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IR-MSDNet: Infrared and Visible Image Fusion
Based On Infrared Features and Multiscale

Dense Network
Asif Raza , Jingdong Liu , Yifan Liu , Jian Liu , Zeng Li , Xi Chen , Hong Huo , and Tao Fang

Abstract—Infrared (IR) and visible images are heterogeneous
data, and their fusion is one of the important research contents in
the remote sensing field. In the last decade, deep networks have
been widely used in image fusion due to their ability to preserve
high-level semantic information. However, due to the lower reso-
lution of IR images, deep learning-based methods may not be able
to retain the salient features of IR images. In this article, a novel
IR and visible image fusion based on IR Features & Multiscale
Dense Network (IR-MSDNet) is proposed to preserve the content
and key target features from both visible and IR images in the fused
image. It comprises an encoder, a multiscale decoder, a traditional
processing unit, and a fused unit, and can capture incredibly rich
background details in visible images and prominent target details
in IR features. When the dense and multiscale features are fused,
the background details are obtained by utilizing attention strategy,
and then combined with complimentary edge features. While IR
features are extracted by traditional quadtree decomposition and
Bezier interpolation, and further intensified by refinement. Finally,
both the decoded multiscale features and IR features are used to re-
construct the final fused image. Experimental evaluation with other
state-of-the-art fusion methods validates the superiority of our
proposed IR-MSDNet in both subjective and objective evaluation
metrics. Additional objective evaluation conducted on the object
detection (OD) task further verifies that the proposed IR-MSDNet
has greatly enhanced the details in the fused images, which bring
the best OD results.

Index Terms—Feature attention, image fusion, multiscale
feature fusion, object detection (OD), remote sensing.
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I. INTRODUCTION

R EMOTE sensing image fusion has been studied for
decades, because complementary information from mul-

tisource remote sensing images in the fused image is of great
help to various remote sensing applications such as surveillance,
object detection (OD), etc. [1], [2]. The fusion of infrared (IR)
image and visible image is one of the important tasks in remote
sensing field. Its main purpose is to extract features from multi-
source images, and then fuse them to generate fused images with
prominent IR target and rich background details. Recently, many
fusion methods have been proposed for this purpose, which can
be broadly divided into traditional methods [3]–[7] and deep
learning-based methods [8]–[12].

In addition to the spatial domain method, most traditional
methods are based on signal processing techniques. These signal
processing methods mainly include multiscale-based methods
[3] and learning-based methods, which have achieved good
results. Different from multiscale transformation, learning ap-
proaches are usually based on representation, such a as sparse
representation [7] and dictionary learning [4]. Although these
direct methods can avoid information loss during image fusion,
they are usually complicated and time consuming, especially for
online learning.

Recent advances in deep convolutional neural networks
(CNN) in remote sensing has provided better potential for image
fusion in learning and extracting high-level semantic informa-
tion than traditional methods. Prabhakar et al. [8] proposed a
novel CNN-based fusion framework for a multiexposure image
fusion task. A fusion framework that utilizes multilevel deep
features for image fusion was proposed [9]. Li et al. [12]
proposed a fusion network using dense block in an autoencoder
manner. Ma et al. [11] introduced a novel method for image
fusion using a generative adversarial network (GAN) for IR
and visible image fusion. Though the fusion performance of
these CNN or GAN methods is better than existing meth-
ods, there are still some drawbacks in IR and visible image
fusion.

First, common deep networks cannot efficiently extract salient
features of IR images, because subsampling at each layer will
weaken or smooth their features of IR images, and will be
submerged in multiscale features of visible images. Second,
because of the characteristic of IR image features, most network
framework are not necessarily suitable for IR and visible image
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fusion. Finally, IR features need to be further enhanced for image
reconstruction after.

To overcome these above drawbacks, a novel IR and visible
image fusion based on IR Features & Multiscale Dense Network
(IR-MSDNet) is proposed, which makes full use of respective
advantages of deep learning and traditional handcrafted feature,
especially IR feature extraction, to obtain a better fusion result.
It preserves full background details and key target features from
both visible and IR images.

