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Abstract—Polarimetric synthetic aperture radar (PolSAR) im-
agery can provide more intuitive and detailed SAR polarization
information, and it is widely used in the classification and seman-
tic segmentation of remote sensing. To bridge the PolSAR data
and application, the 2020 Gaofen Challenge on Automated High-
Resolution Earth Observation Image Interpretation provides a set
of high-quality PolSAR semantic segmentation dataset. A series of
preprocessing methods is first used to analyze the PolSAR images
to improve the semantic segmentation performance of the PolSAR
imagery. A special polarimetric decomposition method is used to
extract the features, and the filter and the data truncation are imple-
mented to enhance local and global information of images. And the
random region matting method is proposed to expand the training
samples. Finally, the DeepLabV3+ method with the ResNet101-V2
is employed to achieve the semantic segmentation. A variety of
comparison experiments verifies the effectiveness of our methods.
Simultaneously, compared with the classification methods of other
groups in the competition, our methods have obvious advantages
in the inference time and semantic segmentation accuracy. The
proposed method achieved a frequency weighted intersection over
union of 75.29% in the contest.

Index Terms—Data augmentation, DeepLabV3+, Gaofen-
3, image classification, polarimetric synthetic aperture radar
(PolSAR), semantic segmentation.

I. INTRODUCTION

OVER the last decade, the synthetic aperture radar (SAR)
imagery has been widely used in the geographical survey,

climate change research, and other applications due to its high
resolution, day-and-night, and weather-independence. Polariza-
tion characteristics can reflect targets’ physical properties from
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different information provided by the magnitude, frequency,
and phase. Thus, it is a crucial research part of the image
analysis and interpretation of SAR [1]–[3]. As a fundamental
step in polarimetric SAR (PolSAR) image processing and ap-
plications, the semantic segmentation of PolSAR imagery can
realize segmentation and categorization simultaneously, thus
obtains smooth and fine-grained classification to assign one land
cover category to each pixel [4]–[6]. It is beneficial in disaster
monitoring, land cover classification, water identification, and
so on. How to accurately segment PolSAR imagery to solve
practical problems has become a hot topic, as well as one of the
main topics in the Gaofen Challenge Contest.

In earlier PolSAR image segmentation algorithm, some meth-
ods have been proposed for PolSAR imagery [7], such as the
Markov random field [8], [9], the conditional random field
[10], [11]. However, it is still challenging to get a reliable and
consistent scene semantic segmentation. With the continuous de-
velopment of deep learning networks and hardware devices, the
precision and the computing efficiency of semantic segmentation
have made significant progress [12]. The convolutional neural
network (CNN) is especially good at learning features from raw
data automatically. It has pushed the performance of semantic
segmentation tasks to a soaring height on natural images [13],
[14]. Based on two publicly available optical image datasets: Vi-
sual Object Classes Challenge 2012 (VOC2012) and Microsoft
Common Objects in Context (MSCOCO), some semantic seg-
mentation methods have been proposed, including the fully
convolutional network (FCN) [15], U-net [16], SegNet [17],
Dilated Convolutions [18], RefineNet [19], PSPNet [18], mask
R-CNN [20], and their combination methods [21]. Due to the
similarity of semantic segmentation between natural images and
PolSAR images, these semantic segmentation methods are also
suitable for PolSAR [22] images. Although some methods, such
as FCN and Atrous-ResNet50, have been implemented in SAR
image semantic segmentation [23]–[28], their methods are sub-
ject to the low-resolution dataset, the ignorance of polarization
information, and imperfect selection of methods, resulting in
unsatisfactory classification results.

Generally, the refined polarization scattering mechanism
model and interpretation can extract features with intense dis-
crimination for different feature categories from the fully po-
larized information. Given the mature polarization decompo-
sition methods, the classification performance of the classifier
with the polarization scattering mechanism model is superior.
The effective use of the scattering mechanism and statistical
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characteristics to preprocess the PolSAR images can improve
the training efficiency of the neural network and enhance the
generalization ability of the neural network. Since the GaoFen-
3 high-resolution PolSAR imagery disclosed in the Gaofen
Challenge Contest has not provided the phase information, the
conventional PolSAR decomposition methods cannot be directly
used to process the PolSAR imagery. Two kinds of pseudocolor
images are synthesized to efficiently extract polarimetric fea-
tures of the PolSAR images, so as to facilitate human observation
of ground objects and improve the classification performance of
the semantic segmentation network.

