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Abstract—Deep subspace clustering network has shown its effec-
tiveness in hyperspectral image (HSI) clustering. However, there
are two major challenges that need to be addressed: 1) lack of
effective supervision for feature learning; and 2) negative effect
caused by the high redundancy of the global dictionary atoms. In
this article, we propose an end-to-end trainable network for HSI
clustering. Specifically, to ensure the extracted features are well-
suited to subsequent subspace clustering, the cluster assignments
with high confidence are employed as pseudo-labels to supervise
the feature learning process. Then, an adaptive self-expressive
coefficient matrix initialization strategy is designed to reduce the
dictionary redundancy, where the spectral similarity between each
target sample and its neighbors is modeled via the k-nearest neigh-
bor graph to guide the initialization. Experimental results on three
public HSI datasets demonstrate the effectiveness of the proposed
method. In particular, our method outperforms several state-of-
the-art HSI clustering methods, and achieves overall accuracy of
100% on both SalinasA and Pavia University datasets.

Index Terms—Deep subspace clustering (DSC), hyperspectral
image (HSI), self-expressive, self-supervised, subspace clustering
(SC).

I. INTRODUCTION

S INCE hyperspectral images (HSIs) contain rich spatial and
spectral information, they have been widely applied to

different remote sensing applications, such as food safety [1],
environmental monitoring [2], geological exploration [3], land-
cover classification [4], [5], and hyperspectral unmixing [6].
Among these applications, HSI classification is a fundamental
technique which aims to assign each pixel with a certain label [7].
Although supervised HSI classification methods have achieved
state-of-the-art performance with the development of deep learn-
ing techniques [8], a large amount of labeled samples required in
supervised HSI classification hinders its application. In contrast,
HSI clustering has drawn much attention in recent years since
it can automatically assign similar samples to a group in an
unsupervised manner. However, clustering is still a challenging

Manuscript received December 8, 2020; revised January 17, 2021; accepted
February 26, 2021. Date of publication March 5, 2021; date of current version
March 25, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 62002372 and Grant 61921001.
(Corresponding author: Yao Qin.)

The authors are with the College of Electronic Science and Tech-
nology, National University of Defense Technology, Changsha 410073,
China (e-mail: likun19@nudt.edu.cn; tsintuan@163.com; lq910131@163.com;
wangyingqian16@nudt.edu.cn; linzaiping@sina.com; anwei@nudt.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2021.3063335

task due to the high dimensionality and complex spectral-spatial
structures of HSI data [9].

Recently, subspace clustering (SC) [10] has been success-
fully applied to HSI clustering due to its capability to han-
dle high-dimensional data and its effectiveness of capturing
complex structures of HSI data [11]–[19]. These methods can
be grouped into two categories, i.e., SC in original space and
SC in feature space. The former ones construct affinity matrix
from raw samples [11]–[16], whereas the latter ones construct
affinity matrix from the features of samples [17]–[19]. Due to
the inherent nonlinear structures of HSIs, SC in deep feature
space can well capture the nonlinear characteristics of sample
distribution [18], [19]. However, there exist two main problems
that need to be tackled for these deep subspace clustering
(DSC) methods. First, since affinity matrix learning and spectral
clustering are performed independently in these methods, their
feature learning lacks effective supervision. Therefore, the deep
features extracted by the encoder cannot always suit for the
subsequent SC [20]. Second, since these methods employ the
global self-expressive dictionary to represent the features of
samples, the high dictionary redundancy hinders the further
improvement of the clustering performance [14].

To address the aforementioned issues, we propose a Self-
supervised Deep Subspace Clustering method with Adaptive
self-expressive coefficient matrix Initialization (SDSC-AI) for
HSI clustering. Specifically, to learn discriminative features for
the SC, we propose an end-to-end trainable network to combine
affinity matrix learning and spectral clustering. In our network,
fully connected layers are introduced on top of the encoder to
serve as a classifier, which use the cluster assignments produced
by spectral clustering as pseudo-labels to supervise the feature
learning process. In this way, affinity matrix learning and spec-
tral clustering are alternately performed and the whole model
is trained in an end-to-end manner. Moreover, to obtain highly
confident pseudo-labels, the samples closer to their cluster cen-
ters in spectral clustering are selected to train the encoder, and
their cluster assignments are considered as highly confident.

To reduce the high redundancy of the global dictionary atoms,
the correlated atoms need to be selected to express the target
features of samples, while the uncorrelated atoms should be sup-
pressed. However, existing DSC-based methods [18], [19] ini-
tialize the elements of the self-expressive coefficient matrix with
the same non-zero values, which tends to induce all atoms to ex-
press the target features of samples. Therefore, the initialization
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approach of self-expressive coefficient matrix in these methods
cannot address the issue of high dictionary redundancy. Based
on the fact that similar HSI samples are more likely lying in
the same subspace [12], we construct k-nearest neighbor (KNN)
graph to model the spectral similarity between each sample and
its neighbors. The nonzero element in the binary adjacent matrix
of KNN graph indicates that the corresponding two samples are
similar. Therefore, these two samples and their corresponding
features are likely lying in the same subspace. Moreover, since
the weights of neural networks are generally initialized to small
random values [21], [22], the nonzero elements in the binary
adjacent matrix are updated by random values generated from
a uniform distribution. Finally, the updated adjacent matrix is
used to initialize the self-expressive coefficient matrix. In this
way, the correlated atoms can be induced to express the target
features, while the uncorrelated ones can be suppressed.

The main contributions of this article are summarized as
follows.

