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Abstract—Hyperspectral image (HSI) classification has at-
tracted much attention in the field of remote sensing. However,
the lack of sufficient labeled training samples is a huge challenge
for HSI classification. To face this challenge, we propose a semisu-
pervised HSI classification method based on graph convolutional
broad network (GCBN). First, to avoid the underfitting problem
caused by the insufficient linear sparse feature representation abil-
ity of broad learning system (BLS), graph convolution operation
is applied to extract nonlinear and discriminative spectral-spatial
features from the original HSI to replace the linear mapping
features in the traditional BLS. Second, to solve the problem of
insufficient model classification ability caused by limited labeled
samples, the combinatorial average method (CAM) is proposed to
use valuable paired samples to generate sample expansion set for
GCBN model training. Third, BLS is used to perform broad expan-
sion on spectral-spatial features extracted by GCN and extended
by CAM, which further enhances the feature representation ability.
Finally, the output weights can be easily calculated by the ridge
regression theory. Experimental results on three real HSI datasets
demonstrate the effectiveness of our proposed GCBN.

Index Terms—Broad learning, classification, hyperspectral
image (HSI), sample expansion, semisupervised learning.

I. INTRODUCTION

HYPERSPECTRAL images (HSI) contain rich spectral
and spatial information, which makes them widely used

in crop monitoring, environmental monitoring, mineral explo-
ration, and other fields [1]–[4]. HSI classification is one of the
basic and key technologies of remote sensing for earth surface
observation. It aims to infer the class of each pixel based on
the spectral and spatial information of the HSI [5]–[7].The
early staged methods for HSI classification are mostly based
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on conventional pattern recognition methods, such as K-nearest
neighbor [8] and support vector machine (SVM) [9], random
forest [10], and decision tree [11]. In addition, extreme learning
machines [12], sparse representation [13], and graph embedding
methods [14] are also used for HSI classification. However, most
early staged HSI classification methods only focused on explor-
ing the role of the spectral information for classification, and
therefore high classification accuracy could not be obtained [15].
Since the neighboring pixels in HSI usually carry rich spatial
information, many spectral-spatial classification methods have
been proposed and the spatial information of HSI was used to
obtain higher classification accuracy therein. For instance, some
researchers applied the spatial information to HSI classification
via the extended morphological profiles, and thus the satisfactory
classification accuracy could be achieved [16], [17]. Spectral and
spatial information contained in the neighborhood region of the
pixels were merged and added into the sparse representation
model in [18] and [19]. Tu et al. [20] proposed a spectral-spatial
HSI classification method, which exploited the comprehensive
contextual information of HSI by considering a weak assump-
tion that the pixels in a superpixel belong to the same class,
and achieved an excellent classification performance. Sellami
et al. [21] proposed an HSI classification approach, which made
full use of the spectral-spatial information by automatically
selecting relevant spectral bands.

Compared with traditional machine learning algorithms, deep
learning techniques can automatically extract high-level and
compact features from input data. In recent years, deep learning
techniques have been successfully applied to HSI classification
tasks. Chen et al. [22] used stacked autoencoders to extract the
features of HSI, and entered them into the logistic regression
model for classification. Liu et al. [23] first used deep belief
network to extract deep spectral features, and then repeatedly
selected good-quality labeled samples as training samples with
active learning algorithms. Zhang et al. [24] proposed an HSI
classification algorithm based on the convolutional neural net-
work (CNN), which utilized diverse region-based inputs to learn
discriminative spectral-spatial features. Chen et al. [25] used
1-D, 2-D, and 3-D CNN to extract features of HSI, respectively.
Kong et al. [26] extracted the spectral features of HSI by con-
structing intra-class and inter-class hypergraphs, and extracted
spatial features by CNN. Zhu et al. [27] adopted generative
adversarial networks to construct a semisupervised feature learn-
ing framework for HSI classification. Mou et al. [28] applied
recurrent neural network (RNN) to HSI classification for the
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first time, and proposed a parameter modified tanh activation
function to replace the traditional activation function.

