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A Hyperspectral Image Classification Method Based
on Weight Wavelet Kernel Joint Sparse
Representation Ensemble and 5-Whale

Optimization Algorithm

Mingwei Wang ¥, Zitong Jia, Jianwei Luo

Abstract—Joint sparse representation (JSR) is a commonly used
classifier that recognizes different objects with core features ex-
tracted from images. However, the generalization ability is weak
for the traditional linear kernel, and the objects with similar fea-
ture values associated with different categories are not sufficiently
distinguished especially for a hyperspectral image (HSI). In this
article, an HSI classification technique based on the weight wavelet
kernel JSR ensemble model and the 3-whale optimization algo-
rithm is proposed to conduct pixel-level classification, where the
wavelet function is acted as the kernel of JSR. Moreover, ensemble
learning is used to determine the category label of each sample by
comprehensive decision of some subclassifiers, and the 3 function is
utilized to enhance the exploration phase of the whale optimization
algorithm and obtain the optimal weight of subclassifiers. Experi-
mental results indicate that the performance of the proposed HSI
classification method is better than that of other newly proposed
and corresponding approaches, the misclassification and classified
noise are eliminated to some extent, and the overall classification
accuracy reaches 95% for all HSIs.

Index Terms—3 function, ensemble learning, hyperspectral
image (HSI) classification, joint sparse representation (JSR),
wavelet kernel, weight setting.

1. INTRODUCTION

N RECENT years, hyperspectral remote sensing sensors
have been applied to collect images with enough spectral
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resolution that contains hundreds of bands and allows the dis-
crimination of objects with similar attributes [1]. A hyperspectral
image (HSI) has been considered as an applicable tool for Earth
observation because of its ability to obtain independent and
continuous bands, analyze information from visible to near-
infrared wavelength ranges, and supply multiple features from
the fixed wavelength. It provides abundant spectral information
and has a huge potential for the interpretation of different ground
objects [2], [3]. As a result, the analysis of HSI has become a
subject of research interest in remote sensing, which has been
applied in a series of fields such as quantitative analysis [4],
environmental monitoring [5], and land-cover mapping [6]. In
addition, image classification is a significant step in identifying
object types on the Earth’s surface, and HSI classification aims to
distinguish each sample into a discrete group of specific category
labels [7], [8].

Existing HSI classification techniques are separated into two
scopes: unsupervised and supervised [9]. For unsupervised
techniques, fuzzy clustering [10], rough set [11], and iterative
self-organizing data analysis technique algorithm [12] have
been utilized to classify HSI samples. In these techniques, the
process of classification is only based on the characteristics of
feature values, and the misclassification is obvious as spectral
characteristics are similar for different objects. For supervised
techniques, active learning [13], random forest [14], and support
vector machine (SVM) [15] have been utilized to obtain the
category label of each pixel. Although these classifiers make
full use of spectrum difference, the category label of the current
pixel is usually impacted by the feature values on the neighbor.
Therefore, several ideas are presented to synthesize the spatial
and spectral characteristics of HSIs, and they are based on the
hypothesis that samples within a local space have approximate
spectral characteristics and express the same objects [16], [17].
In addition, HST classification based on a deep learning model
has been proposed to sufficiently synthesize spatial and spectral
information, thus obtaining the category label of each pixel, but
it is supported by the sufficient number of training samples and
the sufficient amount of iterations, which is time-consuming as
the data dimension increases [18].

As a well-behaved supervised classification model, sparse
representation (SR) is used to recover the original data and
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report class discriminative information, which has been widely
used in the field of pattern recognition [19]. In addition, joint
representation is presented to promote the stability of SR and
boost its capability [20]. For HSI classification, samples with
the same category are theoretically located in a low-dimensional
subspace, and joint SR (JSR) makes associative decision on
neighbor pixels as to which are feasible and particularly suitable
for HSIs [21]. For the classification process, a testing sample is
similarly expressed by a certain number of rules from the training
dictionary, and the reconstructed matrix is utilized to determine
the category label by searching for the minimum [22]. For
instance, Peng ef al. [23] designed a local adaptive JSR (LAJSR)
technique for HSI classification; the dictionary construction and
SR phases were improved by choosing representative rules from
an additional dictionary. Tu et al. [24] proposed an HSI classi-
fication approach based on the balance of JSR and correlation
coefficient (JSR-CC), which synthetically considered both local
spatial and spectral similarities. Furthermore, the reconstructed
matrix is usually computed by a linear kernel, making it difficult
to reflect the inner product of nonlinear mapping between input
spectral features and output category labels. Hence, Zhang et
al. [25] proposed a novel HSI classification technique using
JSR and nonlinear kernel extension, which mapped the input
into a high-dimensional space to separate different objects and
reflect better performance than that using the linear kernel.
However, the category label is determined by kernel computing
of higher order polynomial; the misclassification for specific cat-
egories will be enlarged if the order is uncertain within effective
time.

The category label is obtained by the probability of kernel
computing for JSR, and it is the same as other nonlinear classi-
fiers in mechanism, such as k-nearest neighbor (KNN) and SVM.
Moreover, the wavelet function is a series of formulations that
are based on wavelet analysis and adequately keeps regularity
and orthogonality; it has been employed in the field of HSI
classification as the kernel of KNN and SVM to substitute for
a linear kernel [26], [27]. As a result, the wavelet function is
able to act as the kernel of JSR in theory. Ensemble learn-
ing is a machine learning paradigm that synthesizes multiple
subclassifies to solve the same problem; better discrimination
ability is obtained than the single classifier according to different
emphases of subclassifiers especially for indeterminate objects
and has been applied for HSI classification [28], [29]. However,
the category label is usually obtained by the voting strategy for
ensemble learning; the discrimination is confused if the votes
are similar for two categories. As for JSR, the category label is
assigned by searching for the minimum of reconstructed error for
each sample, and the reconstructed matrix of ensemble learning
can be updated by that of subclassifiers with weight setting.
A higher weight means that the subclassifier produces more
contribution for classification, and a suitable weight setting is
able to balance the reconstructed error of subclassifiers [30]. In
general, how to obtain the optimal weight of subclassifiersis seen
as a combination optimization problem, and it can be solved by
the swarm intelligence algorithm with heuristic search guiding
strategies [31]. Among them, the whale optimization algorithm
(WOA) is a newly proposed swarm intelligence algorithm and
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has been widely used in diverse applications especially for
weight optimization [32], [33]. However, the convergence rate
is not fast enough with a fixed population updating equation and
the small probability of local search. Nowadays, the factorial
function with a single parameter has been combined with the
swarm intelligence algorithm to enhance the exploration phase,
but it is not adapted to various population updating conditions
such as WOA with multiple parameters [34], [35]. Here, the
[ function is combined with the WOA, two parameters are
corresponding to two evolution processes, and the weight is
adaptively located on the range of [0,1].

