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Forest Height Estimation by Means of TanDEM-X
InSAR and Waveform Lidar Data
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Abstract—Model-based forest height inversion from Pol-InSAR
data relies on the realistic parameterization of the underlying (ver-
tical) radar reflectivity function. In the context of interferometric
TanDEM-X measurements – especially in the global single pol DEM
mode – this is not possible due to the limited dimensionality of
the observation space. In order to overcome this, the use of lidar
waveforms to directly approximate the TanDEM-X reflectivity is
proposed. This allows the forest height estimation from a single,
single polarimetric, bistatic TanDEM-X acquisition. In order to
extend the proposed lidar-supported inversion schema to areas only
partially covered or sampled by (waveform) lidar measurements,
the use of a “mean” (vertical) reflectivity profile is further proposed.
This “mean” reflectivity profile is defined by means of the eigen-
functions of the available set of lidar waveforms. Both approaches
are demonstrated and validated using TanDEM-X and airborne
waveform lidar data acquired in the framework of the AfriSAR
2016 campaign over the Lopé National Park, in Gabon.

Index Terms—Forest height estimation, SAR interferometry,
TanDEM-X, vertical radar reflectivity, waveform lidar.

I. INTRODUCTION

FOREST height is one of the most important forest param-
eters in forestry along with basal area and tree species

or species composition. Depending on the forest type, it pro-
vides more or less significant information on stand development
and/or site index and describes more or less accurate forest
inventory and development. Accordingly, forest height can be
used, alone or together with other parameters, as an indicator for
site-dependent timber production potential and is directly related
to forest biomass through allometric relations. Furthermore,
accurate forest height measurements allow conclusions on the
successional state of a forest and can be used to constrain model
estimates of above-ground biomass and associated carbon flux
components. The distribution of forest heights within a stand
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can be further used to characterize the disturbance regime while
high (spatial and temporal) resolution forest height maps can be
used for detecting selective logging activities [1]–[4].

Being a standard parameter in forest inventories, forest height
is hard to be measured on the ground and becomes harder with
increasing forest height and density. In terms of remote sensing
techniques, lidar configurations have been today established as
the reference (in terms of vertical and spatial resolution and/or
accuracy) for measuring forest height on local and regional
scales [5]. However, the rather small footprints of spaceborne
lidar configurations do not allow large-scale wall-to-wall forest
height measurements with a reasonable temporal resolution.

The introduction of polarimetric SAR interferometry (PolIn-
SAR) at the end of the 90s was a decisive step toward developing
measuring forest height accurately at large scales [6]–[11]. Re-
lying on the inherent sensitivity of the interferometric coherence
to the vertical structure of volume scatterers combined with the
potential of SAR polarimetry to characterize individual scatter-
ing processes, PolInSAR techniques have been established for
accurate forest height estimation on large scales in the context
of air- and spaceborne implementations [12]–[15]. However,
when it comes to spaceborne repeat-pass implementations, the
inherent presence of temporal decorrelation degrades the sensi-
tivity of PolInSAR measurements to vertical scattering structure
and limits the performance of PolInSAR inversion techniques
[16]–[18].

Launched in 2010, TanDEM-X introduced a new era in space-
borne radar remote sensing allowing single-pass interferometric
measurements from space in a bistatic configuration [19], [20].
The sensitivity of the interferometric TanDEM-X coherence
to the vertical forest structure and especially to forest height
initiated a large number of studies on forest height estimation
from TanDEM-X InSAR data across all possible forest types
and conditions [21]–[24]. The proposed estimation algorithms
are regression as well as model-based where the second ones
appear, in general, more robust and with a better performance.

For the model-based forest height estimation algorithms, two
main approaches have been established [25]. The first one relies
on dual-polarized TanDEM-X (interferometric) measurements
and allows forest height estimation without any a priori infor-
mation. The achieved performance is, in general, remarkably
good as long as the forest conditions allow sufficient penetration
to ensure the “visibility” of the whole (vertical) forest extent.
At denser forest conditions, X-band’s insufficient penetration
capability leads to a systematic underestimation of taller stands.
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Besides this, the limited availability of dual-pol TanDEM-X data
limits this approach to local scale experiments/demonstrations.

The second approach relies on single-polarimetric TanDEM-
X measurements and requires knowledge of the underlying
topography. This constrains its application on flat terrain areas
or areas where a digital terrain model (DTM) is available. But
at the same time, the knowledge of the underlying topography
also allows unbiased height estimates even if the “visibility”
of the whole forest extent is not given. Finally, the fact that it
requires interferometric measurements at a single polarization
allows its implementation by means of the standard DEM mode
of TanDEM-X enabling large-scale application globally.