Major contributions of this article are described as follows:
1) In IR-MSDNet, an efficient encoder is designed for both

visible and IR images, which is capable of preserving both
the target details in IR images and the rich background
details in visible images, and multiscale decoder can re-
construct the initial fusion image

2) IR features are extracted by traditional quadtree decom-
position [13] and Bezier interpolation [14], and further
enhanced by refinement. These IR features are combined
with the initial fused image to produce the final fusion im-
age directly. In this way, IR features will be not submerged
in multiscale features of visible images.

3) To the best of our knowledge, it is the first time to combine
deep learning with traditional methods for remote sensing
image fusion, opening up a new perspective of visible and
IR image fusion.

The rest of this article is organized as follows. Section II
describes the related work. Section III introduces the pro-
posed IR-MSDNet in details. Section IV includes the discussion
made on the experiments, and results. Section V concludes this
article.

II. RELATED WORK

A. Traditional Fusion Methods

The spatial domain approach can be roughly divided into
pixel-based, block-based, and region-based approaches. Pixel-
based image fusion method extracts image features by preserv-
ing the spatial consistency of final fused images, such as dense
scale-invariant feature transform (DSIFT) [19], image matting
(IM) [20], and guided filtering (GF) [21]. In block-based image
fusion method [22], [23], the images are divided into the same
number of blocks, and then the blocks are fused by fusion rules.
The number and size of blocks directly affect the fusion results.
The region-based method depends on image segmentation, so its
performance also depends on the efficiency of image segmenta-
tion [24], [25].

The multiscale transformation methods, as a typical repre-
sentative of traditional fusion methods, are usually used to
decompose the images into multiscale representations, and then
fuse the multiscale representations according to certain fusion
rules. Finally, the fused image is obtained by the inverse transfor-
mation of multiscale representations. Laplacian pyramid [15],
discrete wavelet transforms [16], dual tree complex wavelet
transforms [17], and curvelet transform [18], are example of
among multiscale transformation methods.

In short, in order to improve the quality of fusion traditional
fusion methods generally require more manual intervention,

and the fusion rules adopted are relatively complex, therefore,
there are inevitably problems such as low efficiency and high
computational cost.

B. Deep Learning Based Fusion Methods

Deep learning method has attracted extensive attention since
its appearance, and has been successfully applied to a wide range
of remote sensing applications, such as image fusion [26]. Liu
et al. [27] first utilized CNNs as backbone to achieve a rich fusion
result based on a decision map indicating the rules of image
fusion. Nonetheless, this method had a limitation of training
strategy only for multifocus images. Li et al. [12] proposed
a novel autoencoder network for image fusion. It includes an
encoder, fusion layers, and a decoder. The encoder and decoder
are trained by all input images, and then deep features extracted
by the encoder are adaptively fused. Zhang et al. [10] proposed a
general end-to-end fusion network, which is simple and effective
to produce fused images, but lacks expertise in IR images
due to generalizability for different types of images. Ma et al.
[11] introduced a GAN architecture for IR and visible image
fusion. During the training, the source images features were
concatenated to the generator network, and the fused image
was obtained. However, sometimes it is the strong adversarial
ability of GAN that may cause the IR image to suppress the
visible image with its content after image fusion. In a word,
the abovementioned deep networks are generally designed, and
cannot efficiently extract salient features from IR images, as
their features will be weakened by down sampling due to their
lower resolution.

III. PROPOSED IR-MSDNET

IR-MSDNet, as shown in Fig. 1, comprises an encoder, a mul-
tiscale decoder, a traditional processing unit, and a fused unit.
Suppose IV and IR represent visible and IR images, respectively,
where IV and IR images have been preregistered according to
[9], and fed to the encoder and traditional processing unit. The
encoder is used to extract dense multiscale features from visible
and IR images for the initial image fusion, respectively. The
multiscale decoder is designed to reconstruct the initial fused
image with richer background detail. In addition, to increase the
detail of the initial fused image, traditional processing unit is
designed to extract edge features from visible and IR images,
especially IR features with focusing on target details from IR
images. Because the traditional processing method focuses on
the IR image’s target detail to extract the IR feature, visible
image can be used to refine the IR feature. In the fused unit, the
final fused image is generated by fusing initial fused image and
IR feature.