Therefore, an HSI classification technique based on the weight
wavelet kernel JSR ensemble (W2 JSRE) model and the 5-WOA
is proposed to conduct pixel-level classification for HSIs. Be-
cause the spectral feature is output by 16 bits, the discrimination
is not significant for different categories, and the misclassifica-
tion is obvious as the dataset is mapped into the linear kernel.
The classification accuracy is improved as the wavelet function
is acted as the kernel of KNN and SVM; the dataset is mapped
into quadratic, exponential, and trigonometric functions with
different types and has been utilized in the field of HSI classifi-
cation, but it is not acted as the kernel of JSR for previous work.
In addition, a series of subclassifiers based on JSR with wavelet
kernels are integrated by ensemble learning, the wavelet kernel
of JSR concerns on the homogeneity for each subclassifier,
and the ensemble with multiple wavelet kernels emphasizes the
heterogeneity. Furthermore, the swarm intelligence algorithm
is widely used to solve the nonpolynomial hard problem, such
as weight optimization, and the 5-WOA is designed to obtain
the optimal weight of subclassifiers, and the category label is
output by total reconstructed error minimization of ensemble
learning. The main contributions of this article are concluded as
follows.

1) To improve the scale of mapping, the wavelet function is
acted as the kernel of JSR, and the HSI dataset is mapped
into quadratic, exponential, and trigonometric functions
with different types.

2) To synthesize the homogeneity and heterogeneity of
the JSR ensemble, the W? JSRE model is proposed
by using different types of wavelet function as the
kernel, and the classification map is output by pixel
level.

3) Tobalance the reconstructed error of subclassifiers, weight
setting is conducted for ensemble learning, and the
category label is obtained by total reconstructed error
minimization.

4) Toenhance the exploration phase of the WOA, the 3-WOA
is designed by fusing the  function into two evolution
processes of the WOA, and the optimal weight of subclas-
sifiers is obtained.

The overall construction of this article is listed as follows.
Section II describes the related work of JSR and WOA. Sec-
tion III illustrates the principle of the proposed W2 JSRE model
and 5-WOA and the fundamental process of HSI classification.
Section IV analyzes the experimental results and expends dis-
cussion of data statistics and visual senses. Finally, Section V
concludes this article.
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II. RELATED WORK

A. Basic Theory of JSR

JSR is devoted to minimizing the reconstructed error of some
independent SRs, and the inner correlations between different
SRs are synthetically considered. In the HSI, spectral character-
istics of a pixel are strongly correlated with its neighbor pixels,
which means that they belong to the same object with large
probability, and the spatial correlations are ensured by supposing
that neighbor pixels within a local space are jointly indicated by
some common-sense rules from a training dictionary [36]. In
particular, the size of local space at center pixel y; is signed
by [ x [, and pixels within such a space are marked by y;,
where ¢ = 1,2,...,1 x [. All of the above pixels are stacked
into amatrix Y = [y1, Y2, -+, Yt, - - -, Yixi] € RY** The matrix
is succinctly represented as follows:

Y =[y1,92, .- Yty Yixi]=[Da1, Dag, ...Day, . .., Dagy)
= Do, a9, ...,y ..., 5] = DA (1
where A = (a1, a9, .., Q4. .., Q] € RY s the recovered

data with regard to Y. The selected rules in D are assigned
by rows and columns of elements that are not equal to O in
[a1, g, ..., 4y ..., (qx], Dy setting part of rows as the value
of 0 on the reconstructed matrix A. The neighbor pixel Y is
expressed by a subset of common-sense rules. Afterward, the
matrix is recovered by seeking the equation to represent the
following optimization problem:

A= argngn Y — DA[r st Allrowo < K )

where ||Allow,0 18 the joint sparse norm that finds the most
representative nonzero rows in A, and | - |z is the Frobenius
norm. As A is recovered, the category label at the center pixel
y; s judged by the reconstructed error that is defined as follows:

.....

where A; indicates the rows in A associated with the category
index of 7.

B. Mathematical Model of WOA

In 2016, Mirjalili designed a swarm intelligence algorithm
called WOA that is based on the predatory strategy of humpback
whales. Humpback whales tend to catch crowd of krill or small
fishes near the surface. The process is conducted by producing
specific bubbles with a ring path, and the operator is separated
into three parts: encircling prey, spiral bubble-net attacking, and
searching for prey. The main procedure for the WOA is depicted
as follows [37]:

Encircling prey: Humpback whales have the ability to search
for the position of prey and surround them, and the mechanism
of global search is represented by the process. It is assumed that
the position of optimal solution is the objective prey or it is the
proximate solution moving close to the optimum in theory, and
others should endeavor to motivate their positions toward to it.
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The process is written as follows:
§=10-X"(t) - X(1)] @
X{t+1)=X"(t)—A-§ Q)

where ¢ is the number of current iterations, X*(¢) is the po-
sition of prey, and X (¢) and X (¢ + 1), respectively, represent
the position of humpback whales in the current and the next
procedure. A and C are the variable vectors that are expressed
as/f:2d’~F—Ec’andC_":2-F,@':2—2*t/Tisgradually
decreased within the scope of [2,0], 7" is the maximum number
of iteration, and 7 is a random number on the range of [0,1].