The wide availability of lidar data triggered a number of at-
tempts to use lidar data and/or lidar-derived products to compen-
sate for the inherent underdetermination of the forest height in-
version problem when addressed in terms of single-polarimetric
TanDEM-X measurements. Besides the obvious approach to
use the lidar derived DTM to directly enable the forest height
inversion as discussed in the previous paragraph [25]–[29],
lidar data have also been used to constrain the forest height
inversion problem reducing, in this way, the dimensionality of
the inversion problem [30]–[33].

An alternative approach of combining waveform lidar mea-
surements and single-polarization TanDEM-X data for forest
height inversion is proposed in the following. Sections II and III
review the interferometric TanDEM-X measurements and the
forest height estimation methodology and define the framework
for combining the waveform lidar and the interferometric radar
measurements. Section IV summarizes the main characteristics
of waveform lidar measurements. In Section V, the experimental
data used are described. Sections VI and VII provide the exper-
imental demonstration and validation of the proposed approach
discussing its main performance characteristics. Finally, in Sec-
tion VIII, the established understanding and the achieved results
are concluded.

II. INTERFEROMETRIC MEASUREMENTS

The main InSAR measurement is the complex interferometric
coherence γ̃Obs(�w) formed by using the two images s1(�w) and
s2(�w) acquired at a given polarization (indicated by the unit
vector �w) with a given spatial (and temporal) baseline [i.e.,
spatial (and temporal) separation]

γ̃Obs (�w) =
〈s1 (�w) s∗2 (�w)〉√〈s1 (�w) s∗1 (�w)〉 〈s2 (�w) s∗2 (�w)〉

(1)

where < · · · > denotes the expected value. γ̃Obs(�w) comprises
several decorrelation contributions and can, therefore, be factor-
ized as

γ̃Obs (�w) = γ̃Tmp (�w) γ̃Sys (�w) γ̃Scat (�w) . (2)

The first contribution is the so-called temporal decorrelation
contribution γ̃Tmp(�w) introduced by geometric and/or dielectric
changes of the scatterers within the scene in the time interval
between the two interferometric acquisitions. For the TanDEM-
X bistatic mode, where one of the two satellites transmit and
both satellites receive the scattered signal quasi simultaneously

(with temporal baselines on the order of a fraction of a second),
γ̃Tmp (�w) = 1.

The second term, γ̃Sys(�w), comprises a wide range of decor-
relation effects induced by the non-ideal SAR system and pro-
cessing implementations. The most relevant system decorrela-
tion contribution is the additive noise decorrelation γSNR(�w).
Modeling the received signal to be composed by the scattering
amplitude a(�w) and the noise amplitude n(�w), i.e., s (�w) =
a(�w) + n(�w), γSNR(�w) can be written as [11]

γSNR (�w) =
1

1 + SNR(�w)−1 =
A(�w)

A (�w) + N (�w)
=

A (�w)

P (�w)
(3)

where SNR(�w) = A(�w)/N(�w) is the signal-to-noise ra-
tio, with P (�w)= A(�w) + N(�w) is the received power,
A(�w)=|a(�w)|2 is the scattered power, and N(�w) = |n(�w)|2
is the noise power.

Finally, the third term, γ̃Scat(�w), reflects the phase stability
of the scatterer under the different incidence angles induced by
the interferometric baseline. After range and azimuth spectral
filtering [34], γ̃Scat(�w) reduces to the volume decorrelation
contribution γ̃Vol(�w) [7], [35]

γ̃Vol (κz, �w) =
∫ z0+hV
z0

F (z, �w) exp (iκZ z) dz

∫ z0+hV
z0

F (z) dz
. (4)

F(z, �w) (where z indicates the vertical axis/position) is the
vertical reflectivity function (also referred as the vertical reflec-
tivity profile) and expresses the vertical distribution of scatterers
seen by the interferometer. Accordingly, F(z, �w) depends on
the frequency and polarisation of the interferometer as well as
on the interferometric acquisition geometry. The upper bound
of F(z, �w) is given by z0 + hV which in the case of a forest
scatterer corresponds to the (top) forest height. The lower bound
ofF(z, �w) is given by the reference height z0 associated with the
location of the underlying ground. The vertical (interferometric)
wavenumber κz is defined as