Therefore, it can be seen from the Fig. 1 that, in our proposed
IR-MSDNet, the visible and IR image fusion includes two main
processes. One process is to construct an encoder and decoder
network to realize the initial fusion of visible and IR images,
the other is to further fuse IR image features extracted by the
traditional methods with the initial fusion image to compensate
for the loss of IR image details caused by CNN.
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Fig. 1. Details of proposed IR-MSDNet fusion.

Fig. 2. Details of dense module, multi-scale module and attention module of
IR-MSDNet.

A. Encoder

The encoder contains different modules for feature extrac-
tion, including dense module, multiscale module, feature fusion
module, channel-wise attention (CWA) [28] module and fused
feature bank. In order to receive a visible or IR image of arbitrary
size, this image is first processed via the convolutional layer,
where kernel size is 3×3, and the stride is 1. Before feature
fusion, different multiscale features were extracted from vis-
ible and IR images, respectively, through dense module and
multiscale module. In the encoder, details of dense module,
multiscale module, and CWA module are shown in Fig. 2,
respectively.

The dense module [shown in Fig. 2(a)] is made up of three
cascaded convolutional layers, namely, the output of the previous
layer is the input of the next layer. The convolution kernel
of 3x3 is usually used to extract coarse features in this dense
module. In multiscale module [shown in Fig. 2(b)], the size
of convolution kernels varies from 5 × 5, 3 × 3 to 1 × 1,
which not only preserves the details in the dense module, but

Fig. 3. Diagram of l1-norm and soft-max strategy.

also extracts features from rough to coarse. Therefore, these
multiscale features are necessary for image fusion [29].

In the fusion module, l1-norm and soft-max strategy [8]
has been chosen for fusing the multiscale features, as shown
in the Fig. 3. In order to improve fusion efficiency, block
based averaging method is adopted to avoid any misregistration
between multiscale feature maps, making fusion consistent.
Let ϕn

k (x, y) be multiscale features at (x, y) position, where
k ∈ {IR, Iv} corresponds to IR image or visible image, and
n ∈ {1, 3, 5} represents one of multiscale corresponding
to certain kernel size. According to [30], the l1-norm of ϕn

k

(x, y) is defined as the activity level measurement for fusing
multiscale features. The initial activity level measurement αk

′

will be calculated as follows:

αk
′ (x, y) = | | ϕn

k (x, y)| |1. (1)

The final activity level measurement for entire multiscale
features would be

αk (x, y) =

∑p
a = −p

∑p
b = −r α

′
k (x+ a, y + b)

(2p+ 1)2
(2)

where p represents the size of entire block size, and it is recom-
mended to choose a small value for p, such as p = 1.
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Let fn
k denotes fused feature map:

fn
k (x, y) =

k∑
1

wn
k (x, y) ∗ ϕn

k (x, y) (3)

wn
k (x, y) =

αk (x, y)∑k
1 αk (x, y)

(4)

where wn
k represents weight map, and ∗ represents convolution

operation. Then, the sum of fn
IR(x, y) + fn

Iv(x, y) is result of
the dense multiscale fused features.

After the above feature fusion, to further fully exploit the
dense multiscale fused features, CWA is used to further treat the
fused features by acquiring different channel weights, which
make rich the enhanced features with both more salient high-
level features and more channel information. Actually, in CWA
module [shown in Fig. 2(c)], CWA is carried out by a series of

Processes, which include the global pooling, FC (fully con-
nection layer), RELU activation, FC (fully connection layer),
and sigmoid activation. Finally, the combined weighted features
are multiplied by the fused features to obtain the processed. Sup-
poseF is fused features andF ′ is enhanced salient representation
obtained by CWA, which can be expressed as follows:

F ′ = σ1 (fc2 (δ (fc1 (g (F ) , β1)) , β2)) (5)

F ′ = C (F, β) or Fβ (6)

where β1 and β2 are the weights of two FC with their tasks fc1
and fc2, respectively. g is the global pooling operator. β is the
combine total weight for channel attention and δ denotes the
RELU function. C(.) denotes the channel -wise multiplication
between fused feature map and total weight β.