The impressive feature representation capability of deep
learning is based on abundant labeled samples. However, col-
lecting the labeled HSI data is difficult and expensive [29].
Therefore, how to learn a strong generalization classifier at a
low labeling cost has become a research hotspot in the field
of HSI analysis. To address this concern, many methods have
been proposed, which contain four categories. The first one is
data augmentation, which synthesizes new examples following
the original data distribution [30]. Li et al. [31] constructed a
new training set for CNN by using pairwise labeled samples
and exploited it to improve the model classification accuracy.
Wang et al. [32] established a data mixture model to augment
the labeled training set quadratically, and exploited this set to
train the CNN. The second category is named domain adapta-
tion, which uses sufficient samples from different but similar
domains to solve the problems for another domain [33]. Zhou
and Prasad [34] first used deep convolutional RNNs to extract
the discriminative features for two domains, then aligned the
features with each other layer-by-layer in the common sub-
spaces, and thus realized the HSI classification of different
distributions by exploiting only part of labeled samples in the
source domain. The third one is active learning, which can
exploit a small number of labeled samples to train a classier,
making the classifier actively select representative unlabeled
samples [35]. The semisupervised method utilizes abundant
unlabeled data and limited labeled samples for classification.
Wu and Prasad [36] proposed a semisupervised deep learning
network, which effectively alleviated the shortage of labeled
samples by combining limited labeled samples with abundant
unlabeled samples for HSI classification.

Broad learning system (BLS) is a random vector functional
link neural network (RVFLNN) consisting of only three parts
[mapped feature (MF), enhancement node (EN), and output
layer] [37]. Compared with the deep learning, BLS has the
following advantages [37]: 1) BLS can nonlinearly expand the
feature. 2) BLS has a simple and flexible structure with only
three layers. 3) Gradient descending is used in deep learning
methods, which requires more times of iterations. For BLS, the
ridge regression is exploited to directly calculate the network
weights of BLS, so the network training speed is fast. 4) It is
easy to integrate BLS with other models. Feng and Chen [38]
proposed a fuzzy BLS by combining the Takagi–Sugeno fuzzy
system with BLS, which achieved an ideal accuracy in regression
and classification. Chu et al. [39] proposed a weighted BLS, in
which the contribution of each input sample to the BLS was
constrained by exploiting penalty factors. Kong et al. [40] pro-
posed a semisupervised model by merging the class-probability
structure into BLS and achieved good classification performance
in HSI classification. Kong et al. [41] proposed a HSI clustering
algorithm based on BLS, and exploited the graph-regularized
sparse autoencoder to fine-tune the weights of MF and EN.

As the latest research achievement of deep learning, the graph
convolutional network (GCN) can aggregate and transform the
neighbor feature information from each node. Besides, GCN is

able to encode features of graph nodes and local graph struc-
ture by convolutional layers, so as to exhaustively exploit the
graph features and flexibly preserve the class boundaries [42].
However, the original GCN only utilizes the spectral informa-
tion when classifying HSI, that is, only constructs the spectral
adjacency matrix. Qin et al. [43] consider the data structure char-
acteristic of HSI and the advantages of GCN, and completed the
HSI classification by constructing a spectral-spatial adjacency
matrix while using spectral and spatial information. Therefore,
according to [43], we first use GCN to extract the spectral-spatial
features of HSI. Then, CAM is used to expand the data with
spectral-spatial features extracted by GCN, while considering
the flexible network structure and the ability of feature broad
expansion of BLS, a semisupervised graph convolutional broad
network (GCBN) is proposed. The main contributions of our
work are summarized as follows.

1) We replace the linear mapping features used in the tra-
ditional BLS with the spectral-spatial features extracted
from the original HSI by GCN, which can achieve ac-
curate HSI classification at low labeling cost by means of
exploiting limited labeled samples and abundant unlabeled
samples.

2) In the proposed combinatorial average method (CAM),
some valuable paired samples are selected in a targeted
manner, and averaged in pairs to generate a sample ex-
pansion set much larger than the original training set.
Thus, the problem of the lack of labeled samples to support
high-precision classification model training can be solved.