κz = m
2π

λ

Δθ

sin (θ0)
(5)

where θ0 is the nominal incidence angle, λ the wavelength, and
Δθ the change of the incidence angle induced by the spatial base-
line. The factorm accounts for the acquisition mode:m = 2 for
monostatic acquisitions and m = 1 for bistatic acquisitions. In
conventional interferometric applications, κz expresses the sen-
sitivity of the interferometric phase to (terrain) height variations
and is often expressed by the so called height of ambiguity HOA:
= 2π/κz, i.e., the height that corresponds to the interferometric
phase of 2π. In the context of (4), κz maps F(z, �w) to γ̃Vol(�w)
determining the sensitivity of the interferometer to a given
F(z, �w) and especially to a given hV.

III. FOREST HEIGHT INVERSION

Equation (4) allows the estimation of F(z, �w) (and of the
associated parameters as, for example, the forest height) from
measurements of γ̃Vol(κz, �w) performed at different spatial
baselines κz and/or different polarisations �w. One way to do
so is to parameterize F(z, �w) into a set of geometrical and
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scattering/propagation parameters and then to use γ̃Vol(κz, �w)
measurements to estimate these parameters by inverting (4). For
a robust inversion, the number of parameters used to parame-
terize F(z, �w) has to be balanced by the number of available
γ̃Vol(κz, �w) measurements.

For forest applications, two-layer models have been proven
to be sufficient (in terms of robustness and performance) to
parameterize F(z, �w). While at lower frequencies, as at L- and
P-band, the layers are considered continuously extended, at
higher frequencies [7]–[9], such as at C- and even more at
X-band, models with horizontally or vertically discontinuous
layers have also been successfully used to describe interfero-
metric measurements of corresponding forests [36]–[38]. In the
following, we consider continuously extended layers. Accord-
ingly, F(z, �w) consists of an extended vegetation (volume) com-
ponent fV(z, �w) and a Dirac-like component mG(�w)δ(z− z0)
that accounts for the scattering contribution(s) occurring on (or
with) the underlying ground (i.e., direct surface and dihedral
vegetation-surface contributions)

F (z, �w) = fV (z, �w) +mG (�w) δ (z− z0) (6)

where mG(�w) is the ground scattering amplitude. Substituting
(6) in (4) leads to

γ̃Vol (κz, �w) = exp (i ϕ0)
γ̃V0 (κz, �w) +m(�w)

1 + m(�w)
(7)

where ϕ0 = κZ z0 is the phase related to the underlying ground
height z0 and

γ̃V0 (κz, �w) =
∫hV
0 fV (z, �w) exp (iκZ z) dz

∫hV
0 fV (z, �w) dz

(8)

is the volume only coherence and m(�w) = mG(�w)/ ∫hV
0

fV(z, �w) dz is the effective ground-to-volume (amplitude) ratio.
Different models have been proposed for modeling the ver-

tical distribution of scatterers in the vegetation layer fV(z, �w)
including exponential, linear, Gaussian, and polynomial formu-
lations. A widely used approach is to assume an exponential
distribution of scatterers

fV (z, �w) = mV (�w) exp (2σ (�w) z/cos (θ0)) (9)

where fV(z, �w) is described by an exponential defined by a
single parameter, namely the exponential rate σ(�w). At higher
frequencies, σ(�w) can be interpreted as a mean extinction value
for the vegetation layer associated with the “attenuation rate”
of the profile so that σ(�w) is often expressed in [dB/m]. In
the case of a Random Volume σ (�w) = σ becomes polarization
independent so that

fV (z, �w) = fV (z) = mV (�w) exp (2σz/cos (θ0)) (10)

and the total vertical distribution of scatterers F(z, �w) is

F (z, �w)=mV (�w) exp (2σz/cos (θ0)) + mG (�w) δ (z− z0) .
(11)

The model of (11) known as the Random Volume over Ground
[7] model comprises four unknowns: the forest height hV, the
extinction coefficient σ, the phase term ϕ0 associated with the

reference height z0, and the polarization-dependent ground-to-
volume ratiom(�w). The polarization-dependent volume scatter-
ing amplitude mV(�w) cancels out when forming the interfero-
metric coherence [see (8)] leading to a polarization-independent
volume only coherence expression.

The inversion of (11) using a single baseline requires the avail-
ability of quad-pol data but leads – when unconstrained – to non-
unique solutions [39], [40]. Assuming a zero-ground-to-volume
amplitude ratio, i.e., m(�wV) = 0, in at least one polarization
�wV allows the unambiguous estimation of forest height. At the
same time m(�wV) = 0 allows a balanced inversion problem
even in the case of dual-pol data [25].