Nonetheless, two factors also affect the semantic segmenta-
tion performance of the PolSAR imagery: a large amount of
speckle noise and the limited number of training samples. The
former is formed by the coherent imaging mechanism of the
PolSAR systems. Although the existing speckle suppression
methods, such as the Refined-Lee filter, are widely implemented
in PolSAR imagery, they are not the best in terms of the partic-
ular contest data and the processing efficiency. Although the
semantic segmentation network has a certain ability to resist
noise interference, the outlier caused by the multiplicative noise
and the strong backscatter will vastly impact the classification
performance of the neural network, and this negative effect
is independent of the quality of the segmentation method. In
this article, the statistical characteristics of the high-resolution
PolSAR datasets have been analyzed to address this issue, and
then some inessential extreme values are discarded to simplify
the PolSAR imagery according to the statistical histogram to
enhance the image representation, thereby improving the clas-
sification performance of the semantic segmentation method. In
order to ensure the smoothness of the image and save more
backscattering information, a simple filter is designed to re-
duce the strong scattering and speckle noise while ensuring
the integrity of the weak scattering scene. The median filter is
implemented to minimize the outlier noise, and a conditional
constraint is designed to provide the complete information of
surface scatting, e.g., waters and road, and unrecognized region
in the PolSAR image.

Aiming at the limitation of training samples, the existing
sample enhancement methods, such as rotation, flip, translation,
color change, and so on, can improve the robustness of the
semantic segmentation network. Still, these algorithms are only
limited to transform the known image scene instead of construct-
ing the unknown scene, thus restricting the classification perfor-
mance. Inspired by the random neighbor pixel-block (RNPB)
method [29] and background matting [30], an intelligent Pol-
SAR image synthesis method, namely, random region matting
(RRM), is devised to enrich the training samples. First, different
categories can be cut into different components according to
their labels in the training samples. Then, one PolSAR image can
be randomly selected as the background image, and the category
components are randomly selected from other images to replace
the corresponding pixels of the background image, so as to
build new training samples. Simultaneously, considering the
scattering characteristics and resolution of different images, the
components are adjusted according to the statistical information
of the background image, and the final combination image can

be used for the training samples. Moreover, the stitching of slices
from different images will result in obvious boundaries between
scenes in the combination image, which may weaken the training
effect of the expanded sample on the neural network. Therefore,
the previous conditional filter is also implemented to ensure the
smoothing of the synthetic image.

However, an appropriate semantic segmentation network is
essential to gain ideal classification results. Although multichan-
nel networks can effectively improve the performance of image
segmentation, the complex network structure reduces the rea-
soning efficiency of the network. Especially, the segmentation
efficiency accounts for 20% of the score in the competition, and
the limited resources restrict the execution of these complex
networks, while the performance of a single-channel network
is usually affected by the test sample with unfixed resolution.
Dilated convolutions can effectively segment for images with
different resolutions [31], and DeepLabV3+ designed by the
multiscale feature is suitable for the unfixed resolution PolSAR
image. Therefore, ResNet101-V2 is selected as the backbone of
our DeepLabV3+ model. The main contributions of our work
are as follows.
� The RRM is proposed to enhance the segmentation perfor-

mance of the semantic segmentation network. The RRM
aims to build the possibility of unseen scenarios and en-
hance the correlation among training samples.

� The statistical distribution of the PolSAR image in the
contest is analyzed. According to its influence on the
performance of the segmentation network, a data expansion
method is given to improve the segmentation accuracy.

� Two pseudocolor images are synthesized to simplify the
four-channel PolSAR images, so as to increase the speed of
network reasoning and reduce computer resource usage. In
addition, a simple filter is designed to minimize the strong
scattering and speckle noise, and smooth the combination
images of the RRM method.

The rest of this article is organized as following. The data
processing and analysis, the RRS method, and the semantic
segmentation method are presented in Section II; the compar-
ative experiments are shown in Section III; conclusions and
discussions are included in Section IV.