1) We propose an end-to-end trainable network to combine
the affinity matrix learning and spectral clustering. The
cluster assignments with high confidence are used as
pseudo-labels to supervise the feature learning process.
To the best of our knowledge, this is the first attempt to
introduce self-supervised learning for HSI clustering.

2) We proposed a spectral similarity based adaptive self-
expressive coefficient matrix initialization strategy to re-
duce the high redundancy of global self-expressive dictio-
nary atoms.

3) Experimental results on three benchmark HSI datasets
demonstrate the superiority of our method as compared
to several state-of-the-art clustering methods.

The rest of this article is organized as follows. Some related
works are briefly reviewed in Section II. The proposed method
is described in Section III. Section IV presents the experimental
setup and results in detail. Section V concludes this article.

II. RELATED WORKS

In this section, we briefly review major works on HSI clus-
tering, SC, and self-supervised learning.

A. HSI Clustering

HSI clustering methods have drawn much attention since
they do not require any labeled samples during training phase.
Generally, the existing HSI clustering algorithms can be divided
into following categories [23]:

1) centroid-based methods;
2) density-based methods;
3) biological-based methods;
4) graph-based methods; and
5) deep learning-based methods.
Centroid-based methods such as k-means [24], fuzzy

c-means (FCM) [25], and fuzzy c-means with spatial constraint
(FCM_S) [26] iteratively update the cluster centers until the
cluster centers remain unchanged. These methods are compu-
tationally efficient and easy to implement. However, they are
sensitive to the initialization state [27]. Density-based methods

such as clustering by fast search and find of density peaks [28]
and its improved version [29] calculate the local density of
each sample, and then select the samples both having high local
density and large distance from samples with higher densities as
cluster centers. The biological-based methods such as automatic
fuzzy clustering method based on adaptive multiobjective dif-
ferential evolution [30] employs the biological model to achieve
HSI clustering, which transforms the clustering problem into
a multiobject optimization problem. The graph-based methods
such as spectral clustering [31], fast spectral clustering with
anchor graph [16], and sparse subspace clustering (SSC) [11]
construct graph to represent the similarity of each pair of sam-
ples, and then obtain the clustering results by applying spectral
analysis to the similarity graph. The deep learning-based meth-
ods such as learning the deep embedding based on the set-to-set
and sample-to-sample distances (LSSD) [23] embed the raw
samples into low-dimensional feature space and group the deep
representations to generate final clusters.

B. Subspace Clustering

Based on the fact that data in a high-dimensional space can be
better represented as subspaces [32], SC-based methods obtain
great research interests due to their capability to handle high-
dimensional data and their effectiveness of capturing complex
structures of HSI data [11]–[19]. These methods generally divide
the task of clustering into two subproblems. The first one is
to construct affinity matrix, and the second one is to apply
spectral clustering on the affinity matrix. According to whether
the affinity matrix is built in original space or not, these methods
can be grouped into two categories, i.e., SC in original space and
SC in feature space.

1) Subspace Clustering in Original Space: This type of
methods [11]–[13] build affinity matrix from raw HSI samples
based on the assumption that a sample in a union of subspaces
can be expressed as a linear combination of other samples
in the same subspace (i.e., self-expressiveness property of the
data [11]). To construct informative affinity matrix, different
regularization terms [10] are introduced to regularize the self-
expressive coefficient matrix, e.g., the sparse affinity matrix
induced by �1-norm [11], the low-rank affinity matrix induced
by nuclear norm [33], [34]. In addition to these typical subspace
learning methods, spectral-spatial sparse SC (S4C) [12] and
l2-norm regularized SSC (l2-SSC) [13] have been proposed for
HSI clustering to better exploit both the spectral and spatial
information.

2) Subspace Clustering in Feature Space: This type of meth-
ods [17]–[19], [35] maps the raw samples into feature space
to better capture the nonlinear characteristics of sample dis-
tribution, and then construct the affinity matrix in the feature
space. For instance, kernel SC [17] is proposed to implicitly
map the HSI samples from original space to a kernelized space.
However, this method empirically selects the optimal kernel and
thus suffers from the degradation of different nonlinear kernels.
Recently, DSC network [18] is proposed to nonlinearly map the
raw samples to a latent space using deep convolutional auto-
encoders. Besides, DSC uses a novel self-expressive layer to
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Fig. 1. Flowchart of our method. Our network consists of five modules: a) the feature extraction module is based on deep convolutional auto-encoders, where
the encoder is used to extract features, and the decoder is used to reconstruct the raw input samples; b) the self-expressiveness module is used to learn the
self-expressive coefficient matrix; c) the self-expressive coefficient matrix initialization module is used to provide a good initialized self-expressive coefficient
matrix for the self-expressiveness module; d) self-supervised learning-based classification module classifies the features with the pseudo-labels generated from
the spectral clustering module; and e) the spectral clustering module generates clustering results and provides pseudo-labels to supervise the feature learning (best
viewed in color).

achieve self-expressiveness property of the features of samples.
To preserve the cluster structure in data space, distribution-
preserving subspace clustering [35] introduces a distribution
consistency loss to guide the learning of distribution-preserving
latent representation. Inspired by the success of the DSC method,
Laplacian regularized deep subspace clustering [19] introduces
Laplacian regularization to retain the manifold structure of HSI
data.

C. Self-Supervised Learning

Self-supervised learning aims at learning general features
without using any human-annotated labels [36]. To this end,
self-supervised learning generally predefines a pretext task to
learn feature representations of the unlabeled data using pseudo-
labels that are automatically generated based on the attributes of
unlabeled data. After pretext task training, the deep representa-
tions contain rich semantic information and then are transferred
to downstream tasks by fine-tuning.