3) We exploit the BLS to perform broad expansion on
spectral-spatial features extracted by GCN and extended
by CAM, which is helpful to further enhance the represen-
tation ability of features and thus improve the classification
accuracy of HSI.

The rest of this article is organized as follows. We elaborate the
semisupervised classification method of HSI based on GCBN
in Section II. We present experimental results on three real
HSI datasets and analyze them in Section III-A followed by
a conclusion in Section IV.

II. SEMISUPERVISED CLASSIFICATION OF HSI BASED ON GCBN

A. Flowchart of GCBN for HSI Classification

The flowchart of the proposed GCBN for HSI classification is
shown in Fig. 1, which mainly contains the following five steps:

1) The principal component analysis (PCA) is applied to the
original HSI to reduce dimensionality;

2) The spectral-spatial graph of GCBN constructed based
on the spectral and spatial information of limited labeled
samples and abundant unlabeled samples is used for graph
convolution operation. Then the discriminative spectral-
spatial features of HSI are extracted by the trained GCN;

3) In our proposed CAM, some valuable paired samples are
selected in a targeted manner, and averaged in pairs to
generate a sample expansion set for GCBN training;

4) BLS is used to expand the width of spectral-spatial features
extracted by GCN and extended by CAM;
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Fig. 1. Flowchart of GCBN for HSI classification.

5) The output layer weights can be calculated with the ridge
regression theory.

B. Feature Extraction Based on GCN

Since there is redundant information in the original HSI band,
directly entering the original HSI into the GCN will cause
a dramatic increase in the network parameters and affect the
classification performance of GCN. Therefore, PCA is used
to reduce the dimensionality of the original HSI data X0.
Define X ∈ Rn×d, then x ∈ Rd is the signal after dimension
reduction by PCA, θ ∈ Rd is the Fourier coefficient. The graph
convolution operation in the spectral domain can be expressed
as each frequency of the signal x multiplied by the filter gθ
parameterized by θ in the Fourier domain

gθ � x = UgθU
Tx (1)

where U is the matrix composed of the eigenvectors of the
normalized graph Laplacian,L = I −D− 1

2 AD− 1
2 = UΛUT.

Λ is the diagonal matrix which contains the eigenvalues of
L, D is the degree matrix, Dii =

∑
j Aij , I is the identity

matrix. Then, we can regard gθ as a function of the eigenvalues
of L, gθ(Λ). In order to reduce computational consumption,

Hammond et al. [44] tried to approximate gθ(Λ) by simplifying
the Chebyshev polynomials Tk(x) to the Kth-order

gθ′(Λ) ≈
K∑

k=0

θ′kTk(Λ̃) (2)

where θ′ is a vector of Chebyshev coefficients, Λ̃ = 2
λmax

A−
IN , λmax is the largest eigenvalue of L. According to [44],
the Chebyshev polynomial is defined as Tk(x) = 2xTk−1(x)−
Tk−2(x), T0(x) = 1 and T1(x) = x. Then define the expression
of the convolutional filter gθ′ on signal x as

gθ′ � x ≈
K∑

k=0

θ′kTk(L̃)x (3)

where L̃ = 2
λmax

L− IN represents the scaled Laplacian ma-
trix. Equation (3) can be easily verified by exploiting the fact
(UΛUT)k = UΛkUT. It can be seen that this expression is a
Kth-order polynomial regarding to the Laplacian, that is, the final
filtering result only depends on the nodes at most K steps away
from the center point. In this article, we consider the first-order
neighborhood, i.e., K = 1. This means that filtering of the graph
signal x only relies on the nearest node of the current node. We
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further approximate λmax ≈ 2, as the parameters of the neural
network, can adapt to changes during large-scale training [45].
Thus, (3) can be simplified to

gθ′ � x ≈ θ′0x+ θ′1 (L− IN )x

= θ′0x− θ′1D
− 1

2 (A+ μP )D− 1
2x (4)

where A ∈ Rn×n is the adjacency matrix of spectral signatures,
P ∈ Rn×n is the adjacency matrix of spatial signatures, and μ
is the spatial coefficient

aij =

{ ‖xi − xj‖2 , i �= j
0, i = j

(5)

pij =

{ ‖di − dj‖2 , i �= j
0, i = j

(6)

where x represents the spectral feature vector of the sample, and
d represents the spatial position coordinates of x.