II. METHODOLOGY

As mentioned in Section I, a single-channel semantic segmen-
tation method, namely DeepLabV3+, is developed to classify the
high-resolution PolSAR images subtly, and a series of improved
processes are implemented in data expansion and preprocessing
to enhance the performance of the segmentation method. The
overall classification framework is shown in Fig. 1.

First, based on the RRM method, each training samples can
be expended into difference scenarios with slices from each
category. According to the proportion of the image occupied by
each slice, each slice is given a probability of being selected, and
the small target has a higher probability to ensure the balance of
training samples. Next, according to the statistical characteristics
of each polarimetric channel, the PolSAR images are filtered,
enhanced, and normalized, respectively. Then, the polarization
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Fig. 1. Overall classification framework in this article.

decomposition method is used to extract the polarimetric fea-
ture and compose the pseudocolor map. Finally, based on the
pseudocolor maps, the DeepLabV3+ is implemented to realize
the fined classification of the PolSAR image.

Four groups of the polarimetric SAR images are randomly
selected to illustrate the algorithm, and the labels and images
are shown in Fig. 2. Due to the influence of strong backscatter
data and speckles, the raw image cannot display the essential
attributes of the samples, even if a very small amount of scat-
tering information can be noted by artificial observation. After
histogram equalization, the overall information is displayed, but
most of the images are still fuzzy, as shown in Fig. 2(b)–(d). The
appearance indicates that most pixel values are concentrated in
one suitable interval. The strong backscattering weaken most
of the reasonable pixels, leading to excessively enhance some
pixels in the histogram equalization results. Similarly, these
images cannot be directly normalized by the usual methods (e.g.,
all pixels divided by the largest pixel value) to the segmentation
method. Otherwise, the effective pixel will be compressed to a
minimal value, affecting the segmentation result. This negative
effect has nothing to do with the performance of the segmenta-
tion network.

A. PolSAR Data Representations

The representation of PolSAR image is the basis of classifi-
cation. A PolSAR image contains four channels of information,
namely, HH, HV, VH, and VV, which represent four linear

orthogonal polarization combinations. The complex backscat-
tering matrix [S] for each image pixel can be expressed as

[S] =

[
SHH SHV

SV H SV V

]
(1)

where H and V indicate the horizontal and vertical polariza-
tion channels, respectively. Under the monostatic backscattering
case, there is a reciprocity theorem, i.e., SV H = SHV . There-
fore, the polarimetric information can be interpreted by the
coherent matrix [T ] and covariance matrix [C]

[T ] = 〈�k · �k∗T 〉 (2)

[C] = 〈�Ω · �Ω∗T 〉 (3)

where 〈〉̇ denotes the ensemble average, ()̇
∗T

indi-
cates the complex conjugation and transpose, �k =√

2
2 [SHH + SV V SHH − SV V 2SHV ]T is the Pauli-based

scattering vector, and �Ω = [SHH

√
2SHV SV V ]T is the

lexicographic scattering vector. Accordingly, the coherency
matrix [T ] and covariance matrix [C] are 3× 3 in the monostatic
backscattering case, i.e., (4) and (5)

C3 =

⎡
⎢⎣

〈|SHH |2〉 √
2 〈SHHS∗

HV 〉 〈SHHS∗
V V 〉√

2 〈SHV S
∗
HH〉 2

〈|SHV |2
〉 √

2 〈SHV S
∗
V V 〉

〈SV V S
∗
HH〉 √

2 〈SV V S
∗
HV 〉

〈|SV V |2
〉

⎤
⎥⎦.
(5)

Due to the lack of phase information and the consideration of
computational efficiency, it is difficult to proceed with more hier-
archical decomposition models. The pseudocolor images can be
represented with |SHH + SV V |2, |SHH − SV V |2 and 4|SHV |2
in the coherent matrix [T ], and can also be represented with
|SHH |2, 2|SHV |2 and |SV V |2 in the covariance matrix [C]. The
pseudocolor images can reduce the amount of data processed
by the network, thus improving the processing efficiency of the
network. Correspondingly, the effective data representation can
improve the training efficiency and robustness of the upgraded
network.