As is known to all, in image data fusion, edge is one of the
most important information of the fused image. However, in
the CNN, the edge feature information of the image is easy
to be blurred or smoothed by pooling operation, so that the
reconstructed image edge details after feature fusion are not rich.
Therefore, in addition to the above features from the CNN fusion
and processed by CWA, edge features extracted by traditional
methods from visible and IR images are also added to our model.
In order to facilitate the subsequent decoder processing, such
edge features of visible and IR images need to be processed
through a fixed convolutional layer of size 3×3 after the fusion
of OR operation (discussed in the following sections), as shown
Fig. 1. In the fused feature bank, two types of above features
are being collected in concatenated way to build up a rich and
detailed encoder.

B. Multiscale Decoder

At the end of the encoder, complimentary edge features are
concatenated with rich fused features from attention module in
fused feature bank. The initial fused image is then reconstructed
in multiscale decoder.

In our proposed multiscale decoder, there are five learnable
convolution layers. Each convolution layer is enclosed by ReLU
function. In order to avoid vanishing gradients, which sometimes
occur in many networks, a smooth training a skip connection
strategy is used for smooth training. Thus, the three layers are

designed via skip connections. In this decoder, including the
multiscale layers, a unified 3 × 3 kernel size has been imple-
mented. Similar to encoder module, the same size of convolution
kernels, which varies from 5× 5, 3× 3 to 1× 1, has been chosen
to preserve the details of all scales. The details of multiscale
decoder are shown in Fig. 1. All the feature maps with multiscale
are concatenated before the final layers to reconstruct a rich
initial fused image.

C. Training Encoder and Decoder Networks

In our IR-MSDNet, encoder (except fusion layer) and decoder
networks are mainly trained. In the training stage, the aim is to
obtain the optimal weights to train the autoencoder network, so
that it has the ability of deeply rich feature extraction and more
abundant reconstruction.

In the training period, the main key is to train the network to
reconstruct the initial fused image from visible and IR source
images. The dense and multiscale modules extract the features
from the visible and IR images, respectively, and then multiscale
features are concatenated and fed to the CWA module. Finally,
the features via the CWA module and edge features are concate-
nated, forming the fused features bank, then fed to the multiscale
decoder for decoding.

The training will enable the encoder and decoder to obtain
their final parameters and weights by loss functions. Let the
total loss LT be the sum of two kind of loss functions. The first
loss function is structural similarity (SSIM) loss, and the second
pixel loss, which are describe as follows:

LT = λ (1 − SSIM (Op; I)) + (| |Op− I| |2) (7)

Lssim = 1 − SSIM (Op; I) , (8)

Lp = | |Op− I| |2 (9)

where Op and I denotes the respective fused image and source
images. || · || is Frobenius norm. SSIM means the structural
similarity of two images. λ represents the tradeoff parameter for
total loss to build the final output images from source images.
In addition, this tradeoff parameter is utilized to handle the
efficiency factor in terms of early training of the network. Due
to its importance, λ early training leads to the optimal weights
with fast convergence. Its effect has been explained briefly in
Section IV-C.

D. Traditional Processing

Different from the abovementioned extracting features of
encoders, there are two modules in this traditional processing
unit. The first important module is responsible for extracting
edge features from visible and IR images, respectively, while
the second module directly extracts IR features from IR image
through a series of mini process modules.

Edge features are extracted by canny edge detectors [31] from
both visible and IR images, and then combined by OR operation
as shown in Fig. 4. In order to feed edge features to encoder, this
combined edge feature is convoluted by the kernel of size 3 ×
3 and forward toward to the fused feature bank.
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Fig. 4. Edge features from the visible image, IR image and the after OR
operation from left to right. (a) Visible image. (b) Infrared image. (c) Result by
OR operation.

The second and most important module in the traditional
processing unit is IR feature extraction, which is also core heart
of our scheme, as shown in Fig. 1. In order to extracts IR features
directly, a series of processes include Quad-tree decomposition,
Bezier interpolation, Gaussian filter, and IR feature refinement.

Initially, the quadtree decomposition technique [13] is
adopted to pay more attention to the approximate outline of IR
target entity. Because Quadtree decomposition is time-efficient,
it helps to select appropriate control points, with which lots of
noises can be actively suppressed. In quadtree decomposition,
threshold Tquad and the area size are two vital parameters.
Tquad is utilized to control whether the area size would be more
decayed or not. Typically, a small upper limit is designated to
prevent the variation. Usually the location of control points is ex-
pressed as (a, b). These coordinates are consistently appraised
from individual area in the quadtree framework.