Since reducing the number of parameters is helpful to solve
overfitting problem, we set θ = θ0 = −θ′1, then (4) can be
converted to

gθ′ � x ≈ θ
(
IN +D− 1

2 (A+ μP )D− 1
2

)
x. (7)

Since the eigenvalues of IN +D− 1
2 (A+ μP )D− 1

2 are
within the range [0, 2], repeatedly using this operator in
a deep neural network will lead to numerical instabili-
ties and vanishing/exploding gradients [45]. To solve this
problem, according to [43], we performed the renormal-

ization trick IN +D− 1
2 (A+ μP )D− 1

2 → D̃
− 1

2 (IN +A+

μP )D̃
− 1

2 , where Dii =
∑

j(IN +A+ μP )ij . The GCN can
be expressed as

S(l) = Relu
(
ÃS(l−1)W (l)

)
(8)

whereS(l) is the output of the lth layer,Relu(·) = max(0, ·)was
selected as the activation function, W (l) denotes the trainable
weight matrix contained in lth layer, and Ã can be calculated by

ãij =

⎧⎪⎨
⎪⎩

e
−(‖xi−xj‖2+μ‖di−dj ||2)

σ , if xi ∈ Nei (xj)
or xj ∈ Nei (xi)

0, otherwise

(9)

where σ is the spectral-spatial coefficient.
Only the three-layer graph CNN is selected. The propagation

rule of the first two layers is shown in (8), and propagation rules
of the last layer is as follows:

S(3) = softmax
(
ÃS(2)W (2)

)
(10)

where softmax(zi) = exp(zi)/
∑

i exp(zi) is selected as the
activation function of the output. The loss function is

L = −
∑

k∈Y L

C∑
c=1

Y kc lnS
(3)
kc (11)

where Y L denotes the set of vertex indices corresponding to the
labeled samples, C is the total number of categories, and Y is
the category matrix. Similar to [45], we employed the gradient
descent method to learn the weight parameters.

C. Sample Expansion Based on CAM

When the number of input labeled samples is insufficient, the
BLS is prone to the problems of insufficient network training
and overfitting. Therefore, we propose the CAM to expand the
samples after graph convolution operation. First, limited labeled
samples X ∈ Rnt×d0 are fed into the trained GCN to obtain Z
with discriminative spectral-spatial features

Z = ÃRelu
(
ÃXW (1)

)
W (2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1

...
Zl

...
ZC

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R(C×nl)×d1

(12)
where nl is the number of labeled samples selected for each
class, l ∈ [1, C].

Second, the center value of the selected samples belonging to
the lth class is defined as z0

l , which can be calculated by

z0
l =

z1
l + z2

l + · · ·+ znl

l

nl
. (13)

Third, the nx samples nearest to the center value are averaged
in pairs to obtainC2

nx
samples. The expanded samples belonging

to the lth class is defined as Za
l ∈ RC2

nx×d1

Za
l =

⎡
⎢⎣

za1

l
...

z
a
C2
nx

l

⎤
⎥⎦ . (14)

Finally, the Z is expanded and used as the training set ZK

for GBCN, ZK
l = [Zl;Z

a
l ] ∈ R(nl+C2

nx )×d1 is defined as all
samples of lth class of ZK.

ZK =

⎡
⎢⎣
ZK

1
...
ZK

l

⎤
⎥⎦ ∈ RC(nl+C2

nx)×d1 . (15)

The CAM can be used to extend the sample size of the data
with discriminative spectral-spatial features extracted by GCN,
which will provide more valuable samples for GCBN training.
CAM is only used for model training, andnx can be set according
to the specific situation.