B. High-Resolution PolSAR Scattering Statistics

Inevitably, the speckle noise of the PolSAR image is caused
by the coherent nature of the scattering phenomena. Even though
the speckle noise carries itself information about the illuminated
area, it degrades the appearance of images and affects the
performance of scene analysis tasks carried out by computer
programs (e.g., segmentation and classification) [32]. However,
the intense speckle prevents the use of the PolSAR images in the
automatic feature extraction. Even though this problem can be
countered by resorting to some forms of the multilook technique,
it is accompanied by the remarkable side effect of losing spatial
resolution. Meanwhile, the complex classification algorithm
reduces the efficiency of the semantic segmentation algorithm.
Considering the antinoise ability of the neural network, it is
more practical to find the problem that affects the classification
accuracy than to design a complex filtering algorithm.
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Fig. 2. Labels and images of the validation datasets. (a) Labels; (b) HH; (c) HV; and (d) VV.

Under the hypothesis of fully developed speckle, the observed
backscattered signal z(s)3 can be expressed as

z(s) = x(s)u(s) (6)

where x(s) is the noise-free reflectance and u(s) is the speckle
in intensity format. In the case of multiplicative noise, z(s) will
differ several times or even hundreds of times from x(s).

Simultaneously, as the basis of the backbone network, CNN
has been proved to extract the advanced features in images, thus
realizing effective classification and segmentation. Irreplace-
ably, the convolution process is considered as the key of the
network, which can be expressed as

yi =
∑

Wi,j ∗ z′i,j + bi (7)

where yi is the output of the convolution layer corresponding
to the ith feature map, ∗ is the convolution processing, Wi,j is
the weight of the convolution kernel, bi is the bias, and z′i,j is

the input block of convolution layer corresponding to Wi,j . If
there are speckles in z′i,j in the input layer, the speckle causes
a difference of several hundred times between other pixels in
z′i,j , and the corresponding convolution weight is not 0, then the
result of Wi,j ∗ xi,j will be seriously distorted, thus weakening
the network with a lot of speckles in z(s). In addition to the
speckle noise, a small number of the strong backscattering can
also cause this negative situation, and it is necessary to find an
effective numerical interval by the scattering statistics. For the
four PolSAR images with the data type of the 16-b unsigned
integer (UINT16), the statistical results of each channel are
shown in Fig. 3.

Obviously, although the pixel value can ranges into the tens
of thousands, more than 90% of the pixels are in the [0, 511]. In
particular, in HH-channel and VV-channel, 91.05% and 89.11%
of the pixels are less than 256, respectively. The statistical results
means that the 99.6% pixel interval in [0, 65 535] is essentially

T3 =
1

2

⎡
⎣

〈|SHH + SV V |2
〉 〈(SHH + SV V )(SHH − SV V )

∗〉 2 〈(SHH + SV V )S
∗
HV 〉

〈(SHH − SV V )(SHH + SV V )
∗〉 〈|SHH − SV V |2

〉
2 〈(SHH − SV V )S

∗
HV 〉

2 〈SHV (SHH + SV V )
∗〉 2 〈SHV (SHH − SV V )

∗〉 4
〈|SHV |2

〉
⎤
⎦ (4)
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Fig. 3. Pixel statistics of the PolSAR images in different channels. (a) HH; (b) HV; and (c) VV.

invalid, resulting in low segmentation accuracy. To enhance the
data without reducing the processing efficiency, a hard threshold
N is set to deal with each pixel value xi, that is

p(xi) =

{
xi xi ≤ N

N xi > N
(8)

where p(xi) is the pixel value after the processing, N is set to
255, 511, and 255 in HH-, HV-, and VV-channel. To represent
more data and reduce the interference of weak of weak speckle
noise, a sample conditional filter is designed as

f(xi) =

{
filter(xi) xi > M

M xi ≤ M
(9)

where f(xi) represents the pixel value after filtering, filter(·)
is a filter, it is designed with a median filter in this article. To
conserve the integrity of the surface scattering information in
the image, such as rivers, roads and unknown areas, pixels with
a value less than M are not filtered.

