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Abstract—Scene classification is one of the most important ap-
plications of remote sensing. Researchers have proposed various
datasets and innovative methods for remote sensing scene classifi-
cation in recent years. However, most of the existing remote sensing
scene datasets are collected uniquely from a single data source:
Google Earth. In addition, scenes in different datasets are mainly
human-made landscapes with high similarity. The lack of richness
and diversity of data sources limits the research and applications
of remote sensing classification. This article describes a large-scale
dataset named “NaSC-TG2,” which is a novel benchmark dataset
for remote sensing natural scene classification built from Tiangong-
2 remotely sensed imagery. The goal of this dataset is to expand and
enrich the annotation data for advancing remote sensing classifi-
cation algorithms, especially for the natural scene classification.
The dataset contains 20 000 images, which are equally divided into
ten scene classes. The dataset has three primary advantages: 1)
it is large scale, especially in terms of the number of each class,
and the numbers of scenes are evenly distributed; 2) it has a large
number of intraclass differences and high interclass similarity,
because all images are carefully selected from different regions
and seasons; and 3) it offers natural scenes with novel spatial
scale and imaging performance compared with other datasets.
All images are acquired from the new generation of wideband
imaging spectrometer of Tiangong-2. In addition to RGB images,
the corresponding multispectral scene images are also provided.
This dataset is useful in supporting the development and evalu-
ation of classification algorithms, as demonstrated in the present
study.

Index Terms—Benchmark dataset, deep learning, remote
sensing, scene classification, Tiangong-2.
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I. INTRODUCTION

R EMOTE sensing technology enables us to measure and
understand earth systems using the geometric and physical

information in remote sensing images [1]–[3]. Understanding
the semantic content of the images from a vast accumulation
of remote sensing data is particularly important for practical
applications [4], [5]. In this article, we focus on remote sensing
scene classification, which is the process of understanding the
semantic content based on spatial distribution and structural
pattern information of the image and automatically annotating
the category to which the image belongs [6].

The classification of remote sensing images is primarily per-
formed at the pixel level [7], [22]. However, there are many
drawbacks to pixel-level remote sensing classification. First,
with the significant increase in the amount of remote sensing data
and the improvement of spatial resolution of images [23]–[25],
it is not feasible to interpret remote sensing images pixel by
pixel [26], [27]. In addition, single pixel also lacks thematic
meanings. Blaschke et al. [28] analyzed the disadvantages of
pixel-based classification and pointed out that it was more ef-
fective to use the object as the smallest unit for remote sensing
classification, with “object” referring to a local area of pixels that
share the uniformity of spectrum or texture, e.g., super-pixels
[29], [30]. For decades, object-oriented methods have been
dominant in the classification of high-resolution remote sensing
images [31], [35], [36]. It is worth noting that pixel-level as well
as object-level classification methods complete the modeling
of remote sensing scenes in a bottom-up manner, and train a
robust classifier by aggregating spectral, geometrical features,
and texture [36].

However, remote sensing scenes often contain different the-
matic classes [6], especially for high-resolution images. There-
fore, it is useful to reveal the context of different thematic classes,
such as the semantic information of remote sensing scenes [37],
[38]. The main purpose of remote sensing scene classification
is to model the spatial distribution and structural pattern of
the image to divide the remote sensing images into different
semantic categories [39]. Unlike pixel-level and object-oriented
classification, scene classification enables a better understanding
of remote sensing images [38], [41]. The concept of “scene”
usually refers to a certain area in the remote sensing image,
reflecting the clear semantic information of the type of surface
features [4]–[17], [42], [46].

Despite the recent encouraging progress in remote sensing
scene classification [15]–[17], [23]–[26], [37]–[41], [51], [63],
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most existing remote sensing scene datasets still need to be
significantly expanded in terms of scale and diversity to a similar
level of the ImageNet dataset, which contains tens of millions
of labeled images [64].

The limited amount of remote sensing scene data is insuffi-
cient for developing and validating the data-driven algorithms
represented by deep learning [65]. In addition, most of the exist-
ing datasets are collected from Google Earth (e.g., WHU-RS19
[66], AID [67], and NWUP-RESISC45 [68] datasets). Having
a relatively single data source and same spatial scale makes the
datasets limited to repetitive scenes dominated by human-made
landscapes. At present, the dataset constructed for natural scenes
has not been available in remote sensing communities, while the
surface land covers are mainly natural landscapes. Therefore,
natural scene dataset has a more significant application value
for remote sensing classification.

In light of all these, in Section II, this article first reviews
remote sensing scene classification. It then presents the current
representative scene datasets, proposes a natural scene classi-
fication benchmark dataset with Tiangong-2 remotely sensed
imagery in Section III, and conducts experiments in which
different classification methods on the dataset are evaluated,
which are presented in Section IV. Finally, in Section V, some
concluding remarks are presented based on our primary work.

II. OVERVIEW OF REMOTE SENSING IMAGE SCENE

CLASSIFICATION METHODS

The core technology of remote sensing scene classification
is how to extract practical features of the image. In terms of
feature extraction, there are the following three types of remote
sensing scene classification methods—methods based on hand-
crafted features, feature encoding methods, and deep learning
methods [67], [68]. It is worth noting that the three ways are not
necessarily independent of one another.