D. Spectral-Spatial Feature Broad Expansion Based on BLS

BLS is a new type of flat network designed based on the idea of
RVFLNN [37]. Although the lack of linear sparse representation
ability of BLS could lead to an underfitting problem, it still has
such advantages as simple structure, fast calculation speed, and
feature broad expansion. Therefore, BLS can be used to expand
the width of the nonlinear features extracted by the GCN to
further enhance the feature representation ability.

The original input is mapped to feature nodes via random
weights, dM is denoted as the number of feature node groups,
and GM is denoted as the feature dimension of each group. The
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Algorithm 1: GCBN
Inputs: PCA-based HSI representation X , labels of
samples Y L, unlabeled samples XU, spatial coefficient μ,
spectral-spatial coefficient σ, number of expanded samples
belong to the per class nx, regularization coefficient δ,
feature dimensions of each group GM, number of nodes in
MF per group dM, and number of nodes in EN dE.

Step 1. Initialize GCBN network parameter.
Step 2. Calculate the spectral-spatial adjacency matrix Ã

according to (9).
Step 3. Pretrain GCN with labeled samples XL and

unlabeled samples XU.
Step 4. Extract features Z according to (12). Calculate

expanded samples ZK according to (12)∼(15)
and take ZK as the training set for GCBN.

Step 5. Calculate the network weights WO of GCBN
according to (16)∼(20).

Step 6. Calculate the predictive labels Y according to
(21).

Outputs: Predictive labels Y .

ith group MFs is

M i = ZKW ei + βei, i = 1, . . . , dM (16)

where W ei and βei are connection weights and bias from ZK

to MF. Sparse autoencoder is used to fine-tune the initial W ei,
M = [M1,M1, . . . ,MdM ]. To further enhance the feature
representation capability, M is randomly mapped to EN to
achieve feature broad expansion by

Hj = ϕ
(
MW hj + βhj

)
, j = 1, . . . , GE (17)

where W hj and βhj are connection weights and bias from MF
to EN, respectively, and ϕ(·) is tansig function here.

Finally, MF and EN are simultaneously mapped to the output
layer, and the output of the GCBN is

O = [M | H]WO. (18)

The objective function of the GCBN is as

argmin
WO

∥∥O − Y K
∥∥2
2
+ δ

∥∥WO
∥∥2
2

(19)

where δ is the regularization parameter. Then the network
weights of GCBN can be calculated with the ridge regression as

W ◦ =
[M | H]TY K

δI + [M | H]T[M | H]
(20)

whereY K is the label corresponding toZK, The predicted result
can be calculated by the following formula

Y = [M | H]WO. (21)

In summary, the steps of semisupervised HSI classification
based on GCBN are summarized as follows.

III. EXPERIMENTS

A. HSI Datasets

Three real HSI datasets were selected in our experiments.
Indian Pines dataset was acquired by AVIRIS sensor over

the Indian Pines test site in North-western Indiana, containing
145×145 pixels and 224 bands. This image is mainly used
for agricultural related research with two-third of agricultural
land, one-third of forests, and other natural perennial vegetation,
including 16 classes.

Botswana dataset was acquired by Hyperion sensor over the
Okavango Delta, Botswana, containing 1476×256 pixels and
242 bands and including 14 classes. After removing noise,
atmospheric and water absorption, and overlapping bands, the
remaining 145 bands are used for the experiment.

Kennedy space center (KSC) dataset was acquired by AVIRIS
sensor over Florida, containing 614×512 pixels and 224 bands
and including 13 classes. After removing the water absorption
and noise bands, 176 bands of the image are reserved for the
experiment.

B. Experimental Result

To verify the validity and superiority of the proposed GCBN,
the following 11 classifiers are selected for comparison:

1) traditional classification method: SVM [9];
2) deep learning methods: 2D-CNN [24], GCN [45], SS-

GCN [43], MDGCN [42];
3) broad learning methods: BLS [37], SBLS [40];
4) GCBN without CAM: GB;
5) replacing CAM of GCBN with the data augmentation

methods in [26] and [32] respectively: GZB, GMB; and
6) replacing GCN of GCBN with Graphsage [46]: GSCB.
The experimental settings are as follows.