In view of the antinoise capability of the backbone network in
the semantic segmentation network, the filter is not to eliminate
the speckle completely, but to further expand the representation
range of effective data, and save the image texture information as
much as possible. Equation (9) and (8) are, respectively, aimed at
reducing speckle and strong scattering in local area and global
area. After filtering, the statistics of the pixels are shown in
Fig. 4. In the three channels, 7.89%, 4.33%, and 9.52% of the

Fig. 4. Pixel statistics after filtering. (a) HH; (b) HV; and (c) VV.

pixels are regarded as the strong speckle noise and the strong
backscattering, and are processed by (8).

Although the median filtering can change the statistical infor-
mation of the PolSAR image, which may cause interference to
the unsupervised learning task of the PolSAR images, the goal
of the CNNs is to perform the high-level semantic interpretation
(i.e., feature extraction) through given images, rather than to
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Fig. 5. PolSAR images processed by the algorithm in this article. (a) HH; (b) HV; (c) VV; (d) pseudo-color images (|C11 |, |C22 |, |C33 |); (e) pseudo-color images
(|T11 |, |T22 |, |T33 |).

use the experience information directly [33]. Therefore, the
negative effect of the changed statistical information caused by
the median filtering is basically insignificant for the CNNs. On
the contrary, the strong backscattering information will greatly
weaken the feature learning and feedback adjustment effect of
the effective pixels in the network training process, resulting in
the degradation of the performance of the neural network. In
this situation, the truncation and enhancement of the training
dataset are workable and indispensable. In addition, based on
the RRM method in Section II-C, the matting scene will have
some boundaries between the background image, and this di-
vergence will weaken the influence of the composite image on
the segmentation network, so the filter is also implemented to
smooth the combination image to suppress the negative effect.

After these processing, the PolSAR images can be represented
in Fig. 5. Compared with the Fig. 2, the image quality of each
channel in Fig. 5 is significantly enhanced. Finally, the PolSAR
images are processed to produce the two pseudocolor images,
and the data type is changed from UINT16 to the 8-b unsigned

integer (UINT8). The data memory is compressed to 3/8 of the
original.

C. RRM Method

The deep learning method based on a large number of training
samples performs better than the traditional machine learning
algorithms in classification, target recognition, and so on. How-
ever, the training samples are often difficult to obtain in practical
application, thereby limiting the performance of the network.
Normally, the sample enhancement methods, such as rotate, flip,
transform, etc., can improve the adaptability of the segmentation
network to the target, but these methods basically do not change
the target scene, resulting in limited performance improvement.
The RNBP method has been proven to improve the classification
accuracy of the CNN and the long-short term memory under
limited samples. Inspired by the background matting method
and the RNBP method, the RRM method is proposed to create
unknown scenes for different categories.
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Fig. 6. Scene cutting schematic diagram of the SAR image.

Based on the labels on one training sample, the segmentation
range of different scenes in the image can be roughly determined,
so the image can be cut into different slices, as shown in Fig. 6.
Accordingly, the four-channel PolSAR images can also be cut
according to the labels. Then, the slices can be randomly trans-
formed, shifted, rotated, resized and so on, to create different
shapes. Based on one background selected from the training
samples, the changed slices can be used to form a new training
sample, hence the workflow of the RRM method can be shown
in Fig. 7. The relationship between the background diagram and
slices can be expressed as

I ′(i, j) = u0(i, j) · I(i, j) +
K∑

k=1

uk(i, j) · f(sk(αi, θj))

(10)
where I ′(i, j) is the combination image, I(i, j) is a background,
K is the number of slice, u∗(i, j) is the pixel decision function,
which determines whether the pixel is retained or not, sk(·)
is the inlaid slice, and f(·) is the transformation function and
used for rotation, shrink, and other transformation processes.
uk(i, j) · f(sk(αi, θj)) is noted as Sk(αi, θj). Considering the
balance of the sample in the image, each slice is given a prob-
ability according to the size of slice, so that ensure the slice
with the small target will be selected as the priority. In view of
the different scattering information of the PolSAR images, data
conversion should be carried out first to reduce the difference
when the slices are synthesized into the background, that is

I ′(i, j) = u0(i, j) · I(i, j) +
K∑

k=1

Φ(Sk(αi, θj)) (11)

where Φ(·) is the correction function. Notably, limited by com-
puter resources, the image with a large scene is often cut into sev-
eral small images, and then realize refined classification. Hence,
Φ(·) should be designed from two perspectives. 1) The slice and
background are obtained from one large PolSAR image. 2) The
slice is completely unrelated to the background image. Based on
the pseudocolor images, the training samples are easily divided
into different groups, such as Fig. 8.