Since the pretext task plays a key role in self-supervised
learning, several effective pretext tasks [36], [37] are designed
to yield pseudo-labels from the unlabeled data to guide self-
supervised learning. In [38], the prediction of the relative spatial
position between the central image patch and its 8-neighbor
image patches are used as a pretext task. In [39], pretext task is
designed as the recovery of positions of spatially shuffled image
patches. Prediction of geometrical image transformation such
as rotations is also used as a pretext task [40]. Besides, mutual
information (MI) maximization is a popular kind of pretext
task in self-supervised learning [41], [42]. Recently, instance
discrimination [37], [43], [44] is leveraged as a pretext task and
achieves promising performance in downstream tasks.

Clustering is a natural pretext task since data are grouped
according to their attributes and can be automatically assigned
with clustering labels. DeepCluster [45] is a typical clustering-
based self-supervised learning method whose training process
includes two alternate steps, i.e., 1) train the encoder using
cluster assignments as pseudo-labels, and 2) cluster the image
features using k-means algorithm. In this article, we follow the
clustering-based method to yield pseudo-labels.

III. PROPOSED METHODOLOGY

In this section, an SDSC-AI method is proposed for HSI
clustering. As illustrated in Fig. 1, our method consists of
feature extraction module, self-expressiveness module, adaptive
self-expressive coefficient matrix initialization module, spectral
clustering module, and self-supervised learning-based classifi-
cation module. In this section, we first introduce each module
of our network, and then introduce the implementation details.

A. Feature Extraction Module

The foundational component of our method is the feature
extraction module, which nonlinearly maps the raw HSI sam-
ples into a latent space. To exploit the spatial information, the
deep convolutional auto-encoders are used as the backbone
network. Given HSI samples X = [x1,x2, . . . ,xN ] ∈ Rm×N

drawn from a union ofn subspaces
⋃n

j=1{Sj}, wherem,N , and
ndenote the spectral dimension, number of samples, and number
of subspaces, respectively. Let Z = [z1, z2, . . . , zN ] ∈ Rp×N

denotes the deep features of the input samples, i.e., the output
of the encoder, where p is the dimension of the deep features.
Then, Z is fed into the decoder to reconstruct the input samples
X. To ensure that the input samples X can be constructed by the
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the auto-encoders, the loss function is defined as

LDAE =
1

2
‖X− X̂‖2F (1)

where ‖ · ‖F denotes the Frobenius norm, and X̂ denotes the
samples reconstructed by the auto-encoders.

B. Self-Expressiveness Module

The self-expressiveness module is used to learn the
self-expressive coefficient matrix, which introduces a fully
connected (FC) layer (i.e., self-expressive layer [18]) without
activation function and bias between the encoder and the de-
coder. The weights of the self-expressive layer can be consid-
ered as the self-expressive coefficient matrix. The loss of the
self-expressiveness module is defined as

‖C‖� + 1

2
‖Z− ZC‖2F , s.t. diag(C) = 0 (2)

whereC ∈ RN×N denotes the parameters of the self-expressive
layer.‖C‖� is a regularization term to ensure thatChave a block-
diagonal structure. 1

2‖Z− ZC‖2F is the self-expressiveness
term. The constraint diag(C) = 0 denotes that the values of
the diagonal elements of C are zeros, which is used to eliminate
trivial solutions.

C. Self-Expressive Coefficient Matrix Initialization Module

This module is used to provide a good initialized self-
expressive coefficient matrix C for self-expressive layer to
address the issue of high dictionary redundancy. For this pur-
pose, the correlated atoms need to be selected to represent the
target features of samples, whereas the unrelated atoms should
be well suppressed simultaneously. However, in recent DSC
methods [19], [20], all elements of the self-expressive coefficient
matrix are initialized with the same nonzero value, which tends
to induce all the atoms in the global self-expressive dictionary
to express each target feature. Consequently, the initialization
approach of self-expressive coefficient matrix cannot address the
problem of high redundancy of self-expressive dictionary atoms,
which can degrade the clustering performance. This relationship
can be clearly observed from the self-expressiveness property of
the features:

zj =
∑
i�=j

Ci,jzi + ej (3)

where zi and zj are the ith and the jth columns of Z that denote
the atom of self-expressive dictionary and the target feature,
respectively. ej denotes the noise. Since all the elements of C
are initialized as Ci,j �= 0, zj can be linearly expressed by all
the atoms {zi | i = 1, . . . , N, i �= j}.

Based on the fact that similar HSI samples are more likely
lying in the same subspace [12], the KNN graph is used to model
the spectral similarity between each sample and its neighbors.
Let G = (V, E) be an undirected graph, where V and E denote
the set of nodes and edges, respectively. The adjacent matrix A

of G is defined as

Ai,j =

{
1, if xj ∈ Nk(xi)

0, otherwise
(4)

where Nk(xi) denotes the set of neighbors of the sample xi. If
Ai,j �= 0, sample i and sample j are similar and thus likely lying
in the same subspace. Correspondingly, the features of these two
samples are also likely lying in the same subspace. However, it
is unreasonable to directly use the adjacent matrix to initialize
self-expressive coefficient matrix since the self-expressive co-
efficients are generally smaller than 1. Moreover, the weights
of neural networks are generally initialized to small random
values [21], [22]. As a result, we update the adjacent matrix as
follows:

Ãi,j =

{
y, if xj ∈ Nk(xi)

0, otherwise
(5)

where y is a small random value sampled from a uniform
distribution U [a, b]. In this way, matrix Ã not only retains the
structure of adjacent matrix, but also meets the requirement that
coefficients are smaller than 1. Consequently, Ã can be used to
induce the most correlated atoms to represent the target features.
The flowchart of the initialization strategy is illustrated in Fig. 2.