The standard DEM mode of TanDEM-X is, however, a single-
pol mode operated in HH (i.e., �wHH) or VV (i.e., �wVV) polar-
ization. Assuming m(�wV) = 0, that transforms (7) to

γ̃Vol (κz, �w) = exp(i ϕ0) γ̃V0(κz, �w) (12)

is not enough for obtaining a balanced inversion scenario as
there are still three remaining unknowns, i.e., the forest height
hV, the extinction coefficient σ, and the phase term ϕ0 against
a (complex) interferometric volume coherence measurement
γ̃Vol(�wHH). In this case, the inversion relies on the additional
assumptions or external information available.

There are two possible ways to force a balanced inversion
problem from a single-channel interferometer. The first one is
to use an external DTM to estimate the ground topographic phase
exp(iϕ0). For this, the DTM is converted to a topographic phase
term exp(iϕDTM) = exp(i hDTM κZ) . A remaining (constant)
phase offset exp(iϕOff) between exp(iϕDTM) and γ̃(κZ,

⇀

wHH)
can be estimated by using a reference point (as a corner re-
flector or a bare area with high coherence) so that exp(iϕ0) =
exp(iϕOff) exp(iϕDTM). In this way, (9) can then be inverted
for forest height hV and extinction σ by means of

min
hv,σ

‖γ̃Vol (κZ, �wHH) exp (−iϕ0)− γ̃V0 (κZ, hV, σ) ‖. (13)

The second way is to fix the extinction coefficient to a certain
value σ : = σ0 , that is equivalent to fix fV(z, �w) (and conse-
quently F(z, �w)). This leads to a balanced inversion problem

min
hv,ϕ0

‖γ̃Vol (κZ, �wHH)− γ̃V0 (κZ, hV, ϕ0) ‖. (14)

The special case of σ := 0 dB/m corresponds to a uniform
distribution of scatterers and leads to the characteristic sinc-
decorrelation function

γ̃Vol (κz, �w) = exp

(
iκz z0 + i

κz hV
2

)
sinc

(
κz hV
2

)
(15)

where sinc (x) = sin(x)/x. In this case, the volume coherence
at a given baseline depends only on the forest height hV, and the
ground topography ϕ0 = κz z0. The phase center is located at
half the forest height. This reduces the estimation of forest height
to a single parameter estimation by means of (15) and can be
performed using the absolute value of the volume coherence.

IV. LIDAR WAVEFORM DATA

Large footprint, full waveform lidars as NASA’s airborne
Land, Vegetation, and Ice Sensor (LVIS) [41] transmit short
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laser pulses to illuminate an area on the ground and receive the
reflected distribution of (light) energy, known as the waveform,
as a function of time. Accordingly, the received waveform
depends directly on the 3D distribution of the intercepted veg-
etation elements within the footprint [42]. The reflected (i.e.,
backscattered) intensity from a vegetation layer of thickness
(i.e., height) hV located over a reference elevation z0 – ignoring
for simplicity the propagation through the atmosphere and as-
suming a penetration until the ground level z0 – can be modeled
as

I (x, y, z) = I0

∫ z0+hV

z0

∫∫
σ (x, y, z) · e−τ(z−z0)dydxdz

(16)
where σ(x, y, z) is the volumetric reflection of the vegetation
layer, τ the volumetric extinction coefficient that accounts for
the two-way attenuation within the vegetation layer. Assuming
for simplicity a constant weighting across the footprint, the hor-
izontal dependency can be dropped and the received waveform
P(z) is obtained by the convolution of the reflected intensity
with the system pulse shape p(z)

P (z) = p (z)⊗ I (z) . (17)

It is clear that lidar waveforms P(z) and X-band vertical
reflectivity profiles F(z, �w) are not the same because of the
difference in frequency and acquisition geometry. However,
the high attenuation at both frequencies makes both P(z) and
F(z, �w) sensitive to the geometric architecture of the canopy
reflectivity profiles F(z, �w). However, the high attenuation at
both frequencies makes both P(z) and F(z, �w) sensitive to the
geometric architecture of the canopy. This introduces a certain
similarity between P(z) and F(z, �w), especially when both are
measured at the same or similar spatial resolution, which is
explored in the following. In this sense, the use of the lidar
waveforms P(z), normalized to unit height, in (4)

γ̃Vol (κz, �w) =
∫ z0+hV
z0

P (z) exp (iκZ z) dz

∫ z0+hV
z0

P (z) dz
(18)

to estimate forest height by inverting single-baseline single-
polarimetric interferometric volume coherence measurements
by TanDEM-X is attempted.