A. Methods Based on Handcrafted Features

In the early stage of the development of remote sensing
scene classification technology, researchers designed a series
of handcrafted features based on engineering skills according to
the characteristics of images and the task of classification [23],
[43], [44], [53]. These features represent different characteristics
of the scene in terms of color, texture, shape, spatial, and spectral
information [69], [77]. The representative handcrafted features
used in remote sensing scene classification included color his-
tograms (CH) [73], local binary patterns (LBP) [78], [81], scale
invariant feature transform (SIFT) [82], and histogram of ori-
ented gradients (HOG) [83].

1) CH: The global CH feature [84] is not only simple to
calculate but is also unaffected by image rotation and
translation. In terms of image retrieval and scene clas-
sification, CH is one of the widely used features, which
is mainly due to its insensitivity to orientation changes
and image size [60], [76], [78]. However, the color feature
cannot represent the local feature of the image or reflect
the information of the color spatial distribution.

2) LBP: LBP [85], [88] is a kind of operator widely used
to describe the local texture features of remote sensing
images [53], [60], [74], [75], [79], [80]. It has the advan-
tages of greyscale and rotation invariance. LBP constructs
a measure of the relationship between each pixel of the
image and its surrounding pixels, and extracts the texture
feature of the images.

3) SIFT: SIFT feature describes the subregions of an image
by identifying gradient information around key points
[89]. The processing flow of the SIFT is first to construct
a scale space to detect extreme points, then filter the
searched extreme points, and finally, provide the descrip-
tion of image features. As a very stable local feature of
images, SIFT is invariant to scaling, rotation, and bright-
ness changes [82].

4) HOG: HOG is another one of the widely used handcrafted
features in image processing [59]. It is obtained by statis-
tical calculation of histogram of gradient direction in the
local region of the image. HOG is used as a feature descrip-
tor for computer vision tasks such as object detection [81].
In the field of remote sensing, this handcrafted feature is
also widely used in scene classification [2], [3] [15], [90].

As global features, the CHs and LBP features represent the
overall statistical characteristics of remote sensing scene images
from the perspective of color [44], [78], and texture [82], [83],
[85], respectively. The SIFT and HOG features are local struc-
ture [89] and shape information [85]. The handcrafted features
are usually low-density features that contain a good deal of
redundant information, and it is difficult to achieve optimum
performance by classifying them directly. To optimize the clas-
sification performance, it is usually necessary to include more
robust features further developed based on handcrafted features,
such as improving the sparsity, rotation, and scale invariance of
these handcrafted features [91], [93].

B. Feature Encoding Methods

The objective of feature encoding methods is to develop
statistical patterns of higher order by encoding handcrafted
features such as CHs, LBP, and SIFT, aiming to extract more
significant features of the remote sensing scene and establish a
global representation of the image.

1) Bag-of-visual-words (BoVW): The BoVW model is one
of the most widely used feature encoding methods [53].
In this method, the local feature vector (such as SIFT)
of the image is extracted first. Then, the representative
vectors in the feature vectors are selected as words to form
a visual dictionary. Subsequently, visual word statistics
are obtained on the image to judge whether the similarity
between the local area of the image and a word exceeds a
certain threshold. In this way, the image can be represented
as the distribution of words, which completes the image’s
representation [94]. Given its simplicity and efficiency, the
BoVW model and its variants have been widely used in
remote sensing scene classification [95], [98].

2) Probabilistic topic models (PTM): The PTM introduces an
implicit variable based on the BOVW model to represent
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the image as the probability distribution of the topic, and
to increase the semantic information of the feature. Rep-
resentative PTMs mainly include probabilistic latent se-
mantic analysis (pLSA) [96] and latent Dirichlet allocation
(LDA) [97]. The former uses a graph model to represent
the relationship between topics, images, and visual words.
It combines probability and statistical theory on the basis
of the BoVW model to represent the topic probability
distribution of remote sensing image, and then, realizes
the scene classification. The latter defines a function for
the original topic probability by treating the topic mixing
parameters as variables that obey Dirichlet distribution to
solve overfitting [98].

C. Methods Based on Deep Learning

In recent years, artificial intelligence (AI) technology repre-
sented by deep learning has achieved great success in computer
vision. It has also profoundly changed the performance of remote
sensing scene classification [61], [98], [99]. The widely used
deep learning algorithms mainly include autoencoder [100],
convolutional neural network (CNN) [101], and generative ad-
versarial network (GAN) [102]. In general, the deep learning
algorithms adopt the multilevel network structure to learn the
image features adaptively, and regard the classification of remote
sensing scenes as an end-to-end problem [50]. Compared with
methods based on handcrafted features and feature encoding
methods, the methods based on deep learning can extract more
abstract and discriminative semantic features and attain better
image classification performance [57], [93].

1) Autoencoder: As an unsupervised deep learning algo-
rithm, autoencoder can obtain visual representation of the
image from unlabeled remote sensing scene for classi-
fication [100]. Cheng et al. [77] extracted discriminative
features of remotes sensing scene images by using autoen-
coder and single-hidden-layer neural network to achieve
effective classification. Du et al. [103] proposed a stacked
convolutional denoising autoencoder network to break
through the limitation of a single autoencoder in feature
representation and optimize the performance of scene
classification based on autoencoder. The autoencoder and
its variants have achieved better results than handcrafted
feature methods in remote sensing scene classification
[104], [105]. However, most of the autoencoder methods
fail to exploit the information of the remote sensing scene
fully and cannot learn the most discriminating features of
the image [65].

