernel.
The classification accuracy is improved as the wavelet function
is acted as the kernel of KNN and SVM; the dataset is mapped
into quadratic, exponential, and trigonometric functions with
different types and has been utilized in the field of HSI classifi-
cation, but it is not acted as the kernel of JSR for previous work.
In addition, a series of subclassifiers based on JSR with wavelet
kernels are integrated by ensemble learning, the wavelet kernel
of JSR concerns on the homogeneity for each subclassifier,
and the ensemble with multiple wavelet kernels emphasizes the
heterogeneity. Furthermore, the swarm intelligence algorithm
is widely used to solve the nonpolynomial hard problem, such
as weight optimization, and the β-WOA is designed to obtain
the optimal weight of subclassifiers, and the category label is
output by total reconstructed error minimization of ensemble
learning. The main contributions of this article are concluded as
follows.

1) To improve the scale of mapping, the wavelet function is
acted as the kernel of JSR, and the HSI dataset is mapped
into quadratic, exponential, and trigonometric functions
with different types.

2) To synthesize the homogeneity and heterogeneity of
the JSR ensemble, the W2 JSRE model is proposed
by using different types of wavelet function as the
kernel, and the classification map is output by pixel
level.

3) To balance the reconstructed error of subclassifiers, weight
setting is conducted for ensemble learning, and the
category label is obtained by total reconstructed error
minimization.

4) To enhance the exploration phase of the WOA, theβ-WOA
is designed by fusing the β function into two evolution
processes of the WOA, and the optimal weight of subclas-
sifiers is obtained.

The overall construction of this article is listed as follows.
Section II describes the related work of JSR and WOA. Sec-
tion III illustrates the principle of the proposed W2 JSRE model
and β-WOA and the fundamental process of HSI classification.
Section IV analyzes the experimental results and expends dis-
cussion of data statistics and visual senses. Finally, Section V
concludes this article.
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II. RELATED WORK

A. Basic Theory of JSR

JSR is devoted to minimizing the reconstructed error of some
independent SRs, and the inner correlations between different
SRs are synthetically considered. In the HSI, spectral character-
istics of a pixel are strongly correlated with its neighbor pixels,
which means that they belong to the same object with large
probability, and the spatial correlations are ensured by supposing
that neighbor pixels within a local space are jointly indicated by
some common-sense rules from a training dictionary [36]. In
particular, the size of local space at center pixel yt is signed
by l × l, and pixels within such a space are marked by yi,
where i = 1, 2, . . ., l × l. All of the above pixels are stacked
into a matrix Y = [y1, y2, . . ., yt, . . ., yl×l] ∈ Rb×l2 . The matrix
is succinctly represented as follows:

Y = [y1, y2, . . .yt, . . ., yl×l]=[Dα1, Dα2, . . .Dαt, . . ., Dαl×l]

= D[α1, α2, . . .αt, . . ., αl×l] = DA (1)

where A = [α1, α2, . . ., αt, . . ., αl×l] ∈ Rb×l2 is the recovered
data with regard to Y . The selected rules in D are assigned
by rows and columns of elements that are not equal to 0 in
[α1, α2, . . ., αt, . . ., αl×l], by setting part of rows as the value
of 0 on the reconstructed matrix A. The neighbor pixel Y is
expressed by a subset of common-sense rules. Afterward, the
matrix is recovered by seeking the equation to represent the
following optimization problem:

Â = argmin
A

‖Y −DA‖F s.t.‖A‖row,0 ≤ K (2)

where ‖A‖row,0 is the joint sparse norm that finds the most
representative nonzero rows in A, and | · |F is the Frobenius
norm. As Â is recovered, the category label at the center pixel
yt is judged by the reconstructed error that is defined as follows:

label(yt) = argmin r(y) = arg min
i=1,2,...,c

‖Y −DiÂi‖2 (3)

where Âi indicates the rows in Â associated with the category
index of i.