D. Spectral Clustering Module

Spectral clustering module is used to generate clustering
results. The parameters of the self-expressive layer (i.e., C) are
employed to construct an affinity matrix that is formulated as
follows:

W =
1

2
(|C|+ |C|T ) (6)

where W ∈ RN×N is the affinity matrix with element Wi,j

denoting the similarity between the ith and the jth samples.
Then, the clustering results are produced by applying spectral
clustering [46] to the affinity matrix.

E. Self-Supervised Learning-Based Classification Module

Since affinity matrix learning and spectral clustering DSC-
based methods [18], [19] are independent, the features extracted
from the convolutional encoder cannot be well-adopted to the
subsequent spectral clustering due to the lack of effective super-
vision. To handle this problem, we use the cluster assignments
generated from the spectral clustering as pseudo-labels to super-
vise the feature learning.

1) Self-Supervised Feature Learning: Inspired by [20], two
FC layers are introduced on the top of the encoder as p× n1 ×
n2 × n, where n1 and n2 are the numbers of neurons in the
first and the second FC layers, respectively (see Fig. 1). The FC
layers are served as a classifier that is trained with pseudo-labels
and back-propagates to the encoder. The output of the FC layers
is a multiple classification with a softmax function

P (Y = i | R,W, b) =
eWiR+bi∑
j e

WjR+bj
(7)
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Fig. 2. Flowchart of the adaptive initialization of the self-expressive coefficient matrix. First, k-nearest neighbor (KNN) graph is constructed to model the spectral
similarity between each target sample and its neighbors. Then, the adjacent matrix of KNN graph is updated to initialize the self-expressive coefficient matrix.

where R is the output of the encoder, W and b are the weights
and biases of the FC layers, P (·) denotes the probability that the
input belongs to the ith category.

Let Q = [q1,q2, . . . ,qN ] ∈ {0, 1}n×N denote the output of
the spectral clustering with each column qi denoting the cluster
assignments of the ith sample, and the output of the spectral
clustering is fed into the FC layers and used as self-supervision
information. We combine the cross-entropy loss and center loss
to train the convolutional encoder. The loss function is defined
as

LCECT (w) =
1

N

(
−

N∑
i=1

qT
i logyi +

N∑
i=1

‖yi − cyi
‖2
)

(8)

where w denotes the weights of the FC layers, yi is the output
of the FC layers at sample i calculated by (7), and cyi

is the
corresponding cluster center of yi in the deep feature space.
The first term of (8) denotes the cross-entropy loss that makes
the features of different clusters separable, and the second term
of (8) denotes center loss that minimizes the distances between
the deep features and their cluster centers [47].

Highly confident pseudo-labels are useful for discriminative
feature extraction and beneficial to the clustering [48]. However,
some of the pseudo-labels produced by spectral clustering are
incorrect and may misguide the feature learning. To handle this
issue, it is necessary to introduce the confidence of samples to
obtain highly confident pseudo-labels.

2) Selection of Samples With High Confidence: Inspired
by [5], [49], we iteratively select highly confident pseudo-labels
from each cluster to supervise the feature learning. Given the
clustering results, the points in each cluster that are closer
to their cluster center are assigned with high confidence. Let
U ∈ RN×n be the matrix containing the first n eigenvectors of
graph Laplacian induced by the affinity matrix W as columns,
and Ũ = {uj | j = 1, . . . , n} denotes the points consisting of
the rows of the matrix U. Then, k-means algorithm is applied to
the points of Ũ to obtain the clusters A1, . . . , An and the corre-
sponding cluster centers θ1, . . . , θn. The class-wise confidence
is defined as

confidencei = ρ max
uj∈Ai

‖uj − θi‖22 (9)

where ‖ · ‖22 denotes the Euclidean distance between point j
and its cluster center. ρ ∈ (0, 1] is a parameter that controls the

Algorithm 1: Selection of Samples With High Confidence
in the Current Clustering

Input: Ũ , S = ∅

1: Perform k-means algorithm on Ũ .
2: for i = 1, . . . , n do
3: Calculate the class-wise confidencei by (9).
4: Calculate the distances between the θi and Ai.
5: if ‖uj − θi‖22 ≤ confidencei do
6: Sample j is selected and S ← S ∪ {j}.
7: end if
8: end for

Output: Indexes of the selected samples S.

amount of selected samples. For each cluster Ai, the points with
distances smaller than the confidencei have high confidence
and their cluster assignments are considered to be highly con-
fident. Correspondingly, the samples with high confidence are
selected in the current clustering to train the encoder. Algorithm
1 illustrates the process of the sample selection in the current
clustering. Note that, the samples selected in the current cluster-
ing are merged with the ones selected in the previous clustering,
and no longer used as the candidates in the next clustering.
Empirically, once the increment of selected samples is less than
0.5% of the number of total samplesN , or the number of selected
samples reaches 70% of N , the selection is forced to cease.