2) CNN: CNN is one of the most widely used deep learn-
ing methods. Compared with other algorithms, it has
outstanding advantages in the field of image processing
[106]. Since the AlexNet designed by Krizhevskey et al.
[101] achieved historical results in the Large-Scale Vi-
sual Recognition Challenge (LSVRC) in 2012, numerous
advanced deep CNNs were proposed by the researcher
to improve the performance of computer vision tasks
continuously [107]. The remote sensing scene classifica-
tion methods based on CNN achieved the best accuracy

and outperformed other methods [108], [110]. The rep-
resentative CNN include CaffeNet [111], VGGNet [112],
GoogLeNet [113], ResNet [114], SENet [115], DensNet
[116], and SKNet [117]. In 2015, Penatti et al. [48] clas-
sified the scene images by using CNN and evaluated the
generalization capability of conventional CNNs in remote
sensing. Based on the BoVW method, Cheng et al. [107]
replaced handcrafted features with deep convolutional
features as input local descriptors to the model, which
improved the accuracy of remote sensing scene classi-
fication. Lu et al. [118] proposed an aggregated feature
CNN to learn the image’s representation by exploring the
semantic label information of the scene. In view of the
size of input images, Xie et al. [119] designed a scale-
free CNN (SF-CNN) scene classification method, which
can adapt to the arbitrary size of remote sensing images
without resizing. Chen et al. [120] introduced knowledge
distillation into scene classification to obtain a lightweight
CNN model for remote sensing classification.

3) GAN: As an essential and promising deep learning
method, GAN can model the data distribution through
adversarial learning to generate near-real data [102]. GAN
consists of a generator and discriminator, in which the
data generated by the trained generator should be as
close to the real data as possible, while the discriminator
has the ability of accurate discrimination, to extract the
essential features of the image [102]. Yu et al. [121]
designed an attention GAN to enhance the representation
ability of the discriminator in the network and improve the
performance of remote sensing scene classification. The
SiftingGAN proposed by Ma et al. [122] can generate a
variety of reallike labeled remote sensing images for scene
classification.

It is worth noting that the remote sensing scene classification
based on deep learning is still dominated by the CNN methods.
The classification results of autoencoder methods and GAN
methods have not yet achieved the performance comparable to
that of CNN methods [65]. Therefore, the deep learning methods
used to evaluate the proposed NaSC-TG2 dataset in this article
are CNN-based algorithms.

III. PROPOSED DATASET

Various datasets were built to promote the classification of
remote sensing scene images [53], [57], [66]–[68], [98]. How-
ever, there are still many apparent limitations to remote sensing
scene datasets, such as the data source not being rich, the scenes
are mainly artificial landscapes, and the small amount of data
[56]. These shortcomings hinder the further development of
data-driven algorithms in remote sensing, because almost all
the deep learning models need to use large training dataset with
diverse images for training to avoid overfitting. Therefore, it
is critical to propose a scene dataset that is different from the
existing datasets and of a larger scale. This led us to propose a
natural scene classification benchmark dataset with Tiangong-2
remotely sensed imagery. In this section, we will briefly review
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the existing datasets and describe in detail the dataset we pro-
pose.

A. Existing Datasets for Remote Sensing Scene Classification

1) UC-Merced Dataset: The dataset contains 21 types of
land-use scenes with 2100 images in total [53]. All images in
the dataset are manually cropped from the National Map Urban
Area Imagery produced by the United States Geological Survey
(USGS). The source images were collected from various urban
areas around the United States. The 21 land-use categories in-
clude agricultural, airplane, baseball diamond, beach, buildings,
chaparral, dense residential, forest, freeway, golf course, harbor,
intersection, medium density residential, mobile home park,
overpass, parking lot, river, runway, sparse residential, storage
tanks, and tennis courts [53]. To increase the challenge of the
data, the dataset has overlapping land-use categories, such as
sparse residential, medium residential, and dense residential,
which differ only in their structural density. This is the most
influential dataset in the remote sensing communities and has
been widely used in the classification and retrieval of remote
sensing image scenes [7], [15], [50], [53], [71], [84], [87], [93],
[97], [98], [130].

2) WHU-RS19 Dataset: The WHU-RS19 was first released
in 2010 [66]. After several expansions, the final version consists
of 19 scene classes with a total of 1005 images [23]. The image
has 600 × 600 pixels. The scene classes include airport, beach,
bridge, commercial area, desert, farmland, football field, forest,
industrial area, meadow, mountain, park, parking lot, pond, port,
railway station, residential area, river, and viaduct [23]. Since
the images in this dataset are extracted from Google Earth in
different regions of the world, the corresponding scene images
vary greatly in scale, orientation, resolution, and illuminations.
These challenges also make the dataset widely used to evaluate a
variety of classification methods [8], [18], [19], [22], [59], [61],
[88], [92], [124], [125], [131]. However, the disadvantage of this
dataset is its small number of images per class.

3) AID Dataset: The AID dataset was also extracted from
Google Earth imagery and consists of 30 scene types—airport,
bare land, baseball field, beach, bridge, center, church, com-
mercial, dense residential, desert, farmland, forest, industrial,
meadow, medium residential, mountain, park, parking, play-
ground, pond, port, railway station, resort, river, school, sparse
residential, square, stadium, storage tanks, and viaduct [67].
The AID dataset has a larger scale than the UC-Merced and
WHU-RS19 datasets. The images of each scene in the dataset are
carefully selected from different countries and regions, including
China, England, Italy, the United States, France, Germany, and
Japan [67]. To further increase the intraclass diversity of scene
images, different times, seasons, and imaging conditions of the
scene are also taken into account when choosing images [68].