1) Since Wan et al. [42] also selected the Indian Pines and
KSC datasets to test the performance of MDGCN, here
we directly refer to [42] to select the hyperparameters of
MDGCN. The hyperparameters of the remaining 6 com-
parison classifiers were set via grid search method;

2) A three-layer GCN with 40 hidden nodes is used in GCBN.
The epoch is 200 and the learning rate is 0.01, μ = 30,
σ = 6, δ = 0.01, nx = nc − 2, where nc is the number
of labeled samples. The feature dimensions of each group
GM=30, number of nodes in MF per group dM=15, and
number of nodes in EN dE=600 are set via grid search
method;

3) All eight classifying methods are implemented in PyTorch
and MATLAB R2017a using a computer with a 3.60 GHz
Intel Core i5-6500 CPU and 8 GB of RAM;

4) We select 4 evaluating indexes to evaluate the experimental
results, including per-class accuracy (%), overall accuracy
(OA, %), Kappa coefficient, and consumed time (Time,
s), where the consumed time here means the training and
testing time of the classifier. To eliminate the influence of
random factors, each experiment is conducted ten times to
get the average value of all indexes;



3000 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
COMPARISON OF CLASSIFICATION PERFORMANCE ON INDIAN PINES DATASET

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE ON BOTSWANA DATASET

5) We randomly select five samples from each class of the
ground objects in the HSI dataset as labeled samples for
experiments.

6) In the Indian Pines dataset, the surface objects repre-
sented by I1-I16 are: Alfalfa, Corn-notill, Corn-mintil,
Corn, Grass-pasture, Grass-trees, Grass-pasture-mowed,
Hay-windrowed, Oats, Soybean-notill, Soybean-mintill,
Soybean-clean, Wheat, Woods, Buildings-Grass-Tree-
Drives, and Sybtone-Steel-Towers. In the Botswana
dataset, B1-B14 represent: Water, Hippo grass, Flood-
plain grasses1, Floodplain grasses2, Reeds1, Riparian,
Firescar2, Island interior, Acacia woodlands, Acacia shrub-
lands, Acacia grasslands, Short mopane, Mixed mopane,
and Exposed soils. In the KSC dataset, the surface objects
represented by K1–K14 are: Srub, Willow swamp, CP ham-
mock, Slash pine, Oak, Hardwood, Swamp, Graminoid,
Spartina marsh, Cattail marsh, Salt marsh, Mud flats, and
Water.

Tables I –III and Figs. 2 –4 shows the performance comparison
results of different classifiers.

It can be observed from Tables I–III and Figs. 2–4 that
1) Among the 12 methods, 2-D CNN obtains the lowest

OAs and Kappa coefficients on all three HSI datasets, and
consumes the longest time. The reason is that the impres-
sive performance of the deep learning network requires
abundant labeled samples to ensure. When the number
of labeled samples is insufficient, 2-D CNN cannot be
adequately trained, resulting in low classification accuracy
of HSI, even lower than that of conventional SVM. In ad-
dition, 2-D CNN has a large number of network layers and
the gradient descent which needs repeated iteration training
is used to learn the model. So it consumes a long time.

2) BLS has the shortest time-consuming and high classifica-
tion accuracy among the 12 methods. The reason is that
the structure is simple and the nonlinear mapping from
MF to EN in BLS achieves the broad expansion of MF and
enhances the classification ability of BLS. Compared with
BLS, SBLS achieves higher OAs and Kappa coefficients
on all three datasets because SBLS additionally utilizes a
large amount of unlabeled sample information.
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TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCE ON KSC DATASET

Fig. 2. Classification maps on Indian Pines dataset. (a) False-color image. (b) Ground-truth map. (c) SVM. (d) 2D-CNN. (e) GCN. (f) BLS. (g) SBLS. (h)
SSGCN. (i) MDGCN. (j) GB. (k) GZB. (l) GMB. (m) GSCB. (n) GCBN.