B. Mathematical Model of WOA

In 2016, Mirjalili designed a swarm intelligence algorithm
called WOA that is based on the predatory strategy of humpback
whales. Humpback whales tend to catch crowd of krill or small
fishes near the surface. The process is conducted by producing
specific bubbles with a ring path, and the operator is separated
into three parts: encircling prey, spiral bubble-net attacking, and
searching for prey. The main procedure for the WOA is depicted
as follows [37]:

Encircling prey: Humpback whales have the ability to search
for the position of prey and surround them, and the mechanism
of global search is represented by the process. It is assumed that
the position of optimal solution is the objective prey or it is the
proximate solution moving close to the optimum in theory, and
others should endeavor to motivate their positions toward to it.

The process is written as follows:

�S = | �C ·X∗(t)−X(t)| (4)

X(t+ 1) = X∗(t)− �A · �S (5)

where t is the number of current iterations, X∗(t) is the po-
sition of prey, and X(t) and X(t+ 1), respectively, represent
the position of humpback whales in the current and the next
procedure. �A and �C are the variable vectors that are expressed
as �A = 2�a · �r − �a and �C = 2 · �r, �a = 2− 2 ∗ t/T is gradually
decreased within the scope of [2,0], T is the maximum number
of iteration, and �r is a random number on the range of [0,1].

Bubble-net attacking: Each humpback whale moves close
to the prey within a compact ring and follows a spiral-shaped
path in the meantime, and the mechanism of local search is
represented by the process. A probability of 0.5 is set to choose
whether following the compact ring or spiral mechanism, the
position of humpback whale is renewed. The formulation of the
process is expressed as follows:

X(t+ 1) =

{
X∗(t)− �A · �S, if p < 0.5
�S ′ · ebl · cos(2πl) +X∗(t), if p ≥ 0.5

(6)

where �S ′ is the distance of current humpback whale to prey,
which is expressed as �S ′ = |X∗(t)−X(t)|, b = 1 represents a
constant number that is the situation of logarithmic spiral, and
l and p are two random numbers, respectively, within the scope
of [−1,1] and [0,1].

Searching for prey: The position of current humpback whale
is updated according to the random walk strategy rather than the
best humpback whale, the strategy of random search is reflected
by the process, and the details are expressed as follows:

�S = | �C ·Xrand −X(t)| (7)

X(t+ 1) = Xrand − �A · �S (8)

where Xrand indicates the position of a random humpback whale
selected from the population.

III. PROPOSED METHODOLOGY

A. Classification Process With W2 JSRE

As for (3), the category label is determined by reconstructed
error minimization, and it is computed on the same scale with the
linear kernel, which makes it difficult to express the difference
of feature values on multiple scales and emerge the relationship
of nonlinear mapping in detail. The basic theory of wavelet
analysis is to combine wavelet basis that builds an arbitrary
function following the time series t, there are five types of
wavelet function that are proposed by analytical expressions
with compactly supported and can be decomposed to different
scales, and they are defined as follows [38], [39]:

f1(t) = exp(−t2/2) (9)

f2(t) = (1− t2) · exp(−t2/2) (10)

f3(t) = cos(1.75 · t) · exp(−t2/2) (11)
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f4(t) =
sin(0.5π · t)
0.5π · t · cos(1.5π · t) (12)

f5(t) =
ei4π·t − ei2π·t

i2π · t . (13)

The wavelet function contents the fixed condition of shift-
invariant form, it is based on the inner product of nonlinear
mapping on different scales, and the difference between the
original and recovered data can be represented by shift-invariant
form [41]. Nowadays, the wavelet function is acted as the kernel
of wavelet kernel SVM (WSVM) and wavelet kernel KNN
(WKNN), and the classification result is improved as the dataset
is mapped into different scales. More importantly, the dataset
with ten thousands of samples is difficultly expressed by a linear
kernel mapping. For JSR, the learning mechanism is the same
with SVM and KNN, and the wavelet function can be acted as
the kernel of JSR; the reconstructed error is defined on the basis
of (3) and is expressed as follows:

r1(y) = exp(−‖Y −DiÂi‖2/2) (14)

r2(y) = (1− ‖Y −DiÂi‖2) · exp(−‖Y −DiÂi‖2/2) (15)

r3(y) = cos(1.75× ‖Y −DiÂi‖1) · exp(−‖Y −DiÂi‖2/2)
(16)

r4(y) =
sin(0.5π×‖Y−DiÂi‖1)
0.5π×‖Y−DiÂi‖1

· cos(1.5π×‖Y−DiÂi‖1)
(17)

r5(y) =
ei4π‖Y −DiÂi‖1 − ei2π‖Y −DiÂi‖1

i2π‖Y −DiÂi‖1
(18)

where “·” represents the inner product between the vectors of
reconstructed error with two different scales, and the original
dataset is mapped into quadratic, exponential, and trigonometric
functions with different types. Experimental results demonstrate
that a scale parameter is involved in the dilation and, thus, can be
naturally used to accommodate the multiscale phenomenon [40].