4) SIRI-WHU Dataset: The SIRI-WHU dataset consists of
12 remote sensing scenes with a total of 2400 images [98].
There are 200 images in each class, with a size of 200 ×
200 pixels and a spatial resolution of 2 m. All images of 12
land-use types are also extracted from Google Earth, including
agriculture, commercial, harbor, idle land, industrial, meadow,

overpass, park, pond, residential, river, and water [98]. As the
images are mainly from urban areas in China, the number of
images in each scene class is relatively small, and the dataset
also lacks diversity. Several remote sensing scene classification
methods have been validated in this dataset [15], [84], [98].

5) NWPU-RESISC45 Dataset: In 2017, Northwestern Poly-
technical University (NWPU) published the NWPU-RESISC45
dataset for remote sensing image scene classification (RESIS)
[68]. As the dataset’s name indicated, NWPU-RESISC45 con-
tains 45 scene classes with a total of 31 500 images. This dataset
is large scale in terms of the total number of images and scene
classes. Also, the images contain variations in spatial resolution,
object pose, translation, illumination, viewpoint, occlusion, and
background, which add to the challenge of classification [68].

6) RSSCN7 Dataset: The RSSCN7 dataset covers seven re-
mote sensing scene classes, including grassland, forest, farm-
land, parking lot, residential region, industrial region, and
river/lake, with a total of 2800 remote sensing images [57]. For
each scene, 400 images with 400 × 400 pixels were collected
from Google Earth and cropped at four different ratios with 100
images per scale [57]. The main drawback of this dataset comes
from the change in the scale of the images.

7) RSC11 Dataset: The RSC11 dataset is extracted from
Google Earth in Washington, DC, San Francisco, Los Angeles,
Chicago, New York, San Diego, and Houston [92]. The 11 scene
classes of the dataset include dense forest, grassland, harbor,
high buildings, low buildings, overpass, railway, residential area,
roads, sparse forest, and storage tanks [92]. This dataset contains
a total of 1232 images, with about 100 images in each class. The
size of each image is 512× 512 pixels, and the spatial resolution
is 0.2 m. Since the source images of this dataset are also from
Google Earth, it is similar to other ones.

B. NaSC-TG2 Dataset

Tiangong-2 was China’s first space laboratory, launched on
September 15, 2016, and deorbited on July 19, 2019 [132]. It car-
ried out many space scientific experiments and application tests,
including those for earth observation [133], [134]. The wide-
band imaging spectrometer (WIS) was one of the payloads of
Tiangong-2 for earth observation and played an essential role in
monitoring large-scale objects at medium ground resolution. As
a moderate-resolution optical payload, WIS had a wide field of
view and wideband, it has 14 spectral channels in programmable
visible and near-infrared (0.40–1.04 µm), two spectral channels
in short-wavelength infrared (1.232–1.654 µm), and two spec-
tral channels in thermal infrared (8.125–9.275 µm) [133]. The
spatial resolution of the above three bands at nadir point was 100,
200, and 400 m, respectively. With a 300-km swath and 42° field
of view, the WIS data are suitable for large-scale land surface
monitoring, ocean and coastal water color monitoring, and water
temperature observation [135], [136]. The observation range of
WIS covers all areas between 42°N and 42°S. WIS acquired
a total of 19.6 TB of high-quality observation data, covering a
total area of 119.1 million km2 [137].

On the spatial resolution and spectral band range, we chose
the visible and near-infrared spectral channels of the WIS as
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Fig. 1. Examples of each natural scene in the proposed dataset.

TABLE I
EXISTING DATASETS FOR REMOTE SENSING SCENE CLASSIFICATION

the data source. The proposed NaSC-TG2 dataset consists of
20 000 remote sensing images that are divided into ten natural
scenes. Each scene includes 2000 images with a size of 128
× 128 pixels, including not only the true-color RGB images
but also multispectral images. Because the spatial resolution
of the image is 100 m, it can provide remote sensing scenes
with a larger spatial scale than other datasets selected from
Google Earth, especially suitable for natural scenes. The scenes
included in the NaSC-TG2 dataset are beach, circle farmland,
cloud, desert, forest, mountain, rectangle farmland, residential,
river, and snowberg. All the images are labeled carefully by the

remote sensing image interpretation professionals, with samples
of each scene shown in Fig. 1. The features of our NaSC-TG2
and other remote sensing scene classification datasets are listed
in Table I.

Compared with the existing remote sensing image datasets,
the proposed NaSC-TG2 dataset has the following properties.

1) Large Scale: Compared with the tens of millions of la-
beled images in general image datasets (e.g., ImageNet [64]),
the scale of the remote sensing scene datasets needs to be
significantly expanded. Otherwise, it will be challenging to
realize the full application of data-driven algorithms, such as
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Fig. 2. Large intraclass diversity. (a) Different color images of the same natural scene. (b) Different geometrical structures of the same natural scene. (c) Different
object scales of the same natural scene.

deep learning methods, in remote sensing. The scale of almost
all the published remote sensing scene datasets is not large
enough to adequately train complex deep learning networks
from scratch. Therefore, with the proposed NaSC-TG2 dataset,
such a large-scale remote sensing scene dataset can supplement
the shortage of the number of labeled scene images for the
remote sensing communities. Due to the consistent number of
each scene in our dataset, a balanced distribution is also more
conducive to training networks. Additionally, the validation of
a classification method also relies on large-scale labeled data.
For smaller scale datasets, the predicted result of whether one
image is correct could seriously affect the classification accuracy
and cause a large standard deviation, especially when evaluating
the classification accuracy of each class. In comparison, the
proposed NaSC-TG2 dataset is a large-scale dataset that has
an adequate number of images in each scene class, and it
can, therefore, provide a better benchmark for evaluating scene
classification methods than other datasets.