If the original image of the slice and the background are
grouped together, the function Φ(·) does not need to transform
the slice. If the original image of the slice and the background
are in different groups, and Φ(·) should be used to adjust the
slice. Suppose that the background is in group-t, based on the
Kullback–Leibler (KL) distance, the distance between the the
background I(i, j) and other images It(i, j) in the group-t can

be expressed as

dist(P ||Q)=
∑
x∈X

P (x) log
P (x)

Q(x)
(12)

where X is a set of pixels, P (x) and Q(x) corresponding to
I(i, j) and It(i, j) are the distribution probability ofX . Then, we
can find the image that contains the slicenk of the same category
as the slice sk(·) and the image is closest to the background.
For the slice nk and the slice sk(·), their distributions can be
calculated, respectively, and the pixels with a concentration of
80% in their distributions will be used to calculated their mean
values, respectively. Finally, the pixels of the slice sk(·) can be
adjusted by the mean values.

One composite image is shown in Fig. 9. In this article, K
is set to 5. From Fig. 9, the background image is inserted into
five slices from five PolSAR images, and the resolution of each
image is different. Still, the composite image as a whole has no
obvious difference.

D. DeepLabV3+ Method

Since 2012, the image feature extraction methods based on
the CNN architecture have been evolving, and greatly revolu-
tionized pattern recognition [34]–[36]. Various structures are
established benchmarks and used as backbone in the CNN-
based semantic segmentation framework, such as VGGNet [37],
ResNet [38], Xception [39], etc. Based on these backbone net-
works, a variety of semantic segmentation methods in the form
of the encoder–decoder type architecture have been proposed.
The encoder module is mainly composed of a combination
of the backbone network and various convolution modules to
obtain the necessary feature information from the image. It will
gradually downsample the input image and reduce the resolution
of the feature map to capture high-level details of the scene. The
decoding module is used to complete the challenging job of
reconstructing the segmentation map with a size equal to the
original image from the feature map of the encoder module.

Based on the DeepLabV3+ method, this article designed the
semantic segmentation network of the PolSAR image, which
mainly composed of ResNet101-V2 and the atrous spatial pyra-
mid pooling (ASPP) module, as shown in Fig. 10.

1) ResNet101-V2: Considering the complex speckles, the
deep backbone network can effectively reduce the speckle in-
terference and extract the useful information. Meanwhile, con-
tinuous research has shown that the depth of the neural network
has a crucial impact on the performance of the segmentation
method [37], [40]. As the network continues to deepen, the
gradient will disappear, which hinders the convergence of the
network, making the model easy to converge to a local minimum,
resulting in the network performance not reaching the ideal
effect [41]. This problem can be addressed by a residual learning
framework, namely ResNet.

In a variety of image classification applications [42], [43],
it is shown that the ResNet101 network with 101 layers has
better segmentation performance than the shallow residual net-
work, such as ResNet34, ResNet50. The ResNet101 consists
of 33 three-layer building blocks of the residual learning. In
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Fig. 7. Workflow of the RRM method.

Fig. 8. Group the training samples.

PSPNet [18], the ResNet101 network structure adopts original
Inception block, namely ResNet101-V1, while the ResNet-V2
adopts cheaper one [44]. In multiple applications [45], [46], the
ResNet-V2 can achieve higher classification accuracy than the
ResNet-V1. In our network architecture, the ResNet101-V2 is
used as the backbone network.

2) Atrous Spatial Pyramid Pooling: The ASPP module de-
rivers the concept of pyramid pooling from the SSPNet [13]
and the atrous convolution. It is implemented to resist the
limitation of the fixed size of the input image to extract the
high-level multiscale information accurately and efficiently at a
different atrous rate and the synthesize global information, as
shown in Fig. 10. Given the varying resolution of the PolSAR
image, the ASPP module can offer a better segmentation result.
Our experiments show that the segmentation model has a poor
segmentation effect on small scenes, such as the river, road (it
may be the segmentation boundaries of different scenes), etc.
In order to improve the segmentation ability, the atrous rates of
three atrous convolution kernels are set as 4, 8, 12, respectively,
and the number of all convolution kernels in the ASPP module
is set to 256.