The second step is to construct artificially background by
Bezier interpolation [14]. Bezier interpolation is one of the
best methods to reconstruct a large-scale matrix, which can be
an image in our case. Thus, the method first interpolates to
some identified control points, and then the interpolation can
be adapted to estimate the contour of the object.

After that, the Bezier plane of individual area can be recon-
structed through approximation of x and y coordinates and grey
values. These approximations directly correspond to 16 control
points:

Q (a, b) = AMROTBT (10)

where (a; b) indicates the position of an interpolated point. (A;
B) indicates the variable interpolation factor, which is connected
to (a; b). O indicates the constant interpolation factor matrix.
R indicates 4×4 matrix with 16 control points. T stands for
vector or matrix transpose B, M , and R are then defined as
follows: A = [a3, a2, a1, a0], B = [b3, b2, b1, b0,], where 0 ≤
a, b ≤ 1.

O =

⎡
⎢⎢⎣

1 0 0 0
−3 3 0 0
3 −6 3 0

−1 3 −3 1

⎤
⎥⎥⎦

R =

⎡
⎢⎢⎣
R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

⎤
⎥⎥⎦ .

Although IR background (IBIR) might be almost perfectly
restored by joining the Bezier plane of individual area in the
quadtree framework, the linear combination of all Bezier planes
may hinder some IR key objects. Diverse control points are
utilized in the sewed areas, therefore, the IR background is
flattened by a Gaussian filter.

IFBIR = IBIR ∗ g (s, Φ) (11)

where s and Φ represent the size and omega parameter of the
Gaussian filter, respectively. In most cases, the linked Bezier
areas are much similar. Therefore, a minor smoothing gradation
can be reasonable for producing a flatten background. After that,
a flatten and expected IR background image IFBIR is obtained.
Then, the bright IR could be easily obtained by difference
between background image and IR image IR.

IR = max (IR − IFBIR) (12)

To further refine IR features, IR features is subtracted from the
cross product of the estimated background (difference between
IR and IV ) and a suitable minimizing ratio α. Consequently,
a lot of useless background details can be almost removed,
whereas the beneficial IR features are preserved.

IR ′ = IR− α ∗max (IR − IV , 0) (13)

where α signifies the parameter that control the background
degradation factor within a range of [0,1], and α = 0.6 in our
experiments. After the improvement and enhancement of IR
features, data fusion with initial fused image can be carried out.

E. Data Fusion

In the fused unit, the final fusion image IFinal Fused is obtained
by pixel-level fusing of the initial fused image IInitial Fused with
IRFinal features.

IFinal Fused = IRFinal + IIntial Fused (14)

IRFinal features are obtained by suppressing the initial IR
features while preserving the visible information to overcome
the fused image suffering from overexposure:

IRFinal = ∀ ∗ IR ′ (15)

where ∀ denotes the feature suppression ratio and it can be
calculated as follows:

∀ =
Avg

255
(16)

where Avg denotes the mean average of the 0.5% highest of
the addition of initial fused image and IR feature image. This
process is like an average scaling of the grey intensities. After
the improvement’s steps, final IR features are now feasible for
fusion. Fig. 5 and Fig. 6 show the complete process from IR
features extraction to the final fusion.

IV. EXPERIMENTS AND ANALYSIS

In this section, two remote sensing benchmark datasets are
used in our experiments for verifying the effectiveness and
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Fig. 5. Illustration of the IR feature extraction from start to the final fused
image on Aerial dataset. (I), and (II) are a visible image and an IR image.
(III) is Quadtree decomposition structure of the IR image. (IV) shows the self-
constructed IR background by Quadtree structure and Bezier interpolation. (V)
shows the initial IR features by subtracting (IV) from (II). (VI) shows the refined
IR features by exposure suppression on (V). (VII) shows the valued background
by subtracting (I) from (II). (VIII) shows the final IR features. (IX) shows the
final fused image.

superiority of the proposed IR-MSDNet subjectively, and then
objectively by quantitative quality metrics with other state of
arts fusion methods. An OD task is further performed to verify
that the proposed IR-MSDNet has greatly enhanced the details
in the fused images, which bring the best OD results.