2) Large Intraclass Differences and High Interclass Simi-
larity: On the one hand, considering the highly complex and
changeable conditions on the surface of the earth, the objects in
a certain scene may appear in different orientations and sizes,
and various scenes may seem to have similar features, e.g., colors
and geometrical structures. On the other hand, the imaging
conditions of remote sensing sensors are also variable. There-
fore, the methods involved in the actual task of remote sensing
image classification need to have generalization and robustness,
to accurately classify the remote sensing scene images with a
large intraclass difference and interclass similarity. The scene
images of the dataset proposed here were selected from different
regions, seasons, weather conditions, illumination conditions,
and scales to maximize the intraclass difference. In addition,
when designing scene classes and selecting images, we also
considered the similarity between scenes better to match the
actual task of remote sensing classification. The comparison of
the sample images in Fig. 2 shows that the appearance of the
same scene in our dataset has rich variations in color, spatial
structure, and object scale. For example, the mountain scene
images in different seasons have different colors; the desert

scene images in different regions have different geographical
structures; the rivers with different scales also show richness in
diversity. Besides, there is also the interclass similarity in the
NaSC-TG2 dataset, as shown in Fig. 3; some scene images of
the dataset sharing similar features, e.g., the circle farmland and
desert share similar structural distributions; the forest and the
mountain may be very close in color; the cloud and snowberg
have similar objects.

3) Natural Scenes With Novel Spatial Scale and Imaging
Performance: Almost all existing remote sensing scene dataset
images were selected from Google Earth imagery. A single data
source leads to great similarities and redundancy among differ-
ent datasets, and the scene types are mainly artificial landscapes
at high spatial resolution. However, the land cover of the earth
is dominated by natural objects, and the classification of natural
scenes is more practical. The disadvantages of existing datasets
restrict the research and development of remote sensing classi-
fication methods. The labeled images of the dataset presented in
the current study are all extracted from the Tiangong-2 remotely
sensed imagery. Compared with other datasets, the NaSC-TG2
has abundant natural scenes with novel spatial scale and imaging
performance. The more diverse remote sensing scene images
could lead to more comprehensive verification and analysis of
the algorithms, especially for the more practical natural scene
classification research. In addition to true-color RGB images,
the NaSC-TG2 dataset also covers the corresponding 14-band
multispectral scene images, providing valuable experimental
data for research on high-dimensional scene image classification
algorithms.

IV. BENCHMARKING REPRESENTATIVE METHODS

In this section, we evaluate some of the representative classi-
fication methods by the proposed NaSC-TG2 dataset to examine
their performance on natural scenes of remote sensing. In ad-
dition, the large scale of the NaSC-TG2 dataset, especially its
advantages in the number of images in each class, enables the
performance of the classification methods to be more objectively
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Fig. 3. Small interclass distance. (a) Similar structural distributions between different natural scenes. (b) Similar colors between different natural scenes. (c)
Similar objects between different natural scenes.

evaluated. It is worth noting that this experiment focuses only
on RGB images in the NaSC-TG2 dataset.

A total of 11 representative methods in the field of remote
sensing classification were selected for experimental analysis
of the NaSC-TG2 dataset, including three methods based on
handcrafted features (CH, LBP, SIFT), three feature encoding
methods (BoVW, pLSA, LDA), and five deep learning methods
(AlexNet, VGGNet-16, GoogLeNet, ResNet-34, Inception-v3
[138]).

A. Representative Methods

1) Color Histograms: The CH feature is easy to calculate and
is widely used in remote sensing image classification. First, the
CH feature in the RGB color space of each image was extracted,
in which each channel is quantized and forms a total histogram
feature. Second, the histogram was further normalized, and
the L1 norm of the normalized histogram was 1. Finally, the
scene images were classified by a trained classifier based on the
extracted CH features.

2) Local Binary Patterns: The LBP feature is calculated by
comparing the grey value of the N × N window center pixel and
the adjacent 4×(N−1) pixels. If the value of the surrounding
pixel is greater than that of the center pixel, mark the position
of the pixel as 1; otherwise, it is 0. The 4×(N−1) points in
the N × N neighborhood can be compared to produce the LBP
value of the central pixel in the form of a 24×(N−1) -bit binary
number, which reflects the texture information of the image with
a 24×(N−1)-dimensional feature vector. Similarly, we classify the
feature vector based on a classifier to determine to which scene
class the feature vector belongs.

3) Scale Invariant Feature Transform: The SIFT feature ex-
tracted from the scene image of the dataset is a feature vector
obtained by calculating the gradient histogram of the N × N
spatial grids in the image and quantizing it in bins. The classifier
takes the SIFT feature of the image as the input and outputs the
corresponding label value.

4) Bag-of-Visual-Words: In the experiment based on the
BoVW method, we first conducted dense or sparse sampling
local areas from the image to extract image patches in size of N×
N pixels, followed by calculating the corresponding handcrafted
feature as the feature descriptors of these patches, such as
CH, LBP, and SIFT. The feature descriptors extracted from all
training images are clustered to generate the visual codebook.
The clustering algorithm used in this article is the unsupervised

k-means cluster. The features of all images in the dataset are
then encoded by the mapping relationship between the feature
descriptors and the codebook determined by clustering. The
trained classifier can predict which scene class the image belongs
to according to the coding feature.