The category label of a sample is determined by five subclas-
sifiers (JSRs) with different wavelet kernels at the same time,
which is able to improve the discrimination ability compared
with single JSR and linear kernel. The significance of subclas-
sifiers is decided by weight setting, and the reconstructed error
of the proposed W2 JSRE model is computed as follows:

label(yt) = argmin

5∑
j=1

ωj × rj(y) (19)

where ωj is the weight of the jth subclassifier, which is directly
multiplied with the reconstructed matrix, and weight represents
the significance of subclassifiers. It is seen as a fuzzy quantitative
analysis for the ensemble learning of JSRs, and the performance
is better than the traditional voting strategy with fixed category
analysis.

B. Weight Optimization With β-WOA

The exploration phase is represented by searching for prey
to conduct random walk, which is computed by the position

of a random humpback whale, but the operation efficiency is
decreased by random number generation and the evolution trend
is uncollected for the enlarge of �S in (8). The β function is
a factorial function with analytic continuation in the complex
plane; two parameters γ and η are defined to adjust the value.
For the improvement of the swarm intelligence algorithm, it is
necessary to weaken the random process and synthesize multiple
parameters updating the individuals. The value range of the β
function is [0,1], which is adapted to the weight ωj of sub-
classifiers. As for the proposed β-WOA, the exploration phase
is based on the β function instead of searching for prey, and,
respectively, acting on encircling prey and bubble-net attacking,
which is defined as follows:

X(t+ 1) =

∫ 1

0

tγ−1(1− t)η−1dt (20)

where

γ = (X∗(t)− �A · �S)−1

η = (�S ′ · ebl · cos(2πl) +X∗(t))−1. (21)

There is no random humpback whale that needs to be ex-
tracted, all of individuals are, respectively, computed by two
processes of encircling prey and bubble-net attacking, they are
corresponding to γ and η of β function, and the population is
updated by (20) afterward. As a result, the global and local
processes are integrated for each individual and iteration, and
time complexity is decreased by no random sample generation.
Moreover, the coding length of theβ-WOA is equal to 5, which is
the same as the number of subclassifiers, and directly represents
the weight of subclassifiers.

C. Definition of the Objective Function

The key issue of HSI classification based on the W2 JSRE
model is how to establish a reasonable mapping between the
solution and the β-WOA. As for weight setting, it is expressed
by a constant on the range of [0,1] for subclassifiers and cor-
responding to a bit of β-WOA. Each individual of β-WOA
includes 5 bits: the first bit represents the weight of the first
JSR (subclassifier), the second bit is the weight of the second
JSR (subclassifier), and so on. The entire code indicates the
solution about the optimal weight of the W2 JSRE model, and
the fitness value is computed according to the average entropy
of the reconstructed matrix, which is defined as follows:

F (i) = −
s∑

i=1

min
j

Âij log2(Âij)/s (22)

where s is the scale of testing samples, and j is the category
index that takes on the minimum for the ith testing sample. A
larger fitness value means that the reconstructed error is smaller,
and the category label is more likely to obey the true distribution.

D. Implementation of the Proposed Method

The proposed HSI classification technique is easy to be ful-
filled. The W2 JSRE model is used for pixel-level classification
of HSIs and the category label is obtained for each sample, the
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Algorithm 1: HSI Classification Based on the W2 JSRE
Model and the β-WOA.

Input:Construct the training samples for each category
from original HSIs, and the iteration number of β-WOA
is t = 0.

Output:The classification maps based on pixel level for
all HSIs.