V. EXPERIMENTAL DATA

The AfriSAR campaign was deployed in 2015 and 2016 as
a joint effort among space agencies over the African tropical
forests of Gabon [43]–[45]. The objective of the campaign
was to perform interferometric and tomographic SAR as well
as lidar waveform and ground measurements for the develop-
ment, calibration, and validation of tropical forest structure and
biomass estimation algorithms relevant in the context of future
spaceborne SAR and Lidar missions. One of the main test sites of
AfriSAR was in the Lopé National Park, consisting of monsoon
forest and savannah landscapes. The terrain is hilly, with many
local slopes steeper than 20°. The maximum tree height exceeds
50 m in many stands. The forest (above ground) biomass ranges
between 10 t/ha at savanna areas up to ∼400 t/ha at mature
forest stands. For this work, the data collected by TanDEM-X

and LVIS, NASA’s LVIS, an airborne, wide-beam full-waveform
lidar system [44]–[47], in the framework of AfriSAR are used.

The TanDEM-X data have been acquired on January 25,
2016, in a strip-map bistatic single-pol descending mode at HH-
polarization at 44.5° (nominal) incidence angle and (mean) ver-
tical wavenumber kz = 0.1 rad/m corresponding to a Height
of Ambiguity HoA = 62.8 m.

In February 2016, LVIS was flown onboard NASA’s Langley
B200 aircraft over Lopé acquiring full waveforms over footprints
with a mean diameter of approximately 22 m in a continuous
way. From these, the RH100 map (i.e., the height in meters
relative to the ground level at which 100% of the waveform
energy occurs), as well as the DTM are derived.

Both TanDEM-X (i.e., the interferometric volume coherence
component obtained after the compensation of SNR and other
system decorrelation contributions [48] and LVIS data (i.e.,
RH100 and DTM) are resampled to 10× 10 m grid and projected
to UTM coordinates. Fig. 1 shows from left to right the LVIS
RH100 map, the TanDEM-X HH backscatter power map, and
the LVIS DTM in UTM coordinates. Only the areas covered by
LVIS are shown.

VI. EXPERIMENTAL RESULTS

The different inversion schemes discussed in Section IV are
now applied to the experimental data introduced in Section V.
First, acting as a reference, the inversion under the no ground
assumption, i.e., mG(�wV) = 0 and using a zero extinction coef-
ficient, i.e., σ : = 0 is performed. The obtained results and their
comparison against the Lidar reference data are shown in the
first row of Fig. 2: On the left: the obtained forest height map, in
the middle: the height difference map between estimated and the
reference (i.e., LVIS Lidar) heights and on the right: the (normal-
ized) validation plot are shown. The obtained height estimates
are clearly underestimated for heights larger than 30 m. The
overall root mean square error isRMSE = 16.7 m and the corre-
lation coefficient r2 = 1−∑

(y − ỹ)2/
∑

(y − ȳ)2 = −4.58
where y is the height estimate, ȳ is the mean height estimate,
and ỹ is the reference height [49].

Next, the inversion using the individual LVIS waveforms
is performed. For each volume coherence sample of the 20×
20 m2 grid, the corresponding height normalized LVIS wave-
form P(z) is used to approximate the reflectivity function by
means of (18). Also here the inversion was performed by using
the absolute value of the volume coherence only in order to
remove the topographic dependency. The results are shown in
the second row of Fig. 2. The performance is improved with
respect to the height estimates obtained using the zero-extinction
reflectivity profile with an RMSE = 13.85 m and r2 = −1.89.
But also here the heights higher than 35 m are underestimated.
By looking at the height difference map, it becomes clear that
the underestimation occurs on particular forest stands and is not
correlated with topographic slopes.

Fig. 3 zooms into such an underestimated stand: on the bottom
plot: the fine beam LiDAR height image and on the top - the
TanDEM-X volume coherence map scaled from 0 (black) to 1
(white) are shown. The LiDAR height image indicates a dense
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Fig. 1. Lopé site. From left to right: LVIS RH100 [m], TanDEM-X HH power, and LVIS DTM [m] in UTM coordinates. Only the areas covered by the LVIS
measurements are shown.

forest stand while the high (almost surface-like) coherence level
indicates a very limited penetration comparable to the nearby
surface. This makes clear that the main reason for the underes-
timation is the limited penetration at X-band that prevents from
“seeing” the whole (vertical) forest extent.