Bubble-net attacking: Each humpback whale moves close
to the prey within a compact ring and follows a spiral-shaped
path in the meantime, and the mechanism of local search is
represented by the process. A probability of 0.5 is set to choose
whether following the compact ring or spiral mechanism, the
position of humpback whale is renewed. The formulation of the
process is expressed as follows:

X*(t)—A-S, if p<0.5
X1 =45 0 o ©)
S'- e’ - cos(2ml) + X*(t), if p>0.5

where S is the distance of current humpback whale to prey,
which is expressed as 5" = | X*(t) — X (t)|, b = 1 represents a
constant number that is the situation of logarithmic spiral, and
[ and p are two random numbers, respectively, within the scope
of [—1,1] and [0O,1].

Searching for prey: The position of current humpback whale
is updated according to the random walk strategy rather than the
best humpback whale, the strategy of random search is reflected
by the process, and the details are expressed as follows:

§: |C_:'Xrand*X(t)| (7)
X(t4+1)=Xpa—A- S (8)

where X .nq indicates the position of a random humpback whale
selected from the population.

III. PROPOSED METHODOLOGY
A. Classification Process With W? JSRE

As for (3), the category label is determined by reconstructed
error minimization, and it is computed on the same scale with the
linear kernel, which makes it difficult to express the difference
of feature values on multiple scales and emerge the relationship
of nonlinear mapping in detail. The basic theory of wavelet
analysis is to combine wavelet basis that builds an arbitrary
function following the time series ¢, there are five types of
wavelet function that are proposed by analytical expressions
with compactly supported and can be decomposed to different
scales, and they are defined as follows [38], [39]:

fi(t) = exp(—t?/2) )
fa(t) = (1 — t2) - exp(—t?/2) (10)
f3(t) = cos(1.75 - t) - exp(—t*/2) (11
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fa(t) = % - cos(1.5 - t) (12)
6i47r»t o ei2ﬂ'-t
f(t) = —2— (13)

The wavelet function contents the fixed condition of shift-
invariant form, it is based on the inner product of nonlinear
mapping on different scales, and the difference between the
original and recovered data can be represented by shift-invariant
form [41]. Nowadays, the wavelet function is acted as the kernel
of wavelet kernel SVM (WSVM) and wavelet kernel KNN
(WKNN), and the classification result is improved as the dataset
is mapped into different scales. More importantly, the dataset
with ten thousands of samples is difficultly expressed by a linear
kernel mapping. For JSR, the learning mechanism is the same
with SVM and KNN, and the wavelet function can be acted as
the kernel of JSR; the reconstructed error is defined on the basis
of (3) and is expressed as follows:

r1(y) = exp(—[|Y — D;Ail2/2) (14)
r2(y) = (1 = [IY = DiAil|2) - exp(—||Y — D; A;2/2) (15)

ra(y) = cos(1.75 x ||[Y — D; A1) - exp(—||Y — D;As]2/2)
(16)

sin(0.57 x ||Y—DiAiH1)

ra(y) = = -cos(1.5mx Y—Diz‘ii
) = ey, e Ih)
a7
AT Y =DiAilly _ giznl|y —DiA; |y
rs5(y) = : - (18)
i2r|Y — DA,
where “-” represents the inner product between the vectors of

reconstructed error with two different scales, and the original
dataset is mapped into quadratic, exponential, and trigonometric
functions with different types. Experimental results demonstrate
that a scale parameter is involved in the dilation and, thus, can be
naturally used to accommodate the multiscale phenomenon [40].

The category label of a sample is determined by five subclas-
sifiers (JSRs) with different wavelet kernels at the same time,
which is able to improve the discrimination ability compared
with single JSR and linear kernel. The significance of subclas-
sifiers is decided by weight setting, and the reconstructed error
of the proposed W2 JSRE model is computed as follows:

5

label(y;) = arg minij x 17;(y)
j=1

19)

where w; is the weight of the jth subclassifier, which is directly
multiplied with the reconstructed matrix, and weight represents
the significance of subclassifiers. Itis seen as a fuzzy quantitative
analysis for the ensemble learning of JSRs, and the performance
is better than the traditional voting strategy with fixed category
analysis.

B. Weight Optimization With [3-WOA

The exploration phase is represented by searching for prey
to conduct random walk, which is computed by the position
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of a random humpback whale, but the operation efficiency is
decreased by random number generation and the evolution trend
is uncollected for the enlarge of S in (8). The B function is
a factorial function with analytic continuation in the complex
plane; two parameters v and 7 are defined to adjust the value.
For the improvement of the swarm intelligence algorithm, it is
necessary to weaken the random process and synthesize multiple
parameters updating the individuals. The value range of the
function is [0,1], which is adapted to the weight w; of sub-
classifiers. As for the proposed S-WOA, the exploration phase
is based on the (8 function instead of searching for prey, and,
respectively, acting on encircling prey and bubble-net attacking,
which is defined as follows:

1
X(t+1) :/ 1 — ) at (20)
0
where
y=(X(t)-A4-8)"
n= (5 -e" - cos(2nl) + X*(t))" " (21)

There is no random humpback whale that needs to be ex-
tracted, all of individuals are, respectively, computed by two
processes of encircling prey and bubble-net attacking, they are
corresponding to v and 7 of /3 function, and the population is
updated by (20) afterward. As a result, the global and local
processes are integrated for each individual and iteration, and
time complexity is decreased by no random sample generation.
Moreover, the coding length of the S-WOA is equal to 5, which is
the same as the number of subclassifiers, and directly represents
the weight of subclassifiers.