5) Probabilistic Latent Semantic Analysis: pLSA introduces
a latent variable called topic to improve the BoVW model, which
is used to describe the conditional probability distribution of
visual words in the dictionary to establish the connection with
the dataset’s images. In this article, we used a fixed Gaussian
distribution as the distribution of visual words in the dictionary.
By defining the number of topics and then describing the image
with the distribution of topics to reduce the influence of synonym
and polysemy, the dimensions of feature can be reduced to be
consistent with the number of the topics.

6) Latent Dirichlet Allocation: As a generative topic model,
the LDA is improved based on the pLSA model. The main
improvement is the addition of a Dirichlet distribution before
describing the latent variable topic, which solves the problem
of overfitting and enhances the model’s robustness. The feature
dimensions are consistent with the pLSA model and the number
of topics we defined.

7) AlexNet: The AlexNet has a classic network architecture,
consisting of five convolutional layers, three pooling layers, two
fully connected layers, and a softmax layer [101]. The first two
convolutional layers are followed by a normalization layer, and
the two normalization layers and the third convolutional layer
are followed by the pooling layer. The ReLU (rectified linear
units) function is used as the activation function of the network.
The output of the second fully connected layer of the AlexNet is
a 4096-dimension feature vector, and the classifier predicts the
scene class based on the extracted feature vector of the image.

8) VGGNet-16: VGGNet-16 is a CNN architecture contain-
ing 13 convolutional layers, five pooling layers, and three fully
connected layers [112]. Compared with the AlexNet, the im-
provement of VGG-16 is to replace the large kernel-sized con-
volutional filters in the network (11 and 5 in the first and second
convolutional layers, respectively) with multiple connected 3 ×
3 kernel-sized filters. The extracted feature from the second fully
connected layer of the VGGNet-16 is also a 4096-dimension
vector. Based on this feature vector, the classifier predicts the
label of the scene image.

9) GoogLeNet: GoogLeNet is a representative CNN model,
which was the winner of the ILSVRC-2014 in classification
and detection [113]. While AlexNet and VGGNet have fixed
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convolution kernel sizes, GoogLeNet introduced the concept of
an inception module to extract various kinds of features of the
image by combining 1 × 1 conv, 3 × 3 conv, 5 × 5 conv, and
3 × 3 max pooling. Due to its 1 × 1 conv at the middle of the
network, it can reduce the number of parameters of the network.
This allows the network to be deep enough without being easy
to overfitting.

10) ResNet-34: ResNet is an innovative architecture called
residual network, which solves the gradient optimization prob-
lem by improving the structure of the network [114]. For a
network with too many layers, the network can easily fall into
a vanishing or exploding gradient during the training phase.
Through skip connections, the ResNet can be connected to the
output directly by skipping a few layers of training. In the
way, the network can learn to fit the residual mapping rather
than learning the underlying mappings by the instead of layers.
According to the number of layers, ResNet has many variants,
including ResNet-18, ResNet-34, ResNet-50, ResNet-101, etc.
Among them, ResNet-34 is one of the most vibrant networks on
its own.

11) Inception-V3: GoogLeNet and Inception-v3 are both the
architecture of the convolutional network of the Inception fam-
ily, and the latter utilizes several techniques, such as factorized
convolutions, regularization, dimension reduction, and paral-
lelized computations to loosen the constraints for easier model
adaptation [138]. The inception-v3 predicts the class of the scene
image based on the 2048-dimensional feature vector extracted
from the last pooling layer of the network.

B. Experimental Setup

1) Parameter Settings: For the methods based on hand-
crafted features in our experiment, the CH and LBP features
we extracted are the global descriptors that efficiently represent
the entire scene image. Specifically, in the feature extraction of
CH, we calculate the statistical histograms in the color space of
RGB and quantize each channel into 32 bins, then combine the
feature of the three channels to form a 96-dimensional vector.
For LBP, we set the window size to 3 × 3, and the grey value
of the center pixel in the window is compared with the eight
adjacent pixels to obtain 8-bit binary values. The 8-bit binary
values can represent 256 patterns, which are the LBP features
of an image. Unlike CH and LBP, the SIFT is the local patch
descriptor of an image. We extract all the descriptors from the
grey image plain using a 16 × 16 size grid with a spacing step of
eight pixels. Each dimension of the descriptor is then averaged
to obtain a 128-dimensional SIFT feature of the image.

For feature encoding methods, we use CH, LBP, and SIFT
as local patch descriptors to extract the spectral, texture, and
structural features of the image, respectively. In the process of
patch sampling, we use grid sampling, which has been proven
to obtain better results in remote sensing scene classification
[98]. In our experiment setting, the patch size of all the local
descriptors is 16 × 16 pixels with a spacing step of eight
pixels to balance the speed and accuracy. The three local feature
descriptors and three global feature encoding methods can be
combined into nine results. We set the size of the dictionary at

1000, 2000, 3000, 4000, and 5000 to study the way the different
sizes affected the classification performance, and then selected
the optimal size. For certain parameters, such as the number
of topics for pLSA and LDA, we set them both to half the
dictionary’s size, based on previous experience [67], [68].

The 4096-dimensional vector extracted from the second fully
connected layer of the trained AlexNet and VGGNet-16, the
1024-dimensional, 1000-dimensional, and 2048-dimensional
vector formed by the last pooling layer of the trained
GoogLeNet, ResNet-34, and Inception-v3 are the final global
features. All five deep learning models were implemented on a
PC with 2 GHz 20-core CPUs and 32 GB of RAM. Two Nvidia
Titan RTX GPUs were also used for acceleration.