It is well known that the underestimation of forest height
can be compensated by using the information of the underlying
ground topography in form of an (externally) available DTM.
The conventional approach for this correction is to convert the
DTM height hDTM to a topographic phase componentϕDTM =
hDTM κZ and subtract it from the interferometric phase of the

(complex) volume coherence [25]. This approach is the most
accurate way to compensate the underestimation of tall/dense
stands, however, it requires an accurate DTM as any DTM
error propagates directly to the height error budget. Here, an
alternative DTM-based approach to handle the underestimation
problem is proposed, which may also be (more) robust against
DTM inaccuracy. The affected stands/samples are identified and
“filtered out” by means of a simple filter defined using in this
case the available LVIS DTM. Accordingly, we consider only the
areas where the estimated forest height is larger than the phase
center height, i.e., the height difference between the TanDEM-X
phase center location and the topographic ground (DTM) height
HDTM

hv ≥ aT
ϕ− ϕDTM

kz
(19)

where ϕDTM = kz HDTM and aT is a threshold parameter. The
results after applying the underestimation filter usingaT = 1 are
shown in the third row of Fig. 2. The filter removes 2.5% of
the height estimates. The height underestimation of the tall
stands is clearly reduced since the filter removed most of the
cases of insufficient penetration. It is important to note that
the threshold aT in (19) determines the performance of the
underestimation compensation. Higher thresholds (up to aT =
1.2) compensate underestimation better at the price of removing

a larger number of samples. Lower thresholds (up to aT = 0.8)
keep more samples but compensate the underestimation less
effectively.

Finally, the quality of the available DTM plays also a role
in the threshold selection. A more conservative (e.g., higher)
threshold also compensates – up to a certain degree – for larger
DTM errors (e.g., variance). In other words, a less accurate DTM
can be used at the expense of a higher amount of removed height
samples.

For comparison, the underestimation filter using aT = 1 is
also applied to the height estimates obtained using the zero-
extinction reflectivity profile removing about 18.7% of the es-
timates. The results are shown in the fourth row of Fig. 2.
The performance with RMSE = 9.3 m and r2 = 0.23 is now
improved with respect to the “unfiltered” estimates but inferior
with respect to the inversion using the LVIS waveforms.

The remaining underestimation of the taller stands is caused
by the insufficiency of the assumed zero-extinction reflectiv-
ity profile to describe the real underlying reflectivity profile:
the actual ground contribution in the TanDEM-X reflectivity
is expected to be significantly smaller than the reflectivity at
heights closer to the top while the zero-extinction reflectivity
profile assumes the same reflectivity across the whole height
range. Having said this, it is also important to look at the lower
height range (i.e., below 20 m) of the validation plot where
both approaches overestimate. Part of the overestimation in
this lower height region is attributed to the inherent residual
non-volumetric decorrelation contribution. But there is more
than this, as the performance of the zero-extinction reflectivity
profile is better than the performance achieved using the LVIS
waveforms. The reason for this is that the LVIS waveforms
are not the same as the TanDEM-X reflectivity profiles. Even
though both profiles are in a similar (but not identical) way
predominantly defined by the geometric properties/architecture
of the canopy (due to the high frequency range in which both
systems operate and the high spatial resolutions) the different
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Fig. 2. From left to right: forest height inverted from TanDEM-X coherence, the inversion error with respect to LVIS CHM reference and the performance
validation plot using: zero extinction profile (first row), individual LVIS waveforms (second row), individual LVIS waveforms for samples which satisfied the
criteria (19) with aT = 1 (third row), and zero extinction profile for samples which satisfied the criteria (19) with aT = 1 (fourth row).

acquisition geometries induce significant differences especially
when it comes to lower/sparser forest stand conditions. The
nadir-looking LVIS geometry is responsible for a larger ground
contribution compared to the TanDEM-X reflectivity where the
side-looking geometry implies a larger way through the forest
canopy and, thus, a stronger attenuation of the ground scattering
contribution. Exactly this larger ground contribution in the LVIS
waveforms (relative to the underlying X-band ground contribu-
tion) causes the overestimation when using the LVIS waveforms
compared to the results achieved assuming a zero-extinction
reflectivity profile.