C. Definition of the Objective Function

The key issue of HSI classification based on the W? JSRE
model is how to establish a reasonable mapping between the
solution and the 5-WOA. As for weight setting, it is expressed
by a constant on the range of [0,1] for subclassifiers and cor-
responding to a bit of S-WOA. Each individual of 5-WOA
includes 5 bits: the first bit represents the weight of the first
JSR (subclassifier), the second bit is the weight of the second
JSR (subclassifier), and so on. The entire code indicates the
solution about the optimal weight of the W? JSRE model, and
the fitness value is computed according to the average entropy
of the reconstructed matrix, which is defined as follows:

F(i) = =D min Ajjlogy(Ay) /s

i=1

(22)

where s is the scale of testing samples, and j is the category
index that takes on the minimum for the sth testing sample. A
larger fitness value means that the reconstructed error is smaller,
and the category label is more likely to obey the true distribution.

D. Implementation of the Proposed Method

The proposed HSI classification technique is easy to be ful-
filled. The W2 JSRE model is used for pixel-level classification
of HSIs and the category label is obtained for each sample, the



WANG et al.: HYPERSPECTRAL IMAGE CLASSIFICATION METHOD BASED ON W 2 JSRE AND 3-WHALE OPTIMIZATION ALGORITHM

Algorithm 1: HSI Classification Based on the W2 JSRE
Model and the 5-WOA.

Input:Construct the training samples for each category
from original HSIs, and the iteration number of 5-WOA
ist=0.

Output:The classification maps based on pixel level for
all HSIs.

1: Input HSIs, and transform it to the reasonable format
that is directly read by ENVI software;

2: Randomly choose 10% of pixels for each category that
are acted as training samples;

3: Build the W2 JSRE model, and assign the kernel of
subclassifiers according to five different wavelet
functions;

4: Generate initial population of 5-WOA, and express the
weight of subclassifiers;

5: while The algorithm does not reach the termination
condition do

6: t=t+1;

7:  Conduct testing for the W2 JSRE model, and compute

the fitness value of each humpback whale by (22);

8: Employ encircling prey and bubble-net attacking for

the whole population;

9: Compute the parameters y and 7 of the /3 function;

10:  Use the S function instead of searching for prey with

exploration phase;
11: if The fitness value is higher than last iteration then
12: Replace the position of current best humpback
whale;

13: endif

14: end while

15: Output the global optimal solution of the 5-WOA, and
the optimal weight of subclassifiers;

16: returnThe category label of each pixel according to the
minimum of reconstructed error.

B-WOA is used to search for the optimal weight of subclassifiers
(JSRs), and the exact flow is listed as follows.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Data Description

To evaluate the performance of the proposed HSI classifica-
tion technique based on the W2 JSRE model and the 3-WOA,
three public collected HSIs and two measured airborne HSIs are
used in the experiments.

The first HSI was acquired by the ROSIS sensor during a
flight campaign over Pavia University, Italy, and the geometric
resolution was 1.3 m [42]. The image was composed of 610 x
340 pixels with 103 spectral bands. Fig. 1 displays the ground
truth of PaviaU scene. The number and names of corresponding
categories that were used are shown in Table 1.

The second HSI was collected by the AVIRIS sensor and cov-
ered the agricultural region of Indian Pines, India, in 1992 [42].
The spectral range was 0.4-2.5 um with a spectral resolution
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Fig. 1. Original image and reference map of PaviaU.

TABLE I
LAND-COVER CLASSES IN PAVIAU IMAGE

Class number Class name No. of labelled samples
1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42,776

Fig. 2. Original image and reference map of Indian.

about 10 nm, and the image was composed of 145 x 145 pixels
and 220 spectral bands with a spatial resolution of 20 m. Fig. 2
displays the ground truth of Indian scene. The number and names
of corresponding categories that were used are shown in Table II.

The third HSI was collected by the 224-band AVIRIS sensor
over Salinas Valley, California, and it was characterized by
high spatial resolution. The image was composed of 512 x 217
pixels and available only as sensor radiance data, and 20 water
absorption bands were discarded [42]. Fig. 3 displays the ground
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TABLE II TABLE III
LAND-COVER CLASSES IN INDIAN IMAGE LAND-COVER CLASSES IN SALINAS IMAGE
Class number Class name No. of labelled samples Class number Class name No. of labelled samples
1 Alfalfa 46 1 Brocoli_green_weeds_1 2009
2 Corn-notill 1428 2 Brocoli_green_weeds_2 3726
3 Corn-min 830 3 Fallow 1976
4 Corn 237 4 Fallow_rough_plow 1394
5 Grass/Pasture 483 > Fallow_smooth 2678
6 Grass/Trees 730 3 (Sjleull:)]/e izgg
7 Grass/?asture—mowed 28 8 Grapes_untrained 11,271
8 Way-windrowed 478 9 Soil_vinyard_develop 6203
9 Oats 20 10 Corn_senesced_green_weeds 3278
10 Soybeans-notill 972 11 Lettuce_romaine_dwk 1068
11 Soybeans-min 2455 12 Lettuce_romaine_5wk 1927
12 Soybean-clean 593 13 Lettuce_romaine_6wk 916
13 Wheat 205 14 Lettuce_romaine_7wk 1070
14 Woods 1265 15 Vinyard_untrained 7268
15 Bldg-Grass-Tree-Drives 386 16 Vinyard_vertical_trellis 1807
16 Stone-steel towers 93 Total 54,129
Total 10,249

.r-u

Fig. 4. Original image and reference map of XionganS.

TABLE IV
LAND-COVER CLASSES IN XIONGANS IMAGE

Class number Class name No. of labelled samples
1 Water 3877
2 Building 6568
3 Vegetation 3143
4 Field 7147
. L . 5 Bare land 2623
Fig. 3. Original image and reference map of Salinas. 6 Path Q43
7 Grass 6199
Total 30,400

truth of Salinas scene. The number and names of corresponding
categories that were used are shown in Table III.