1: Input HSIs, and transform it to the reasonable format
that is directly read by ENVI software;

2: Randomly choose 10% of pixels for each category that
are acted as training samples;

3: Build the W2 JSRE model, and assign the kernel of
subclassifiers according to five different wavelet
functions;

4: Generate initial population of β-WOA, and express the
weight of subclassifiers;

5: while The algorithm does not reach the termination
condition do

6: t = t+ 1;
7: Conduct testing for the W2 JSRE model, and compute

the fitness value of each humpback whale by (22);
8: Employ encircling prey and bubble-net attacking for

the whole population;
9: Compute the parameters γ and η of the β function;

10: Use the β function instead of searching for prey with
exploration phase;

11: if The fitness value is higher than last iteration then
12: Replace the position of current best humpback

whale;
13: end if
14: end while
15: Output the global optimal solution of the β-WOA, and

the optimal weight of subclassifiers;
16: returnThe category label of each pixel according to the

minimum of reconstructed error.

β-WOA is used to search for the optimal weight of subclassifiers
(JSRs), and the exact flow is listed as follows.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Description

To evaluate the performance of the proposed HSI classifica-
tion technique based on the W2 JSRE model and the β-WOA,
three public collected HSIs and two measured airborne HSIs are
used in the experiments.

The first HSI was acquired by the ROSIS sensor during a
flight campaign over Pavia University, Italy, and the geometric
resolution was 1.3 m [42]. The image was composed of 610×
340 pixels with 103 spectral bands. Fig. 1 displays the ground
truth of PaviaU scene. The number and names of corresponding
categories that were used are shown in Table I.

The second HSI was collected by the AVIRIS sensor and cov-
ered the agricultural region of Indian Pines, India, in 1992 [42].
The spectral range was 0.4–2.5 μm with a spectral resolution

Fig. 1. Original image and reference map of PaviaU.

TABLE I
LAND-COVER CLASSES IN PAVIAU IMAGE

Fig. 2. Original image and reference map of Indian.

about 10 nm, and the image was composed of 145× 145 pixels
and 220 spectral bands with a spatial resolution of 20 m. Fig. 2
displays the ground truth of Indian scene. The number and names
of corresponding categories that were used are shown in Table II.

The third HSI was collected by the 224-band AVIRIS sensor
over Salinas Valley, California, and it was characterized by
high spatial resolution. The image was composed of 512× 217
pixels and available only as sensor radiance data, and 20 water
absorption bands were discarded [42]. Fig. 3 displays the ground
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TABLE II
LAND-COVER CLASSES IN INDIAN IMAGE

Fig. 3. Original image and reference map of Salinas.

truth of Salinas scene. The number and names of corresponding
categories that were used are shown in Table III.

The fourth HSI was collected by the CASI sensor over the
suburban area of Xiongan, China, in the summer of 2017. The
spectral range was 0.36–1.05 μm with a spectral resolution of
7.2 nm, and the image was composed of 160× 190 pixels with
96 spectral bands. Fig. 4 shows the ground truth of XionganS
scene. The number and names of corresponding categories that
were used are shown in Table IV.

The fifth HSI was acquired by the SASI sensor over the urban
area of Xiongan, China, in the spring of 2018. The spectral
range was 1.0–2.5 μm with a spectral resolution of 15 nm, and
the image was composed of 270× 232 pixels with 100 spectral
bands. Fig. 5 shows the ground truth of XionganU scene. The

TABLE III
LAND-COVER CLASSES IN SALINAS IMAGE

Fig. 4. Original image and reference map of XionganS.

TABLE IV
LAND-COVER CLASSES IN XIONGANS IMAGE

Fig. 5. Original image and reference map of XionganU.
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TABLE V
LAND-COVER CLASSES IN XIONGANU IMAGE

TABLE VI
PARAMETERS SETTING OF DIFFERENT ALGORITHMS

number and names of corresponding categories that were used
are shown in Table V.

B. Parameters Setting of Different Algorithms

As for the β-WOA, there is one parameter that needs to
be set by the corresponding reference [32]. Moreover, some
commonly used swarm intelligence algorithms are also assessed
to conduct weight optimization. As the illustration in Section III,
the β-WOA is utilized here, whereas particle swarm optimiza-
tion (PSO) [43], differential evolution (DE) [44], cuckoo search
(CS) [45], grey wolf optimizer (GWO) [46], ant lion optimizer
(ALO) [47], and standard WOA are utilized to make intuitive
comparisons. All of the above algorithms are ended as the
of evaluations reaches 300. Thirty independent operations are
conducted because of the randomness of initial population.
Although the computational complexity is O(nlogn) for the
algorithms above [48], there is no random humpback whale
that needs to be extracted for the β-WOA, and each bit will
be adaptively located on [0,1] by the range of β function, which
will cost less CPU time than that of the standard WOA. The
parameters of these algorithms are set by constants and based
on the empirical value of corresponding references, and they are
listed in Table VI.