F. Implementation Details

The loss function of the proposed SDSC-AI method is defined
as

L = LDAE + λ1L1 + λ2L2 + λ3LCECT (10)

where L1 = ‖C‖�, L2 = 1
2‖Z− ZC‖2F . λ1, λ2, λ3 are the

weights to balance the contributions of different terms. Since
the size of the datasets for HSI clustering is generally limited
(e.g., in the order of thousands of samples), it is hard to directly
train a network from scratch using these datasets. Therefore, the
proposed network are trained following a two-stage pipeline: 1)
pretrain the deep convolutional auto-encoders; and 2) train the
whole network by alternately performing affinity matrix learning
and spectral clustering.
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Algorithm 2: Training Process of the SDSC-AI Network
Input: X, the cluster number n, parameters λ1, λ2, λ3, ρ,
k, a, b, maximum iteration Tmax, T0, S = ∅ and t = 1.

1: Pre-train the deep convolutional autoencoders.
2: Calculate and update the adjacent matrix according to

(4) and (5).
3: Initialize the self-expressive coefficient matrix C.
4: Initialize the FC layers.
5: Train self-expressive layer and construct W according

to (6).
6: Perform spectral clustering to obtain U and Q.
7: while t ≤ Tmax do
8: Select samples by Algorithm 1.
9: if size(St) ≤ 0.005N or size(S) ≤ 0.7N do

10: St← S ∪ St and S ← St.
11: end if
12: Fix Q and update the remaining parts for T0 epochs

according to (10).
13: Perform spectral clustering to update U and Q.
14: Ũ ← {uj | j = 1, . . . , n, j /∈ S}, t← t+ 1
15: end while.
Output: HSI clustering results

1) Pretrain Stage: Pretrain aims to obtain good initialization
weights and reduce the reconstruction difficulty in the
later fine-tune stage. In the pretrain stage, we only use
the reconstruction loss LDAE to update the autoencoders.

2) Fine-Tune Stage: In this stage, we train our network
end-to-end with all the losses defined in (10). The main
step of the fine-tune stage are described as follows. First,
the self-expressive coefficient matrix is initialized, and the
self-expressive layer is trained to learn the self-expressive
coefficient matrix. Second, the affinity matrix is con-
structed and spectral clustering is performed to get the
cluster assignments. Third, the samples with high con-
fidence and their corresponding cluster assignments are
selected. Then, the spectral clustering module is fixed,
and the remaining modules of the network are updated for
T0 epoches. Finally, the spectral clustering is performed
to update cluster assignments. The affinity matrix learn-
ing and spectral clustering are iteratively performed. The
training process of our network is illustrated in Algo-
rithm 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we extensively evaluate the performance of
the proposed method on three widely used HSI datasets. The
proposed method is implemented in TensorFlow on a PC with
a 3.0 GHz Intel i7 CPU and 64-GB memory. The network is
trained on an Nvidia GeForce RTX 2080 Ti GPU.

A. Experimental Setup

1) Datasets and Preprocessing: Three publicly available
HSI datasets (i.e., Indian Pines, Pavia University, and Salinas)

TABLE I
NUMBER OF LABELED SAMPLES FOR IPS, PUS, AND SA DATASETS

are employed to validate the effectiveness of the proposed
method. To build affinity matrix for spectral clustering, most
SC methods need to solve large-scale optimization problems,
and calculate pairwise similarities among all the samples at one
time. Therefore, these methods require O(N2) memory to store
the affinity matrix and may suffer from an “out-of-memory”
error in the training phase. Following [7], [12], [13], [17], [19],
[23], [50], a subset of these datasets is used in our method
for computational efficiency. Particularly, the subset taken from
Salinas dataset is also known as Salinas-A dataset.
� The subset of the Indian Pines dataset obtained by the

airborne visible infrared imaging spectrometer (AVIRIS)
contains 200 spectral features with a size of 145× 145
pixels. Four main land-cover classes are considered in
this dataset, including corn_n_t, grass, soybeans_n_t, and
soybeans_m_t.

� The subset of the Pavia University dataset collected by
the reflective optics spectrographic image system (ROSIS)
sensor contains 103 spectral reflectance bands with a size
of 200×100 pixels. Eight classes are considered in this
dataset, including asphalt, meadows, tree, metal sheet, bare
soil, bitumen, bricks, and shadows.

� The Salinas-A dataset captured by AVRIS contains 224
bands with a size of 86×83 pixels. Six different classes of
crops are considered in this dataset, including Brocoli_gw1,
Corn_sgw, Lettuce_r4, Lettuce_r5, Lettuce_r6, and Let-
tuce_r7.

We briefly denote the three datasets as IPS, PUS, and SA,
respectively. Table I reports the ground truth of the three datasets.
For all datasets, principal component analysis is performed be-
fore the training process to reduce computational cost, and we fix
the number of reduced spectral bands to 4. Furthermore, we use
15× 15, 9× 9, 9× 9 as the size of the spatial window to obtain
image patches for each dataset, respectively. The influence of
different window size is analyzed in Section IV-F.

2) Compared Methods: We compare the proposed method
with several existing HSI clustering methods, including
FCM [25], SSC [11], LRSC [34], SSCS [12] and S4C [12],
DLSS [51], TV [14], RMMF [9], LSSD [23], DSC [18], and
S2CSC [20]. Since the results of some compared methods are
difficult to reproduce on different datasets, we compare the pro-
posed method with the corresponding state-of-the-art methods
on different datasets (i.e., SSCS and S4C methods on the IPS
dataset; TV and LSSD methods on the PUS dataset; and DLSS
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TABLE II
NETWORK SETTINGS FOR IPS, PUS, AND SA DATASETS

and LSSD methods on the SA dataset). The clustering results
of other compared methods (FCM, SSC, LRSC, RMMF, DSC,
and S2CSC) are reported on all three datasets. All parameters
of the compared clustering algorithms are empirically tuned to
their optimum.