The fourth HSI was collected by the CASI sensor over the
suburban area of Xiongan, China, in the summer of 2017. The X -
spectral range was 0.36—1.05 pum with a spectral resolution of m[ﬂl [
7.2 nm, and the image was composed of 160 x 190 pixels with *”" z
96 spectral bands. Fig. 4 shows the ground truth of XionganS MI s
scene. The number and names of corresponding categories that !ill“'_ll“' :
were used are shown in Table IV. :

The fifth HSI was acquired by the SASI sensor over the urban
area of Xiongan, China, in the spring of 2018. The spectral
range was 1.0-2.5 ym with a spectral resolution of 15 nm, and
the image was composed of 270 x 232 pixels with 100 spectral
bands. Fig. 5 shows the ground truth of XionganU scene. The Fig.5. Original image and reference map of XionganU.
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TABLE V
LAND-COVER CLASSES IN XIONGANU IMAGE

Class number Class name No. of labelled samples

1 Vegetation 6670

2 Bare land/Pitch 10,924

3 Marble 5492

4 Field 11,255

5 Bare land/Mud 9666

6 Shrub 1416

7 Building 5980

8 Grass 2771

9 Path 706

10 Fence 3964

11 Road 3796

Total 62,640
TABLE VI
PARAMETERS SETTING OF DIFFERENT ALGORITHMS

Parameters Value
Population size 10
Dimension 5
Number of iteration 30
c1, c2 Acceleration constants in PSO 2.0
f;, Mutation factor in DE 0.6
Cpr Crossover rate in DE 0.9
pa Detecting probability in CS 0.25
a Correlation coefficient in GWO [2,0]
w Stepping factor in ALO [2,6]
a Correlation coefficient in WOA and 8-WOA [2,0]

number and names of corresponding categories that were used
are shown in Table V.

B. Parameters Setting of Different Algorithms

As for the S-WOA, there is one parameter that needs to
be set by the corresponding reference [32]. Moreover, some
commonly used swarm intelligence algorithms are also assessed
to conduct weight optimization. As the illustration in Section III,
the 5-WOA is utilized here, whereas particle swarm optimiza-
tion (PSO) [43], differential evolution (DE) [44], cuckoo search
(CS) [45], grey wolf optimizer (GWO) [46], ant lion optimizer
(ALO) [47], and standard WOA are utilized to make intuitive
comparisons. All of the above algorithms are ended as the
of evaluations reaches 300. Thirty independent operations are
conducted because of the randomness of initial population.
Although the computational complexity is O(nlogn) for the
algorithms above [48], there is no random humpback whale
that needs to be extracted for the 3-WOA, and each bit will
be adaptively located on [0,1] by the range of /5 function, which
will cost less CPU time than that of the standard WOA. The
parameters of these algorithms are set by constants and based
on the empirical value of corresponding references, and they are
listed in Table VI.
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C. Experimental Results on Swarm Intelligence Algorithms

In this subsection, evaluation of training samples with the
weight optimized by different swarm intelligence algorithms is
investigated. For five HSIs in Section IV-A, 10% of pixels for
each category are randomly extracted as the training samples to
obtain weights of subclassifiers. Table VII shows the experimen-
tal results with different swarm intelligence algorithms, where
Fiv and Std represent the average and standard deviation of
fitness value, respectively, and Time is the CPU time after 30
independent operations.

As for the data in Table VII, the optimization ability of the
WOA is obviously better than that of PSO, DE, CS, GWO,
and ALO, and the fitness value is higher than 0.30 for the five
datasets. In addition, the 3 function is operated for encircling
prey and bubble-net attacking of the basic WOA, which is
acted as the heuristic information of exploration phase. More
importantly, the fitness value is further improved compared with
the basic WOA, which illustrates that the reconstructed error
remains in a small interval between the original and recovered
datasets. With regard to the operating efficiency, the convergence
speed of the WOA is better than that of other algorithms because
of less multiplications, and there is no random humpback whale
that needs to be extracted for the 5-WOA, and the CPU time
is further decreased to some extent. Meanwhile, the weights
optimized by the 5-WOA are suitably assigned for five sub-
classifiers; these are set as 0.2242, 0.1101, 0.6585, 0.2343, and
0.3887 for the Indian dataset, and all of subclassifiers have a
certain contribution for training. However, the category label
may focus on one or two subclassifiers by using other algo-
rithms. The weight is greater than 0.9 for a subclassifier, and the
performance of ensemble learning does not sufficiently play. In
brief, the optimization ability of the 5-WOA is superior, and
the convergence speed is fast enough to obtain the satisfactory
weight, which is applicable for the practical work of sample
training about HSI classification.

D. Experimental Results About HSI Classification on
Pixel Level

In this subsection, five HSIs, named PaviaU, Indian, Salinas,
XionganS, and XionganU, are utilized to conduct pixel-level
classification of HSIs and verify the performance of the W?
JSRE model and the 5-WOA. Moreover, some correspond-
ing and newly proposed HSI classification techniques such
as JSR [22], LAJSR [23], JSR-CC [24], wavelet kernel JSR
(WJSR), WKNN [26], WSVM [27], and deep learning model,
such as fully convolutional networks (FCN) [49], discrimina-
tive stacked autoencoder (DSAE) [50], are also used to make
an overall comparison. In addition, the classification results
with different percentages of training samples (Indian image
is not operated because of less number of samples for Al-
falfa and Oats categories) and three subclassifiers of ensem-
ble learning are also exhibited to make a further verification;
the experiments are not conducted for LAJSR, JSR-CC, and
WISR because of the correlation of JSR-based techniques.
The classification maps of different techniques are listed in
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Fig. 6. Classification results of PaviaU image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WIJSR. (i) W2 JSRE (three
subclassifiers). (j) W2 JSRE (five subclassifiers).
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TABLE VII
FITNESS VALUE AND CPU TIME FOR DIFFERENT ALGORITHMS