To make a fair comparison between the different methods, we
use the linear support vector machines (SVMs) [47] as the clas-
sifier for all 11 kinds of image features. Specifically, the dataset
is divided into the training set and test set, according to a certain
proportion. The features extracted from the training set are used
to train the linear SVM classifier, and the features extracted from
the test set are used for evaluating the performance of the trained
model.

2) Evaluation Protocols: In this article, we chose the overall
accuracy (OA) and confusion matrix as evaluation indicators
to quantify different classification methods. OA is defined as
the ratio of correctly classified images to the total number of
images. It reflects the classification performance of the entire
dataset by direct measurement. Since the number of each scene
in our dataset is the same, the overall accuracy also represents
the average accuracy of all scenes.

The confusion matrix, also known as the error matrix, displays
the performance of the classification visually through a specific
table layout. The percentage of predicted instances to actual
instances is shown in each cell of the matrix. The confusion
between different scenes in the predicted results of the method
can be seen intuitively from the matrix.

In our evaluation, the training set was randomly selected from
the dataset at ratios of 10% and 20%, respectively, for supervised
training of the classification model, and the remaining 90% and
80% data were used as the test set for validation. To reduce the
random error and obtain reliable results, we repeated the evalua-
tion ten times to calculate the average OA and the corresponding
standard deviation.

C. Experimental Results

In this section, we provide the corresponding results and
analysis of the different methods on our dataset, specifically
including the results of the three categories of feature extraction
methods, the confusion matrix, and visual comparative analysis.

1) Results of the Methods Based on Handcrafted Fea-
tures: Table II lists the means and standard deviation of
OA of the three methods based on handcrafted features, CH,
LBP, and SIFT. LBP has the best performance, indicating
that for the NaSC-TG2 dataset, the texture descriptor can
represent the scene feature better. Considering intraclass dif-
ferences of the dataset, the colors are not uniform in each scene,
and the CH feature performs worse than LBP. The performance
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TABLE II
OVERALL ACCURACIES (%) OF THE THREE METHODS BASED ON

HANDCRAFTED FEATURES AT 10% AND 20% TRAINING RATIOS

Fig. 4. Overall accuracies of BoVW, pLSA, and LDA methods with the
dictionary sizes of 1000, 2000, 3000, 4000, and 5000, respectively, at (a) 10%
and (b) 20% training ratios.

of the SIFT descriptor is worse than the other two, and the OA
value is lower by more than 20%, indicating that SIFT is not
suitable for directly classifying our dataset. Since all scenes
are natural landscapes in our dataset, the texture features of
different scenes are more robust and distinguishable than color
features. In addition, when handcrafted features are directly used
for large-scale scene classification, the global features such as
texture and color are better than the local features such as SIFT.

2) Results of the Feature Encoding Methods: For feature
encoding methods, the dictionary’s size is one of the critical

TABLE III
OVERALL ACCURACIES (%) OF NINE FEATURE ENCODING METHODS AT 10%

AND 20% TRAINING RATIOS

parameters that affect the performance of the results. Therefore,
the optimal size of the methods at different ratios must be
determined in the first place. We use the LBP as the local patch
descriptor to compare the performance of the BoVW, pLSA, and
LDA at dictionary sizes from 1000 to 5000, in steps of 1000.

Fig. 4 shows the corresponding OA at the different dictionary
sizes. For the training ratio of 10%, the dictionary sizes worked
best at 5000, 2000, and 5000. For the training ratio of 20%, the
dictionary sizes worked best at 5000, 5000, and 5000, for the
BoVW, pLSA, and LDA methods, respectively. We carried out
the subsequent evaluation based on the optimal dictionary size
for the different methods.

The local feature descriptions correspond to the three feature
encoding methods, which combined into nine classification re-
sults. Table III shows the means and standard deviation of OA
for each result. Compared with the classification based on the
handcrafted feature directly, the contribution of the different fea-
ture descriptors to the classification has changed after encoding.
The SIFT feature improved from being lower in performance
than CH and LBP to 20% higher than CH in OA. This indicates
that the SIFT feature is not suitable for classification directly,
but it can generate more robust feature representation through
encoding. The classification performance based on LBP is still
the best. The differences in texture and spatial structure of scenes
are more evident than others for natural targets in our dataset.
The texture feature is further enhanced after encoding, and the
OA is about 10% higher than other features.

When the feature encoding methods are compared, it can
be seen that the LDA method has the best performance, while
BoVW being slightly worse. The performance of pLSA is the
worst under different training ratios, and the OA is nearly 10%
lower than the other two. Compared with BoVW and pLSA,
LDA could discover more descriptive topics, leading to more
distinguishable descriptors. In addition, more training data could
improve the overall accuracy of all methods to a certain extent.

3) Results of the Deep Learning Methods: Table IV displays
the means and standard deviation of OA for the five deep
learning methods. From the classification results, AlexNet,
GoogLeNet, VGG-16, ResNet-34, and Inception-v3 all achieve
excellent performance, far better than the methods based
on handcrafted features and feature encoding methods. This
indicates that the deep learning methods can learn more
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TABLE IV
OVERALL ACCURACIES (%) OF FIVE DEEP LEARNING METHODS AT 10% AND

20% TRAINING RATIOS

discriminable features from remote sensing scene images. Of
the five, AlexNet and VGG-16 show similar performance on
the NaSC-TG2 dataset, while GoogLeNet, ResNet-34, and
Inception-v3 perform slightly worse under both training ratios.