Both visual results and quantitative metrics [i.e., the overall
accuracy (OA), the average accuracy (AA), and Kappa coeffi-
cient (Kappa)] are used for performance evaluation. The OA is
defined as follows:

OA = max
map

∑N
i=1 1{gi = map(yi)}

N
(11)

where gi is the ground-truth label, yi is the cluster assignment
of sample xi generated by clustering algorithm, and map is
a mapping function that ranges over all possible one-to-one
mappings between cluster assignments and ground-truth labels,
respectively. The optimal mapping function can be computed
by Hungarian algorithm [52]. The implementation of mapping
function can be referred to the publicly available code of the DSC
method [18].1 In addition, running time is reported to evaluate
the efficiency of different methods.

3) Networks Architecture and Parameter Setting: Since the
number of samples in each dataset for HSI clustering is limited
(i.e., 4391, 6445, and 5348 for the IPS dataset, PUS dataset,
and SA dataset, respectively), the proposed network is expected
to have less parameters to avoid overfitting. Therefore, the
channel numbers of the deep convolutional autoencoders are
set to 32–32–16–16–32–32 (see Table II). The kernel size of all
the convolutions in the autoencoders is set to 3× 3. The rectified
linear unit (ReLU) is used as activation function. Batch normal-
ization is used after the convolutional layers except for the last
layer of the encoder and the last layer of the decoder. The ADAM
optimizer is used with the learning rate being set to 2× 10−4. We
set the maximum number of training epochs Tmax = 200. We
update the encoder, the decoder, the self-expressive layer, and
the FC layers for T0 = 20 epochs and then update the spectral
clustering once. For FC layers, we set n1 = 1024 and n2 = n.
We use all the samples in each dataset to generate a batch during
training phase.

We use �1 norm to define the sparse regularization term ‖C‖p
in all experiments. The values of trade-off parameters λ1, λ2, and
λ3 are set to 0.001, 100, and 2000, respectively, and ρ is set to
0.3, 0.1, and 0.1 for the IPS, PUS, and SA datasets, respectively.
The number of nearest neighbors k is set to 120, 40, and 120 for

1https://github.com/panji1990/Deep-subspace-clustering-networks.

TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING

ALGORITHMS ON THE IPS DATASET

TABLE IV
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING

ALGORITHMS ON THE PUS DATASET

the IPS, PUS, and SA datasets, respectively. The interval of the
uniform distribution is set to [0.001, 0.008].

B. Results and Analyses

1) Qualitative Results: The cluster maps generated by differ-
ent clustering methods are visualized in Figs. 3–5. Compared
with the other methods, cluster maps produced by our method
are very close to the ground-truth map, which clearly validates
the effectiveness of our method. Taking the IPS dataset as an
example, most methods cannot separate the four classes and
generate many misclassifications due to the similar spectral
signatures of the land-cover classes. In contrast, our method can
better distinguish the four kinds of land-covers. Particularly, the
“Grass” and “Soybean_n_t” classes are completely separated.
For both PUS and SA datasets, there are no misclassifications
in the cluster maps generated by our method.

2) Quantitative Results: The quantitative results achieved by
different methods are summarized in Tables III–V, respectively,
where the best results of each row are highlighted in italic. The
following conclusions can be drawn from these results.
� The proposed method achieves the best clustering in terms

of OA, AA, and Kappa on all three datasets. It should
be noticed that OAs, AAs, and Kappas achieved by our
method are 100% on both PUS and SA datasets, which
outperforms all the compared methods by a notable margin.

https://github.com/panji1990/Deep-subspace-clustering-networks
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Fig. 3. Clustering maps generated by different methods on the IPS dataset. (a) GT. (b) SSC. (c) LRSC. (d) FCM. (e) SSCS. (f) S4C. (g) RMMF. (h) DSC. (i)
S2CSC. (j) Our SDSC-AI.

Fig. 4. Clustering maps generated by different methods on the PUS dataset. (a) GT. (b) SSC. (c) LRSC. (d) FCM. (e) TV. (f) RMMF. (g) LSSD. (h) DSC. (i)
S2CSC. (j) Our SDSC-AI.

Fig. 5. Clustering maps generated by different methods on the SA dataset. (a) GT. (b) SSC. (c) LRSC. (d) FCM. (e) DLSS. (f) RMMF. (g) LSSD. (h) DSC. (i)
S2CSC. (j) Our SDSC-AI.

TABLE V
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING

ALGORITHMS ON THE SA DATASET

� Compared with the original S2CSC method [20], the pro-
posed method significantly improves the clustering perfor-
mance on all three datasets. Specifically, the OA, AA, and
Kappa on the IPS dataset are improved by our method
by 20.34%, 11.31%, and 27.15%, respectively. That is
because, the proposed method can precisely represent each

target feature with the correlated atoms, and select highly
confident pseudo labels to facilitate the self-supervised
learning to extract discriminative features.

� The proposed method is robust to class unbalance. Note
that, the class distribution is unbalanced on all three
datasets, e.g., the numbers of the “tree” and “bricks” classes
are 63 and 94 on the PUS dataset, respectively, which
makes the clustering more challenging. Most methods
cannot perform well on the two land-cover classes. For
example, the DSC method [20] misclassifies the “Bricks”
class into the “Asphalt” and “Bare soil” classes. In contrast,
our method accurately recognizes these three classes.