Dataset Meas. PSO DE CS GWO ALO WOA B-WOA
Fiv 0.2973 0.2991 0.3002 0.3014 0.3028 0.3046 0.3058

PaviaU Std 0.0054 0.0052 0.0048 0.0044 0.0041 0.0038 0.0033
Time 0.5876 0.5931 0.6015 0.5887 0.6248 0.5862 0.5828

Fiv 0.2925 0.2960 0.3039 0.3064 0.3082 0.3101 0.3132

Indian Std 0.0093 0.0081 0.0076 0.0068 0.0062 0.0056 0.0051
Time 0.2065 0.2102 0.2123 0.2073 0.2296 0.2058 0.2037

Fiv 0.2959 0.3008 0.3056 0.3094 0.3118 0.3169 0.3203

Salinas Std 0.0018 0.0014 0.0013 0.0010 0.0008 0.0007 0.0007
Time 1.7072 1.7308 1.7637 1.7202 1.8173 1.7025 1.6947

Fiv 0.2955 0.2967 0.2973 0.2984 0.2996 0.3010 0.3019

XionganS Std 0.0117 0.0106 0.0102 0.0095 0.0078 0.0071 0.0065
Time 0.3097 0.3133 0.3156 0.3109 0.3333 0.3073 0.3049

Fiv 0.3078 0.3091 0.3101 0.3113 0.3119 0.3127 0.3135

XionganU Std 0.0048 0.0043 0.0039 0.0036 0.0033 0.0030 0.0031
Time 1.0527 1.0621 1.0754 1.0553 1.1207 1.0503 1.0440

- Class 1 - Class 2 Class 3 - Class 4 - Class 5 - Class 6 Class 7 - Class 8 - Class 9
- Class 10 - Class 11 - Class 12 Class 13 - Class 14 Class 15 - Class 16

Fig. 7. Classification results of Indian image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WISR. (i) W2 JSRE (three
subclassifiers). (j) W2 JSRE (five subclassifiers).
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Fig. 8. Classification results of Salinas image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WISR. (i) W2 JSRE (three
subclassifiers). (j) W2 JSRE (five subclassifiers).
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Classification results of Xiongan$S image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WISR. (i) W2 JSRE (three
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TABLE VIIL
OA AND KAPPA COEFFICIENT FOR PAVIAU IMAGE

Class number WKNN WSVM FCN DSAE JSR LAJSR JSR-CC WISR W2JSRE W?2JSRE
Meas. - - - - - - - - 3 sub-classifiers 5 sub-classifiers
1 77.5750 93.3494 97.6474 97.3458 80.8777 77.3337 83.9391 83.7129 87.1060 95.4306
2 99.0723 99.1903 96.7237 98.2895 98.5039 99.3351 98.8686 99.1689 99.7587 99.9196
3 74.5117 39.4474 97.2844 96.0457 79.0853 85.1358 82.9919 83.5636 89.0424 95.5693
4 82.5392 90.5352 97.5196 97.9112 88.8708 87.3042 90.8943 90.9269 91.9712 97.5522
5 99.3309 99.4052 99.9257 99.8513 99.7770 99.7026 100.0000 100.0000 100.0000 100.0000
6 51.4416 59.0177 97.9916 95.4862 74.8260 80.9704 82.8196 80.7914 88.3277 98.5086
7 60.3008 13.5338 97.5940 96.5414 93.3835 69.6992 94.7368 95.8647 96.1654 97.3684
8 72.1619 93.8077 96.7681 95.5731 90.9017 91.4992 93.2917 92.6670 95.7360 97.1754
9 96.7348 99.8944 99.8944 99.5776 95.5649 96.6209 96.6209 96.6209 96.7265 99.8944
OA(%) 96.7348 97.2994 99.4793 99.4740 98.0419 98.0535 98.4489 98.4195 98.8863 99.4990
Kappa 0.9089 0.9247 0.9855 0.9851 0.9455 0.9458 0.9568 0.9560 0.9595 0.9861
Time 150.8371 138.4107 3414.8419 1299.3674 154.0600 532.9002 726.6229 145.9274 233.4838 343.6807

Figs. 6-10, and Tables VIII-XII outline the overall classifica-
tion accuracy (OA), Kappa coefficient, and CPU time of each
HSIL

Based on the data in Tables VIII-XII, there are no samples that
are accurately classified to Alfalfa or Oats categories for Indian
image by using traditional techniques. The OA of JSR-based

techniques is obviously better than that of WKNN and WSVM,
and it is higher than 80% for all categories of XionganU and
XionganS images. Compared with the linear kernel, the wavelet
kernel improves the scale of mapping, and the Kappa coefficient
has reached 0.91 for five images. As for the W? JSRE model, the
OA is superior to 95% for five images, and the Kappa coefficient
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Class 1

Fig. 10.
subclassifiers). (j) W2 JSRE (five subclassifiers).

exceeds 0.95. In particular, the OA has reached 99% for PaviaU
and Salinas images, and it is higher than 95% for all categories
of above two images. Experimental results illustrate that almost
any samples are truly classified, and the discrimination ability
is enhanced to analyze the samples with similar feature values.
Although the OA via deep learning model is close to that of the
proposed W2 JSRE model, the process will take more than 2000 s
to complete classification for XionganS image, and it is difficult
to satisfy real-time processing. As shown in Figs. 6-10, the
classified noise is obviously appeared via WKNN and WSVM,
which makes it difficult to recognize different objects from the
images, where Grass and Vegetation categories are confused