Fig. 9. Composite image using the RRM method.

III. EXPERIMENTS AND RESULTS

In order to prove the effectiveness of the algorithm, we will
present the experiment results from two aspects. 1) We designed
a series of comparative experiments based on the classic segmen-
tation method, and the results demonstrate the effectiveness of
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Fig. 10. Architecture of DeepLabV3+ for semantic segmentation in this article.

TABLE I
SAMPLE DETAILS IN THE EXPERIMENTS

our method. 2) All the participating models are calculated on
the same server and under the same computer resources at one
time, and the convincing results obtained from each participating
method in the final contest are used to illustrate the advantages
of our method.

A. Dataset

In the 2020 Gaofen Challenge on Automated High-Resolution
Earth Observation Image Interpretation, 500 high-resolution full
PolSAR images were released. The size of each image in the
opened PolSAR images is 512 × 512, and the resolution range
is 1 to 3 m. The ground truth maps are annotated with the six
recognized land-cover types: water-body, buildings, industrial
area, lawn, and two other unknown categories, as well as an
unrecognized area. Due to the nondisclosure of the image tags,
the type of the two unknown categories cannot be accurately
determined and some special targets are difficult to identify, so
this article uses the category label number to mark different
categories to ensure the rigor of the content. The test data are
composed of the 400 high-resolution fully PolSAR images, the
image size ranges from 512 × 512 to 1500 × 1500, and the
occupied memory of the test data is 1 GB. Since the test sample
is not visible to users, a more detailed test sample introduction
can no be provided. Therefore, 100 images are randomly selected

TABLE II
ENVIRONMENT OF OUR EXPERIMENTS

from the public dataset as training samples, and the remaining
400 images are used as test samples to analyze the segmentation
method. Considering the computational complexity, the pseudo-
color images synthesized by |C11|, |C22| and |C33| are used in
the experiments. The sample details in the experiment are listed
in Table I.

Three evaluation indicators are calculated to evaluate the
quality of PolSAR image segmentation, namely overall accuracy
(OA), frequency weighted intersection over union (FWIoU), and
mean intersection over union (MIoU). MIoU is calculated as

MIoU =
1

C

C∑
i=1

sii∑C
j=1 sij +

∑C
j=1 sji − sii

(13)
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TABLE III
CLASSIFICATION RESULTS OF DIFFERENT METHODS

The bold entities mean the optimal results.

where sij is the member of the confusion matrix S, i, and j
are the corresponding coordinates, and C is the total number of
categories. FWIoU is calculated as

FWIoU =
1∑C

i=1

∑C
j=1 sij

C∑
i=1

sii∑C
j=1 sij +

∑C
j=1 sji − sii

.

(14)
In the competition, FWIoU is the only evaluation index for

network segmentation performance.

B. Experimental Environment

The employed DeepLabV3+ segmentation method is imple-
mented under Tensorflow-GPU and Keras architecture. Other
comparison methods in our designed comparative experiments
are also tested in this environment, and the basic configuration
is shown in Table II.

C. Comparative Experiments in the Pretraining

In the preliminaries, the UNet, D-LinkNet [47] and
DeepalavV3+ methods are implemented to test the accuracy
of image segmentation before and after processing using (3),
(4), and (8). In the UNet method, FWIoU accuracy is 58.7191
using the original PolSAR images of four channels. In con-
trast, the FWIoU accuracy is 62.6895 after processing with our
method. Similarly, in the DeepLabV3+ method, the FWIoU
accuracy before and after using these equations are 67.6806 and
70.2312, respectively. The preliminary experiment shows that
the algorithm with (3), (4), and (8) can effectively improve the
segmentation performance of the segmentation network, and
the performance of the DeepLabV3+ method is better than
that of the UNet method. In view of the long training time of
the DeepLabV3+ method, we will not investigate this issue in
detail but will add more comparative experiments to prove the
effectiveness of our method.