� Compared with the clustering methods that only use the
spectral information (FCM [25], SSC [11], LRSC [34],
TV [14], DLSS [51]), the spectral-spatial clustering
methods (SSCS [12], S4C [12], LSSD [23], DSC [18],
S2CSC [20], SDSC-AI) can achieve better performance
in terms of OA, AA, and Kappa. Taking the IPS dataset
as an example, the SC-based methods such as SSC and
LRSC achieve relatively low accuracies especially for the
“Corn_no_till” class and the “Soybeans_n_t” class. This is
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Fig. 6. Visualization of the raw HSI samples, the features extracted by the DSC
method, and the features extracted by the SDSC-AI method with t-SNE [53].

because these methods only focus on the spectral informa-
tion while the spectral signatures of the four land-cover
classes are very similar and difficult to distinguish. In
contrast, the SSCS, S4C, DSC, S2CSC, and our method
significantly improve the clustering accuracy by incorpo-
rating the spatial neighborhood information.

� Generally, deep learning-based methods perform better
than the conventional methods in terms of OA, AA,
and Kappa due to their powerful capability of nonlin-
ear feature extraction. For instance, the OAs achieved by
the deep learning-based methods (LSSD [23], DSC [18],
S2CSC [20], SDSC-AI) are higher than those achieved
by the conventional methods (SSC [11], LRSC [34],
FCM [25], TV [14], RMMF [9]) on the PUS dataset.

C. t-SNE Feature Visualization

To investigate whether the features extracted by the proposed
method are discriminative and benefcial to the SC, we use
the t-distributed stochastic neighbor embedding (t-SNE) [53]
approach to visualize the raw samples, the features produced
by the DSC method [18], and the features produced by the
SDSC-AI method on all datasets for comparison. First, as shown
in Fig. 6(a), (d), and (g), the raw samples are mixed on the
three datasets (especially on the IPS dataset) due to their similar
spectral signatures. Therefore, it is difficult to separate the land-
cover classes in original space. Second, although the interclass
boundaries are apparent in the raw samples distribution, the
distances between intraclass samples and their cluster centers are
large (e.g., the “Corn_sgw” class, “Lettuce_r4” class, and “Let-
tuce_r5” class on the SA dataset). Third, although the features
extracted by the DSC method can be separated on the SA dataset,
they cannot be separated on both the IPS and PUS datasets [see
Fig. 6(b), (e), and (h)] due to the large spectral variability on
these two datasets. In contrast, the features extracted by our
method are well separated on all three datasets [see Fig. 6(c),

Fig. 7. Visualization of the affinity matrix obtained by the DSC method and
our SDSC-AI method.

(f), and (i)] by introducing self-supervised learning. Particularly,
the features are completely separated on both the PUS and SA
datasets. It can be also observed that the features learned by our
method are both interclass dispense and intraclass compact since
the center loss penalizes the distances between the deep features
and their cluster centers [47].

D. Affinity Matrix Visualization

Generally, affinity matrix represents the similarity between
each pair of samples. The affinity matrix is constructed by
the self-expressive coefficient matrix. If a group of samples
lies in the same subspace, the corresponding self-expressive
coefficients are nonzero, otherwise, they will be zero. Hence,
an ideal affinity matrix is sparse and block-diagonal with each
block signifying a land-cover class. To further demonstrate the
effectiveness of the proposed method, we visualize the affinity
matrices learned by both the DSC method [18] and the proposed
method on all three datasets. As shown in Fig. 7, for all datasets,
we can clearly observe that the affinity matrices obtained from
the proposed method are superior to the ones obtained from the
DSC method due to their sparsity and apparent block-diagonal
structure. It clearly demonstrates that the proposed method can
accurately represent each feature with the correlated atoms in
the same subspace, and the deep features learned from the
convolutional encoder benefit the affinity matrix learning.
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TABLE VI
ABLATION STUDY OF THE PROPOSED METHOD

Note that, “-AI” represents methods trained with adaptive self-expressive
coefficient initialization, and “SDSC” represents methods trained with
self-supervised learning using selected samples.

Fig. 8. Clustering OA with respect to different settings of spatial window size.
(a) IPS dataset. (b) PUS dataset. (c) SA dataset.

E. Ablation Study

To evaluate the impact of adaptive self-expressive coefficient
matrix initialization and sample selection in self-supervised
learning, we perform ablation study on all three datasets. The
S2CSC method [20] is used as a baseline method. As shown
in Table VI, the adaptive self-expressive coefficient matrix ini-
tialization can significantly improve the clustering accuracies
on all three datasets. Specifically, 18.36%, 1.44%, and 0.75%
improvements in OA metric can be achieved on the IPS, PUS,
and SA datasets by using adaptive self-expressive coefficient
matrix initialization. Compared with original S2CSC method,
the sample selection in self-supervised learning can also improve
the clustering accuracies on the three datasets. Specifically,
0.5%, 1.44%, and 0.47% improvements in OA metric can be
achieved on the IPS, PUS, and SA datasets. Note that, the
clustering OA achieved by using sample selection method on
the IPS dataset is relatively low. This is because the pseudo-
labels obtained by spectral clustering are of low confidence
due to the low-clustering OA achieved at the beginning of the
training process. Therefore, it is difficult to select highly confi-
dent pseudo-labels. With the help of adaptive self-expressive
coefficient matrix initialization, the clustering accuracies are
significantly improved and the pseudo-labels are enhanced to
be highly confident.

F. Parameter Sensitivity Analyses

In this section, we conduct experiments to investigate
the influence of the important parameters on the clustering
performance.