- Class 2 - Class 3 - Class 4 - Class 5
B ciass 10 [ Ctass 11

- Class 6 - Class 7 - Class 8 - Class 9

Classification results of XionganU image. (a) WKNN. (b) WSVM. (c) FCN. (d) DSAE. (e) JSR. (f) LAJSR. (g) JSR-CC. (h) WIJSR. (i) W2 JSRE (three

because of the similar spectral characteristics. The JSR-based
techniques are able to obtain better classification performance,
and the classified noise is eliminated to some extent, but the mis-
classification still exists on the edge region. The classification
maps of WISR clearly reflect different objects and correspond
to the reference maps. In addition, ensemble learning is effi-
cient to comprehensively judge the category label by a series
of subclassifiers, and the objects are continuously presented
for each category by using five subclassifiers. However, the
learning ability is not sufficient as lack of training samples and
inadequate of subclassifiers, and scattered noise is reflected on
the classification maps. As for the curve of Fig. 11, the OA is
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TABLE IX
OA AND KAPPA COEFFICIENT FOR INDIAN IMAGE

Class number WKNN WSVM FCN DSAE JSR LAJSR JSR-CC WISR W?2JSRE W2JSRE
Meas. - - - - - - - - 3 sub-classifiers 5 sub-classifiers
1 0.0000 23.9130 50.0000 50.0000 39.1304 43.4783 43.4783 52.1739 52.1739 54.3478
2 63.5154 76.1204 71.6387 81.6527 80.7423 85.2241 85.7843 85.5042 86.4146 88.7255
3 51.0843 48.3133 77.1084 79.6386 82.6506 83.8554 85.5422 85.6627 86.2651 91.8072
4 42.6160 46.8354 98.3122 57.8059 78.9030 86.0759 53.1646 60.3376 74.6835 87.3418
5 81.9876 87.5776 92.3395 89.0269 92.1325 93.7888 97.5155 92.9607 94.4099 95.6522
6 96.9863 97.8082 96.5753 95.7534 98.6301 96.5753 97.8082 97.6712 99.1781 99.4521
7 21.4286 28.5714 100.0000 96.4286 92.8571 92.8571 96.4286 96.4286 96.4286 100.0000
8 98.7448 99.7908 100.0000 96.2343 96.8619 93.9331 98.3264 98.7448 100.0000 100.0000
9 5.0000 0.0000 100.0000 50.0000 45.0000 45.0000 50.0000 60.0000 60.0000 70.0000
10 57.9218 75.1029 81.2757 88.5802 86.6255 89.7119 91.4609 88.5802 89.9177 94.0329
11 87.8208 91.1609 76.7821 85.2546 88.7984 90.4277 90.5092 92.4644 93.0346 96.3340
12 42.8331 68.1282 80.4384 74.7049 76.2226 77.0658 78.5835 83.8111 84.6543 87.0152
13 95.6098 98.5366 99.5122 98.5366 98.5366 98.0488 98.5366 97.0732 97.5610 99.5122
14 96.9170 97.7866 95.6522 97.1542 96.4427 94.5455 97.3123 96.2846 97.4704 99.2885
15 22.7979 51.8135 90.6736 79.2746 72.2797 77.2021 79.7928 82.9016 84.7150 88.0829
16 86.0215 89.2473 100.0000 94.6237 95.6989 91.3978 95.6989 93.5484 94.6237 95.6989
OA(%) 87.3532 90.8014 92.2901 93.6361 93.9310 94.6635 94.8062 94.9156 95.1507 96.5750
Kappa 0.8201 0.8694 0.8909 0.9097 0.9140 0.9243 0.9264 0.9279 0.9308 0.9523
Time 22.3046 19.1473 857.1985 350.9767 22.8735 82.6000 108.9561 21.5868 34.5389 54.5102

TABLE X

OA AND KAPPA COEFFICIENT FOR SALINAS IMAGE

Class number WKNN WSVM FCN DSAE JSR LAJSR JSR-CC WISR W2JSRE W2JSRE
Meas. - - - - - - - - 3 sub-classifiers 5 sub-classifiers
1 98.6560 99.1538 99.0045 99.7511 99.8009 100.0000 100.0000 100.0000 100.0000 100.0000
2 99.9732 100.0000 98.0140 99.7585 99.4632 99.7585 99.8390 99.8390 99.8658 99.8658
3 97.9251 99.5445 99.2409 99.0891 99.5445 99.7470 99.2409 99.8482 99.9494 100.0000
4 99.1392 99.6413 98.9957 99.4978 99.0674 99.0674 98.8522 99.4261 99.7131 99.7131
5 98.9171 98.5437 94.4361 98.9544 99.5892 99.4772 99.8133 99.6639 99.7386 99.9253
6 99.8990 99.9242 99.7474 99.9747 99.8737 99.8484 100.0000 100.0000 100.0000 100.0000
7 99.5809 99.5529 97.6809 99.5809 99.8004 99.7206 100.0000 100.0000 100.0000 100.0000
8 87.7562 91.4559 84.2250 87.1795 86.7447 91.9617 92.0415 92.6537 95.0315 97.6400
9 99.5486 99.9355 97.9365 99.8227 99.9194 99.8872 99.9678 99.9678 99.9678 99.9839
10 947834 94.4173 96.9189 97.3154 97.6815 98.8408 98.2611 98.8713 99.3594 99.5424
11 97.3783 97.0037 95.8801 96.9101 99.3446 99.9064 99.8127 99.9064 99.9064 99.9064
12 100.0000 99.6886 99.3254 99.8443 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
13 97.2707 98.0349 99.1266 99.3450 99.1266 99.3450 99.1266 99.2358 99.3450 99.8908
14 94.4860 93.6449 99.8131 96.2617 96.3551 99.1589 99.5327 99.5327 99.5327 99.6262
15 71.2163 59.6175 84.4662 79.5680 84.2873 87.6170 90.1899 89.7633 92.5564 96.1062
16 98.8932 98.6165 98.2291 98.5612 99.5019 99.0592 99.8893 99.8340 99.8893 99.8893
OA(%) 96.4610 96.1091 96.7598 97.1018 97.4357 98.2530 98.4447 98.5158 98.8578 99.4744
Kappa 0.9503 0.9454 0.9546 0.9593 0.9640 0.9755 0.9782 0.9792 0.9819 0.9926
Time 304.8201 274.9726 3753.3286 1547.4970 312.6033 1114.7423 1352.6556 295.8748 473.3997 703.1399