C. Experimental Results on Swarm Intelligence Algorithms

In this subsection, evaluation of training samples with the
weight optimized by different swarm intelligence algorithms is
investigated. For five HSIs in Section IV-A, 10% of pixels for
each category are randomly extracted as the training samples to
obtain weights of subclassifiers. Table VII shows the experimen-
tal results with different swarm intelligence algorithms, where
Fiv and Std represent the average and standard deviation of
fitness value, respectively, and Time is the CPU time after 30
independent operations.

As for the data in Table VII, the optimization ability of the
WOA is obviously better than that of PSO, DE, CS, GWO,
and ALO, and the fitness value is higher than 0.30 for the five
datasets. In addition, the β function is operated for encircling
prey and bubble-net attacking of the basic WOA, which is
acted as the heuristic information of exploration phase. More
importantly, the fitness value is further improved compared with
the basic WOA, which illustrates that the reconstructed error
remains in a small interval between the original and recovered
datasets. With regard to the operating efficiency, the convergence
speed of the WOA is better than that of other algorithms because
of less multiplications, and there is no random humpback whale
that needs to be extracted for the β-WOA, and the CPU time
is further decreased to some extent. Meanwhile, the weights
optimized by the β-WOA are suitably assigned for five sub-
classifiers; these are set as 0.2242, 0.1101, 0.6585, 0.2343, and
0.3887 for the Indian dataset, and all of subclassifiers have a
certain contribution for training. However, the category label
may focus on one or two subclassifiers by using other algo-
rithms. The weight is greater than 0.9 for a subclassifier, and the
performance of ensemble learning does not sufficiently play. In
brief, the optimization ability of the β-WOA is superior, and
the convergence speed is fast enough to obtain the satisfactory
weight, which is applicable for the practical work of sample
training about HSI classification.

D. Experimental Results About HSI Classification on
Pixel Level

In this subsection, five HSIs, named PaviaU, Indian, Salinas,
XionganS, and XionganU, are utilized to conduct pixel-level
classification of HSIs and verify the performance of the W2

JSRE model and the β-WOA. Moreover, some correspond-
ing and newly proposed HSI classification techniques such
as JSR [22], LAJSR [23], JSR-CC [24], wavelet kernel JSR
(WJSR), WKNN [26], WSVM [27], and deep learning model,
such as fully convolutional networks (FCN) [49], discrimina-
tive stacked autoencoder (DSAE) [50], are also used to make
an overall comparison. In addition, the classification results
with different percentages of training samples (Indian image
is not operated because of less number of samples for Al-
falfa and Oats categories) and three subclassifiers of ensem-
ble learning are also exhibited to make a further verification;
the experiments are not conducted for LAJSR, JSR-CC, and
WJSR because of the correlation of JSR-based techniques.
The classification maps of different techniques are listed in
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Fig. 6. Classification results of PaviaU image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WJSR. (i) W2 JSRE (three
subclassifiers). (j) W2 JSRE (five subclassifiers).
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TABLE VII
FITNESS VALUE AND CPU TIME FOR DIFFERENT ALGORITHMS

Fig. 7. Classification results of Indian image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WJSR. (i) W2 JSRE (three
subclassifiers). (j) W2 JSRE (five subclassifiers).
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Fig. 8. Classification results of Salinas image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WJSR. (i) W2 JSRE (three
subclassifiers). (j) W2 JSRE (five subclassifiers).
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Fig. 9. Classification results of XionganS image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WJSR. (i) W2 JSRE (three
subclassifiers). (j) W2 JSRE (five subclassifiers).

TABLE VIII
OA AND KAPPA COEFFICIENT FOR PAVIAU IMAGE

Figs. 6–10, and Tables VIII–XII outline the overall classifica-
tion accuracy (OA), Kappa coefficient, and CPU time of each
HSI.