VII. “MEAN” PROFILE

In the previous section, the use of LVIS waveforms P(z) to
approximate the TanDEM-X reflectivity function in the con-
text of forest height inversion is discussed and demonstrated.
This approach can be followed everywhere where lidar data
are available. However, usually, the available lidar data do not
cover the whole TanDEM-X scene. In order to extend such a
lidar-supported TanDEM-X data inversion also to areas where
lidar data are not available, the concept of a “mean” profile used
for the whole scene is attempted [50], [51].
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Fig. 3. Top plot: TanDEM-X volume coherence approaching values in the
dense forest similar to those on surface, indicating low penetration zone. Bottom
plot: Forest height measured by fine-beam LiDAR (1-m resolution) in the dense
forest region.

The first step for obtaining such a “mean” profile from the
available lidar waveforms is the formation of the so-called profile
matrix. The available lidar waveforms Pi(z) are normalized to
unit height, resampled to a common number of height sam-
ples between 0 and 1, and stacked as columns of the profile
matrix [P].

From the profile matrix, a covariance matrix is formed and
diagonalized

[R] = [P ] [P ]T = [U ] [Λ] [U ]T . (20)

The diagonal matrix [Λ] contains the positive real eigenvalues
of [R] while the columns of [U ] are given by the orthogonal
eigenfunctions of [R] P̄i(z). Fig. 4 shows the first six eigen-
functions while Fig. 5 illustrates the spectrum of the eigenvalues
obtained using all available LVIS waveforms when forming [P].
An important result is that already the first eigenvalue represents
almost 80% of the total profile power (i.e., the trace of [Λ] given
by the sum of all eigenvalues) while the first five eigenvalues
represent more that 95%. This indicates that already a small
number of eigenfunctions is sufficient for a widely accurate

Fig. 4. First six eigenfunctions of the profile covariance matrix.

Fig. 5. Spectrum of eigenvalues of the profile covariance matrix.

profile representation and/or reconstruction. Higher order eigen-
values (and thus the associated eigenfunctions) become less
significant for the reconstruction of the profile.

The obtained eigenfunctions can be used to build up the
“mean” profile by means of linear combination

Fm (z) =

N∑
i=1

aiP̄i (z) . (21)

Note that (21) is very similar to the concept of orthogonal
functions for describing the vertical radar reflectivity as pro-
posed in [10] but addressed in terms of lidar waveforms rather
than Lagrange polynomials. In the following, only the first
eigenfunction Fm(z) = P̄1 (z) is used. Using Fm(z) in (4) and
taking the absolute coherence value reduces the forest height
inversion to a single parameter estimation. The same mean
profile is used to invert the whole scene. The underestimation
filter of (19) withaT = 1 is applied on the forest height estimates
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Fig. 6. From left to right: Forest height inverted from TanDEM-X coherence for samples that satisfied the criteria (19) with aT = 1, the inversion error with
respect to LVIS CHM reference and the performance validation plot using: the representative profile (top row) and a representative profile for two height classes
(bottom row).

obtained removing about 10.6% of the estimates. The results
obtained (after filtering) are shown in the first row of Fig. 6: from
left to right the filtered forest height map, the height difference
map with respect to the reference LVIS forest heights and the
(normalized) validation plot. The obtained height estimates are
surprisingly good with RMSE = 8.16 and r2 = 0.16.

A comparison with the validation plot obtained when using for
each coherence sample the individual LVIS waveform (shown in
the third raw of Fig. 2.) makes clear that the underestimation of
the taller stands obtained using the “mean” profile is not due to
the penetration limitations, but rather to the discrepancy between
the “mean” profile and the actual underlying reflectivity profile.
The “mean” profile seems to overestimate the actual ground
contribution in the TanDEM-X reflectivity.

Nevertheless, the results suggest that the use of a single profile
still allows a reasonable forest height estimation performance.
The quality of the final performance depends on the structural
heterogeneity of the individual scene. At the same time, the
estimation of the eigenfunctions and, thus, of the “mean” profile
appears (very) robust with respect to the number of available
waveforms. Even only 10% of the waveforms lead to practically
the same eigenfunctions and eigenvalues (assuming a relative
homogeneous “thinning” of samples). In this sense, a homo-
geneous distribution of waveforms across the different stand
structures within the scene is more important than a very high
number of waveforms.