TABLE XI

OA AND KAPPA COEFFICIENT FOR XIONGANS IMAGE

Class number WKNN WSVM FCN DSAE JSR LAJSR JSR-CC WISR W2JSRE W2JSRE
Meas. - - - - - - - - 3 sub-classifiers 5 sub-classifiers
1 90.5081 95.3314 99.4068 97.2401 95.5120 94.1450 93.3712 94.8156 95.2283 97.8334
2 93.3922 96.3916 95.7978 96.9093 98.0664 98.7058 98.5536 97.7771 98.0359 98.7820
3 71.1104 81.6417 96.5638 93.7321 90.6459 91.9504 93.2867 95.6093 96.5638 98.0910
4 93.6757 96.1382 96.4321 97.6074 96.8658 96.3061 97.9852 97.2576 97.6634 98.4749
5 97.5600 99.6950 97.5219 99.6569 99.9238 99.3138 98.7038 99.4281 99.4663 99.7331
6 96.7972 94.6619 99.0510 97.0344 96.7972 88.8493 89.3238 94.3060 94.3060 94.3060
7 77.3996 95.1605 98.0965 96.2575 89.5467 93.0795 93.9345 94.7411 96.7253 97.7900
OA(%) 87.9803 94.6579 97.1941 96.6875 95.0789 95.4934 96.0296 96.4803 96.9342 97.9013
Kappa 0.8539 0.9349 0.9659 0.9597 0.9401 0.9451 0.9516 0.9571 0.9609 0.9744
Time 63.1119 58.7080 2362.4237 945.8116 66.3752 245.1955 297.5373 61.9700 99.1521 161.5853

improved as the percentage increase of training samples, and it
keeps stable on a high level as most of noise eliminated, but it
is difficult to reflect a further improvement as the percentage is
reached 10%, and the extent is only 0.4% as more than 10% of

pixels acted as training samples. In short, the proposed W2 JSRE
model is suitable for some practical work of HSI classification,
and the classification maps are well coincided with the reference

maps.
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TABLE XII
OA AND KAPPA COEFFICIENT FOR XIONGANU IMAGE

Class number WKNN WSVM FCN DSAE JSR LAJSR JSR-CC WISR W2JSRE W2JSRE
Meas. - - - - - - - - 3 sub-classifiers 5 sub-classifiers
1 90.3148 90.7496 91.1394 92.4288 90.6297 89.8651 89.9700 91.0195 91.8741 93.5682
2 78.8173 77.0139 79.4123 89.6558 86.0582 87.9074 88.7221 89.0608 91.0564 93.5829
3 81.3183 79.7342 81.3365 88.5470 81.2637 80.8631 88.5834 86.4166 88.1282 92.4071
4 85.5264 89.0093 91.9947 88.0675 87.8010 92.4211 90.6353 92.9187 94.8645 97.3079
5 88.1750 87.9992 92.2822 93.2961 87.8543 87.6785 87.8854 97.5378 98.1484 98.4378
6 56.0028 1.2712 81.2853 87.3588 93.3616 87.7119 87.2175 91.7373 92.0904 93.0791
7 95.9699 95.4013 93.7291 95.4181 93.4783 93.1271 96.9565 97.4582 97.7258 99.5652
8 78.4554 79.3576 96.3190 90.5810 90.7615 91.1945 90.8336 90.4367 94.1898 96.1025
9 58.3569 0.0000 95.8924 74.2210 84.5609 80.5949 90.6516 90.3683 91.0765 95.8924
10 91.3724 94.4067 95.7619 92.8607 90.4642 90.1110 93.5923 90.8426 92.0535 92.7346
11 98.2139 71.9705 96.6807 94.3361 92.8082 91.8599 92.7028 93.7829 95.5743 96.1802
OA(%) 84.5434 82.5128 89.5003 90.9818 88.4674 89.1970 90.4741 92.6357 93.5010 95.6721
Kappa 0.8234 0.7991 0.8801 0.8971 0.8685 0.8766 0.8913 0.9159 0.9233 0.9505
Time 358.3484 322.7080 5046.2775 2079.9338 372.9808 1303.4994 1580.9001 352.5235 564.0326 839.5779
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Fig. 11.  OA of different percentage of training samples. (a) PaviaU image. (b) Salinas image. (c) XionganS image. (d) XionganU image.

V. CONCLUSION

In the article, an HSI classification technique based on the W?
JSRE model and the 8-WOA is proposed. The category label
of each pixel is obtained by reconstructed error minimization
of JSR, and the wavelet function is acted as the kernel of JSR.
Moreover, ensemble learning is used to conduct detailed analysis
of independent features, and the 5-WOA is utilized to obtain the
optimal weight of subclassifiers. In general, itis observed that the

swarm intelligence algorithm is adapted to achieve the suitable
weight and represent the contribution of each subclassifier. In
particular, the 5-WOA has the highest fitness value among the
algorithms, which is appropriate to synthesize the discrimination
ability of five subclassifiers. Furthermore, the optimal weight is
employed to obtain the category label of HSIs, and the OA is
compared with some newly proposed and corresponding HSI
classification techniques. In all, the proposed W2 JSRE model
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recognizes different objects on the image, and it is sufficient
to distinguish most of similar objects, which has reached 95%
for pixel-level classification. As a summary, JSR combined with
the wavelet kernel has a good property to solve the classifica-
tion problem in most cases, the misclassification is apparently
weaken by ensemble learning, and the weight optimized by the
[-WOA is reasonable to improve the OA to some extent. In the
future, itis preferable to combine the spatial and spectral features
with different types of subclassifier for HSI classification.
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