In this article, based on the ResNet101-V2 network, UNet, D-
LinkNet, DeepLabV3, and DeepLabV3+ are exploited to realize
the refined segmentation of PolSAR images after the samples are
processed by (3), (4), and (8). In addition, DeepLabV3+ com-
bined with our filtering method is denoted as F-DeepLabV3+,
DeepLabV3+ combined with the general sample enhancement
method (i.e., rotate, flip, etc.) is denoted as Gen-DeepLabV3+,
and DeepLabV3+ combined with the RRM method is denoted
as RRM-DeepLabV3+. The results of the different segmentation
methods are shown in Table III.

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT GROUPS IN THE FINAL CONTEST

The bold entities mean the optimal results.

From Table III, DeepLabV3 has dramatically improved the
segmentation performance compared to UNet and DLink. Espe-
cially for the features of small targets and limited samples, such
as categories 2, 4, and 5, the recognition ability of DeepLabV3
has significantly been improved. Compared with DeepLabV3,
the accuracies of OA, MIoU, and FWIoU in DeepLabV3+ have
increased from 74.926%, 59.561%, and 60.3358% to 75.6284%,
61.4945%, 61.1912%. After processing using the filtering al-
gorithm proposed in this article, the network’s segmentation
accuracy has been improved slightly. Obviously, OA, MIoU,
and FWIoU have been increased to 76.2482%, 61.8298%, and
62.0219%, respectively. Compared with training the segmenta-
tion network using original samples directly, the performance of
the segmentation network trained by the sample amplification
method has been greatly improved. In terms of the traditional
sample enhancement methods, 400 samples are randomly syn-
thesized to train the segmentation network. The segmentation re-
sults of OA, MIoU, and FWIoU have improved from 75.6284%,
61.4945%, 61.1912% to 76.7845%, 61.9856%, and 62.8219%.
In contrast, 400 images obtained by the RRM method are added
to the training samples, and OA, MIoU, and FWIoU have
reached 77.3174%, 63.1606%, and 63.5427%.

D. Comparison of Segmentation Methods in the Final Contest

To fully illustrate the effectiveness of our method, the clas-
sification results of the different models in the finals are added
to the comparison experiment. Since the specific methods of
the contestants are non-transparent, their methods are temporar-
ily named after the final ranking numbers. The segmentation
accuracy, inference time, and the technology maturity of the
segmentation method are used for the evaluation criteria of
different segmentation algorithms, as shown in Table IV.

More than 100 teams submitted their methods in the prelim-
inary round, of which eight teams with excellent segmentation
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accuracy entered the final contest, and six teams obtained the
classification results. From Table IV, our method has obvious
advantages over the algorithms of other contestants. In addition
to the highest segmentation accuracy, the inference time of our
method is also ranked in the top 2 position. Besides, the offi-
cial also proposed a technical maturity concept to measure the
use-value of each segmentation method. The technical maturity
is calculated by weighting inference time, resource occupation,
segmentation accuracy, etc. The technical maturity of our seg-
mentation method reached 93.0587, which is much higher than
other contestants, and the result indicates our method is more
practical than other participating models. It is worth noting that
No.4 also uses DeepLabV3+ for the PolSAR segmentation, in
comparison, our accuracy has been greatly improved. Simulta-
neously, due to the optimization of the data preprocessing, our
algorithm also has an obvious advantage in inference time. In the
end, our segmentation method won first place in the competition.

IV. CONCLUSION

This article proposed a novel method for the GaoFen-3
high-resolution PolSAR image. The decomposition algorithm
is applied to extract image features of PolSAR to composite
pseudocolour images, so as to compress the data volume of the
sample. Meanwhile, a normalized method and a filtering method
for reducing strong speckle noise and strong backscattering are
designed to enhance local and global information of images,
thus improving the segmentation performance of the network.
On the other hand, in order to construct training samples for un-
known scenes, a sample enhancement algorithm, namely RRM,
is designed to improve the robustness of the segmentation net-
work. Finally, the adjusted DeepLabV3+ method is implemented
to achieve the semantic segmentation of PolSAR images and
demonstrated its excellent segmentation performance. Whether
it is our design of the comparative experiment results or com-
paring the results of other contestants in the finals, it shows that
our algorithms have high accuracy and high practical value.
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