The five deep learning networks are all designed for gen-
eral digital images, the GoogLeNet (22 layers), ResNet-34 (34
layers), and Inception-v3 (47 layers) are more in-depth than
AlexNet (10 layers) and VGG-16 (16 layers). In theory, the
deeper networks are more likely to exploit the inherent and
discriminative features from images. However, the images from
the NaSC-TG2 dataset are natural scenes with large spatial scale
objects of the land surface which are quite different from general
digital images; the deeper network may not perform the best.
Furthermore, because all five CNN methods are trained from
scratch, the deeper networks may depend on more extensive
training for better performance. The existing experimental con-
ditions could not fully explore the ability of deeper networks.
The classification of the remote sensing scenes of our dataset
may be more suitable for networks of moderate depth, such as
AlexNet, which has eight layers, and VGGNet-16, which has 16
layers.

Besides, due to a large number of images per scene in our
dataset, the standard deviation of the OA for all the above
methods is relatively small, which makes the evaluation of the
various methods more accurate.

D. Confusion Matrix

In addition to the OA, we also calculated the corresponding
confusion matrix to visualize the performance of each class from
various methods. For the NaSC-TG2 dataset, in Figs. 5 and 6,
we show the confusion matrix corresponding to the best results
based on handcrafted features, the feature encoding methods,
and the deep learning methods under different training ratios.

For the methods based on handcrafted features, only the
classification accuracy of the cloud and residential scenes are
above 0.8. In terms of LBP feature, cloud and snowberg, forest,
and desert are easily confused. For the feature encoding method,
the classification accuracy of nearly half of the scenes is more
than 0.8, which represents a significant improvement over the
method based on handcrafted features, especially for the river,
circle farmland, and forest. However, the accuracy of residential
is slightly reduced, possibly because the regular distribution
of residential areas from the wideband imagery of Tiangong-2
makes the simple texture more representable than the encoding
feature. For the deep learning method, all of the scenes can

Fig. 5. Confusion matrix obtained by methods based on handcrafted features
(LBP), feature encoding LDA (LBP), and deep learning (VGG-16) on the
proposed dataset under the training ratios of 10%.

be easily distinguished from one another, and the classification
accuracies of most classes are close to 0.9. Only the river scene
has a slightly lower classification accuracy, because some rivers
are distributed in farmland and residential areas, which may be
confused with the surroundings.

Compared with the shallow texture feature, the accuracy of
desert, river, and forest scenes increased by more than 35%,
indicating that the higher level features extracted from the
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Fig. 6. Confusion matrix obtained by methods based on handcrafted features
(LBP), feature encoding LDA (LBP), and deep learning (VGG-16) on the
proposed dataset under the training ratios of 20%.

deep learning network can significantly enhance the represen-
tative ability of the above scenes and improve the classification
accuracy.

The evaluations show that the deep learning methods exhib-
ited the best performance, followed by the feature encoding
methods, and the methods based on handcrafted features. The
deep learning methods represent the state-of-the-art for remote
sensing scene classification and have significant advantages over
other methods.

Fig. 7. Visualization of convolutional feature maps of the river (left) and
rectangular farmland (right) scene of different layers in the VGG-16 network.

To further analyze the causes of misclassification of the deep
learning method, we select representative scene images from
the NaSC-TG2 dataset and extract their corresponding convo-
lutional features in different layers in the VGG-16 network for
visual comparison in Fig. 7.

Due to the spatial scale changes of actual natural surface
objects, the river scene images in our dataset are quite different.
From the perspective of the scene, the semantic theme of the
image is the river, but the area of the river itself may be much
smaller than the others, such as the rivers flowing through
residential and farmland areas.

It can be seen from Fig. 7 that in the shallow convolutional
features of the VGG-16 network, the representations of the river
in the image are enhanced; the river in the feature maps has
obvious boundaries and contours. However, as the convolutional
features progress to the deeper levels, the representations of the
river are gradually weakened; the feature maps may represent
more of the overall scene and no longer focus on the object of
the river itself.

For the fifth layer of convolutional features of the VGG-16
network, there is no descriptive visual difference between the
features corresponding to the river and the rectangular farmland
scenes. This may be because the river area in the scene is
small, and the semantic knowledge learned by the network is no
longer the river but other surrounding contents, which leads to
misclassification. To achieve a better classification of the natural
scene on our dataset, the classification algorithm needs to pay
more attention to the main semantic content of the scene without
being disturbed by the area ratio.

V. CONCLUSION

In this article, we proposed a dataset called “NaSC-TG2,”
a novel benchmark dataset for remote sensing natural scene
classification from Tiangong-2 remotely sensed imagery.
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The NaSC-TG2 dataset contains 20 000 images, which are
divided into ten scene classes, with 2000 images for each. It
is large scale, especially in terms of the number of each class,
and can be used for data-driven algorithm study. The dataset
has a large intraclass difference and high interclass similarity,
which matches the actual remote sensing classification task.
The scene images from NaSC-TG2 dataset are all taken from
the Tiangong-2 wideband imagery. It offers natural scenes with
novel spatial scale and imaging performance, enriching the
diversity of scenes compared with other datasets used by remote
sensing communities, which is suitable for evaluating different
remote sensing scene classification methods, especially for nat-
ural scenes.

This dataset will be used as experimental data to contribute to
the research of classification algorithms. The evaluations of rep-
resentative classification methods based on the proposed dataset
provide baseline results for future algorithm development.
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