One way to improve the performance is to account for the
change of the “mean” profile at the different height classes. This
can be done by estimating the “mean” profile within different

Fig. 7. Zero-order eigenfunction derived for the tree classes from 20 to 25 m
(blue curve) and from 40 to 45 m (green curve).

height intervals and interpolating the obtained solution spaces.
For example, the representative (height normalized) profile ob-
tained accounting only for forest heights below 25 m is shown
in Fig. 7 by the blue curve and the profile accounting only for
forest heights above 40 m – by the green curve. The ground
contribution (accounted relative to the canopy contribution) is,
as expected, large(r) for the lower height range and decreases
significantly in the higher height range. In order to avoid any
discontinuity in the solution space obtained when using the
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two “mean” profiles in (15), the transition from the one height
range to the other is interpolated over a sufficiently wide height
range; in this case, between 25 and 40 m. The obtained results
(after filtering that removes about 14% of the height estimates)
are finally shown in the second row of Fig. 6. The overall
performance is improved (even if the overall RMSE = 8.62 is
slightly worse) as the correlation increases to r2 = 0.40 and the
underestimation of the taller stand is compensated.

VIII. DISCUSSION AND CONCLUSION

Model-based forest height inversion from Pol-InSAR data
relies on the realistic parameterization of the underlying (verti-
cal) radar reflectivity function. Interferometric coherence mea-
surements at different polarizations and/or spatial baselines are
then used to recover the reflectivity parameterization or parts
of it. In the context of interferometric TanDEM-X - especially
in the global single pol DEM mode, the limited dimensionality
of the observation space does not allow the reconstruction of
even very primitive vertical reflectivity parameterizations (as for
example a vertically exponential decreasing reflectivity). Thus,
in order to explore the inherent sensitivity of the interferometric
TanDEM-X coherence to the vertical forest structure, additional
information is required. This can be in form of a priori in-
formation (for example in form of a DTM) or by means of
complementary (ground-, air-, or space-borne) remote sensing
measurements.

The use of lidar measurements to support the inversion of
structure-based interferometric TanDEM-X coherence is al-
ready investigated in a number of studies. A given similarity of
lidar and TanDEM-X measurements, induced by the high sensi-
tivity to the geometrical attributes/architecture of the canopy, the
high attenuation rates and the high spatial resolution common
to both configurations, supports such approaches.

In this work, the use of lidar waveforms to directly approxi-
mate TanDEM-X reflectivity is proposed. The adequate perfor-
mance achieved should not imply that the lidar waveforms equal
TanDEM-X reflectivity. There can be significant deviations pri-
marily induced by the different acquisition geometries (nadir-
looking lidar vs side-looking TanDEM-X) especially when it
comes to lower/sparser but also tall forest stands. The nadir
looking LVIS geometry results in larger ground contributions
compared to the TanDEM-X reflectivity where due to side-
looking geometry, the paths through the forest canopy are larger
leading to weaker ground scattering contributions. However,
even if not the same, lidar waveforms appear a sufficiently
good approximation of TanDEM-X reflectivity for forest height
estimation.

The underestimation of forest heights as a result of limited
penetration at X-band shows up clearly as a serious error con-
tribution in tropical (and probably not only) forests vegetation
especially for tall and/or dense forest conditions. As already
discussed, the best way to account for it is to use an (accurate)
external DTM. This allows us to obtain unbiased (with respect to
penetration) forest height estimates for each coherence sample.
The accuracy of the DTM has to be on the order of the forest
height accuracy aimed at. An alternative approach is proposed

and implemented here relying on comparing the obtained forest
height estimates against the height of the phase center: forest
height estimates below a given threshold are removed. The
advantage – when compared to the DTM approach – is that a
lower accuracy DTM can be used paying the price of less valid
samples.

Finally, the use of a single “mean” reflectivity profile derived
from the available lidar waveforms is proposed. Also in this
case, the achieved performance is remarkably good even if the
limitations of using a single fixed profile across stands with
the very different structure are evident. One step in improving
this is attempted by accounting for different “mean” profiles for
different height classes with a given success. However, this is
probably not the best possible way to overcome this problem
as the definition of the necessary height ranges for an optimal
inversion performance may vary with forest conditions.

Nevertheless, it is important to realize that, in general, the
forest height is the main contribution to interferometric volume
coherence, while the effect of the shape of the (vertical) reflec-
tivity is weaker, but still significant enough to have a decisive
impact on the achieved performance. Accordingly, there is a
performance tradeoff between the ability to adapt the vertical
reflectivity model to the local stand conditions and the knowl-
edge required to do this. This knowledge can be integrated into
the inversion problem itself in terms of additional unknown
parameters or provided by/derived from other forest structure
measurements as attempted in this work.
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