1) Impact of Spatial Window Size: Since spatial information
of the center pixel is crucial to the spectral-spatial feature extrac-
tion [54], the size of spatial window can influence the clustering
performance. The impact of the size of spatial window on the
clustering results is presented in Fig. 8. It can be observed that

Fig. 9. Clustering OA with respect to different settings of ρ. (a) IPS dataset.
(b) PUS dataset. (c) SA dataset.

TABLE VII
IMPACT OF THE INTERVAL OF UNIFORM DISTRIBUTION ON IPS,

PUS, AND SA DATASETS

the highest OAs are achieved when the window size is 15 and
9 on the IPS and PUS datasets, respectively. When the window
size is larger than 9, the OA achieved by our method is 100%
on the SA dataset. Generally, the image patch can exploit more
spatial information with an increased window size. However,
large window size will increase the computational burden and
introduce noise [55]. Therefore, we set the window size to 15,
9, 9 for all the experiments on the three datasets, respectively.

2) Impact of ρ: Parameter ρ controls the number of selected
samples in the self-supervised feature learning. Fig. 9 illustrates
the impact of ρ on the clustering performance in which we set
ρ = {0.1,0.3,0.5,0.7,0.9,1.0}. It can be clearly observed that
the proposed method is insensitive to parameter ρ since the
clustering results are stable with respect to different values
of ρ. The proposed method achieves the highest OAs when
ρ = 0.3,0.5,0.7, ρ = 0.1, ρ = 0.1 on the IPS, PUS, and SA
datasets, respectively. Note that the proposed method uses all the
cluster assignments to supervise the training of feature extraction
in the case of ρ = 1.0, and the clustering performance degrades
by different degrees on the three datasets. This is because, by
setting ρ = 1.0, some low-confident pseudo-labels are adopted
to supervise the network training. Hence, the selection of highly
confident cluster assignments as pseudo-labels is important to
the self-supervised learning.

3) Impact of Distribution Interval: We randomly selected
several distribution intervals to investigate the influence of the
distribution interval [a, b] on the clustering performance. As
shown in Table VII, for all datasets, the proposed method
achieves the highest OAs when the distribution interval falls
into the range of [0.001, 0.008]. Moreover, when the interval
covers the value of zero (e.g., [−0.04, 0.001]), the clustering
performance degrades since the structure of the initialized self-
expressive coefficient matrix is changed. Finally, it can be seen
that the clustering OAs significantly degrade when a ≥ 0.01.
Therefore, we set the distribution interval to [0.001, 0.008] for
all the experiments on the three datasets.
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TABLE VIII
RUNNING TIME OF THE DIFFERENT CLUSTERING METHODS ON THE IPS, PUS, AND SA DATASETS

Fig. 10. Clustering OA with respect to different settings of k. (a) IPS dataset.
(b) PUS dataset. (c) SA dataset.

Fig. 11. Loss and clustering OA of our method during training phase on the
IPS dataset.

4) Impact ofk: Since the number of nearest neighbors k plays
an important role in constructing the KNN graph and controls
the numbers of the correlated atoms of each target feature, we
set k = {10, 40, 80 120 160, 200 240} as in [14] and conduct
k-sensitivity experiments on the three datasets. The influence
of the number of nearest neighbors k on the clustering results is
shown in Fig. 10. It can be seen that the optimal value of k varies
for different datasets. Moreover, we can further observe that the
cluster performance tends to be saturated with an increasing k.
However, since a large k will increase the computational burden
and dictionary redundancy, we set k = 120, k = 40, k = 120
for all the experiments on the IPS, PUS, and SA datasets,
respectively.

G. Convergence Analysis

To show the convergence of our network, we conduct conver-
gence experiment on the IPS dataset. The maximum number of
training iterations is set to 200. The clustering OA is computed
every 20 iterations. As shown in Fig. 11, the loss values are
fluctuant at the early training phase. Then, they decrease rapidly
and tend to be stable. Meanwhile, the clustering OA increases

gradually, and then tends to be saturated when the number of
iteration is larger than 120. Therefore, the network can well
converge within 200 iterations on the IPS dataset. In all experi-
ments, we report the cluster results of the last iteration.

H. Running Time

We investigate the running time of different HSI cluster-
ing methods. As reported in Table VIII, conventional SC-
based methods (SSC [11], LRSC [34], TV [14], SSC-S, and
S4C [12]) take more time than other clustering methods since
they iteratively compute the representation coefficient matri-
ces. Compared with deep learning-based methods (LSSD [23]
and DSC [18]), our method takes more running time since it
takes most computational time on the iterative self-supervised
learning process and initialization. Moreover, compared with
S2CSC [20], our method takes more time in sample selection and
initialization. Although FCM [25], DLSS [51], and RMMF [9]
methods are very efficient, they achieve lower accuracies than
our method. To sum up, our method achieves a good tradeoff
between clustering performance and computational efficiency.

V. CONCLUSION

In this article, we propose an end-to-end trainable network
named SDSC-AI for HSI clustering. Specifically, we introduce
self-supervised learning for feature extraction to make sure
that the learned features are well-adapted to subsequent SC.
Moreover, we design a spectral similarity based adaptive self-
expressive coefficient matrix initialization strategy to enhance
the clustering performance. The experimental results demon-
strate the superiority of the proposed method as compared to sev-
eral state-of-the-art HSI clustering methods. To build the affinity
matrix for spectral clustering, the proposed method needs to
integrate all samples in one batch to train the network, which
makes it difficult to scale for large HSI data. The scalability
problem will be studied in our future work.
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