Based on the data in Tables VIII–XII, there are no samples that
are accurately classified to Alfalfa or Oats categories for Indian
image by using traditional techniques. The OA of JSR-based

techniques is obviously better than that of WKNN and WSVM,
and it is higher than 80% for all categories of XionganU and
XionganS images. Compared with the linear kernel, the wavelet
kernel improves the scale of mapping, and the Kappa coefficient
has reached 0.91 for five images. As for the W2 JSRE model, the
OA is superior to 95% for five images, and the Kappa coefficient
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Fig. 10. Classification results of XionganU image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WJSR. (i) W2 JSRE (three
subclassifiers). (j) W2 JSRE (five subclassifiers).

exceeds 0.95. In particular, the OA has reached 99% for PaviaU
and Salinas images, and it is higher than 95% for all categories
of above two images. Experimental results illustrate that almost
any samples are truly classified, and the discrimination ability
is enhanced to analyze the samples with similar feature values.
Although the OA via deep learning model is close to that of the
proposed W2 JSRE model, the process will take more than 2000 s
to complete classification for XionganS image, and it is difficult
to satisfy real-time processing. As shown in Figs. 6–10, the
classified noise is obviously appeared via WKNN and WSVM,
which makes it difficult to recognize different objects from the
images, where Grass and Vegetation categories are confused

because of the similar spectral characteristics. The JSR-based
techniques are able to obtain better classification performance,
and the classified noise is eliminated to some extent, but the mis-
classification still exists on the edge region. The classification
maps of WJSR clearly reflect different objects and correspond
to the reference maps. In addition, ensemble learning is effi-
cient to comprehensively judge the category label by a series
of subclassifiers, and the objects are continuously presented
for each category by using five subclassifiers. However, the
learning ability is not sufficient as lack of training samples and
inadequate of subclassifiers, and scattered noise is reflected on
the classification maps. As for the curve of Fig. 11, the OA is
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TABLE IX
OA AND KAPPA COEFFICIENT FOR INDIAN IMAGE

TABLE X
OA AND KAPPA COEFFICIENT FOR SALINAS IMAGE

TABLE XI
OA AND KAPPA COEFFICIENT FOR XIONGANS IMAGE

improved as the percentage increase of training samples, and it
keeps stable on a high level as most of noise eliminated, but it
is difficult to reflect a further improvement as the percentage is
reached 10%, and the extent is only 0.4% as more than 10% of

pixels acted as training samples. In short, the proposed W2 JSRE
model is suitable for some practical work of HSI classification,
and the classification maps are well coincided with the reference
maps.
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TABLE XII
OA AND KAPPA COEFFICIENT FOR XIONGANU IMAGE

Fig. 11. OA of different percentage of training samples. (a) PaviaU image. (b) Salinas image. (c) XionganS image. (d) XionganU image.

V. CONCLUSION

In the article, an HSI classification technique based on the W2

JSRE model and the β-WOA is proposed. The category label
of each pixel is obtained by reconstructed error minimization
of JSR, and the wavelet function is acted as the kernel of JSR.
Moreover, ensemble learning is used to conduct detailed analysis
of independent features, and the β-WOA is utilized to obtain the
optimal weight of subclassifiers. In general, it is observed that the

swarm intelligence algorithm is adapted to achieve the suitable
weight and represent the contribution of each subclassifier. In
particular, the β-WOA has the highest fitness value among the
algorithms, which is appropriate to synthesize the discrimination
ability of five subclassifiers. Furthermore, the optimal weight is
employed to obtain the category label of HSIs, and the OA is
compared with some newly proposed and corresponding HSI
classification techniques. In all, the proposed W2 JSRE model
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recognizes different objects on the image, and it is sufficient
to distinguish most of similar objects, which has reached 95%
for pixel-level classification. As a summary, JSR combined with
the wavelet kernel has a good property to solve the classifica-
tion problem in most cases, the misclassification is apparently
weaken by ensemble learning, and the weight optimized by the
β-WOA is reasonable to improve the OA to some extent. In the
future, it is preferable to combine the spatial and spectral features
with different types of subclassifier for HSI classification.
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