3) GCN, GCBN, and MDGCN are all GCN methods, in which
GCBN has the highest classification accuracy, followed by
MDGCN. The reason is that both GCBN and MDGCN use
spectral and spatial information of HSI, while GCN only
considers spectral information. In addition, compared with
GCBN and MDGCN takes the spectral and spatial infor-
mation of different scales into account, and dynamically
updates the constructed graph during training.

4) GCBN achieves the highest OAs and Kappa coefficients
and the lowest time-consuming on all three datasets. The
reason is as follows. First, GCBN is a semisupervised
classification method that uses limited labeled samples
and abundant unlabeled samples. Second, GCN helps
extract more discriminant spectral-spatial features from
the original HSI. Third, combinatorial average expansion
of spectral-spatial features provides a great quantity of
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Fig. 3. Classification maps on Botswana dataset. (a) False-color image. (b) Ground-truth map. (c) SVM. (d) 2D-CNN. (e) GCN. (f) BLS. (g) SBLS. (h) SSGCN.
(i) MDGCN. (j) GB. (k) GZB. (l) GMB. (m) GSCB. (n) GCBN.

valuable samples for GCBN training. Fourth, the spectral-
spatial feature broad expansion further enhances the feature
representation ability of GCBN. GCBN only uses one layer
of graph convolutional and the structure of BLS is simple,
so the learning speed of GCBN is fast.

5) Among the three HSI datasets, the OAs and Kappa co-
efficients of the 12 methods are the lowest on Indian
Pines. This is because the similarity of the features in
the Indian Pines dataset is relatively large. For instance,
the corn-notill, corn-mintill, and corn belong to the same
class in essence, so it is difficult to classify them. All the
classification models have the lowest time-consuming on
the Botswana dataset. This is because the Botswana dataset
has the smallest sample size with only 3268 samples, while
the Indian Pines dataset contains 10 249 samples.

6) Among the three data augmentation methods (GZB, GMB,
and GCBN), GCBN achieves the highest OAs and Kappa
coefficients. This is because CAM can increase the number
of training samples without losing key information.

7) Compared with GSCB, GCBN obtains higher OAs and
Kappa coefficients. The reason is that GCN integrates the
global contextual information of the graph by constructing
a spectral-spatial matrix of the entire graph.

Then the influence of different labeled sample sizes on the
classification accuracy of HSI is studied. It can be seen from
Fig. 5 that: 1) with the increase of the number of labeled samples,
the OAs of all classification models show an increasing trend;
2) when the number of labeled samples is small (5 or 10 per
class), the classification accuracy of 2-D CNN on the three
datasets is the lowest among all models. As the number of
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Fig. 4. Classification maps on the KSC dataset. (a) False-color image. (b) Ground-truth map. (c) SVM. (d) 2D-CNN. (e) GCN. (f) BLS. (g) SBLS. (h) SSGCN.
(i) MDGCN. (j) GB. (k) GZB. (l) GMB. (m) GSCB. (n) GCBN.

Fig. 5. OAs of various methods under different numbers of labeled samples per class. (a) Indian Pines. (b) Botswana. (c) KSC.

labeled samples gradually increases, the 2-D CNN classification
accuracy increases the most.

IV. CONCLUSION

An HSI classification method, named GCBN, is proposed in
this article. First, the deep and nonlinear spectral-spatial features
extracted by GCN are used to replace the linear mapping features
in traditional BLS, which is helpful to avoid the underfitting
problem caused by the insufficient linear sparse feature represen-
tation ability of BLS. Then we propose CAM to select valuable
paired samples so as to generate a sample expansion set for
GCBN, which can alleviate the problem of poor classification
ability caused by the limited labeled samples. Furthermore,

we use BLS to expand the width of spectral-spatial features
extracted by GCN and CAM, which is able to enhance the
representation ability of features and improve the classification
ability of GCBN. Finally, the objective function can be easily
obtained with the ridge regression theory. Experimental results
on three real HSI datasets demonstrate the proposed GCBN can
obtain higher classification accuracy than several other methods.
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