A. Datasets

Two remotes sensing benchmark datasets are TNO [32]a and
Aerial Image dataset [4]b, which also commonly used by others
algorithm in [6], [9]–[11]. TNO image fusion dataset comprises
multispectral (visual and IR images) nighttime imagery related
to different military circumstances, and they are registered with
different multiband camera systems. The second Aerial image
dataset of visible and IR images has been captured by a remote
sensing platform. The size of each image on the Aerial image
dataset is 512 × 512. Fig. 7 shows twenty pairs with different
scenes on Aerial Image dataset, while Fig. 8 shows ten visible
and IR image pairs of TNO dataset.

B. Compared Methods

In order to verify the effectiveness and superiority of our pro-
posed IR-MSDNet, existing state-of-the-art traditional fusion
methods have been considered for comparison. These methods

Fig. 6. Illustration of the IR feature extraction from start to the final fused
image on TNO dataset. (I), and (II) are a visible image and an IR image.
(III) is Quadtree decomposition structure of the IR image. (IV) shows the
self-constructed IR background by Quadtree structure and Bezier interpolation.
(V) shows the initial IR features by subtracting (IV) from (II). (VI) shows the
refined IR features by exposure suppression on (V). (VII) shows the valued
background by subtracting (I) from (II). (VIII) shows the final IR features. (IX)
shows the final fused image.

include generalized joint sparse representation-based method
(GJSR) [4], joint sparse representation-based method (JSR) [4],
l0-generalized total variation model (GTVM) [6], JSR model
with saliency detection method (JSRSD) [7], VGG–19 and
multilayer fusion strategy (VggML) [9], a CNN-based fusion
(DeepFuse) [8], GAN-based fusion algorithm (FusionGAN)
[11], dense-block based fusion (DenseFuse) [12], and an end-
to-end fusion network (IFCNN) [10]. Generally, the efficiency
of the image fusion is typically assessed either subjectively or
objectively. Most fusion metrics are usually based on features,
such as edges and the amount of details, from the different source
images into the fused image [33].

In this article, for objective evaluation, seven quantitative
quality metrics are selected: entropy (En) [34]; Qabf [35] show-
ing the quality of visual evidence found from the fusion image;
FMIw and FMIdct [36] computing fast mutual information
(FMI); a modified structural similarity SSIMa [37]; MS-SSIM
[38] computing a modified structural similarity which only
emphases on structural information, and to further analyses the
quality of the fused image, and the standard deviation (SD) [39],
which are utilized as quality metrics.

C. Related Parameters

In compared with the visible image dataset, the IR image
dataset is relatively small, therefore, in this article, a publicly
available larger dataset MS-COCO [40] is used for training
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Fig. 7. Twenty pairs of test images from aerial image dataset. Each pair contains a visible image and an IR image from left to right.

Fig. 8. Images pairs form TNO dataset. Each pair contains a visible image and an IR image from left to right.

Fig. 9. Graph plot of pixel loss (a), SSIM loss (b) and total loss (c). x-axis indicates iterations, each single point represents 100 iteration. “blue” - λ = 1; “red” -
λ = 10; “green” - λ = 100; “yellow” - λ = 1000.

the network following the convention set by other methods as
[9], [12]. First, MS- COCO is converted to gray for training
the network. Images are resized to 256 × 256 and converted
to grayscale images. Learning rate, batch size and epochs are
set as 1 ∗ 10−4, 2 and 4, respectively. Some parameters for IR
feature extraction are set as follows: such as, the threshold Tquad

quadtree decomposition size, the kernel size s = 11 and sigma Φ
= 5 in Gaussian smoothing, the background suppression ratio,
and the IR feature suppression ratio is set throughout the article
as [41]. Fig. 9 shows the parameter in loss function evaluation,

as discussed in the last para of Section III, the parameter λ �
{1, 10, 100, 1000}; it is observed that if λ is set to larger values
the network converges faster. However, after 40 000 iterations,
the optimal weights are achieved, no matter which loss weights
are chosen. According to observation and feasibility, when λ

is set 1000; the optimal weights are obtained after training the
network, which means best values for quality metrics entropy
(En), for the quality of visual evidence found from the fusion
images (Qabf), for computing fast mutual information (FMIw),
and for a modified structural similarity (SSIMa).
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Fig. 10. Effect of different modules upon fusion results with different metrics (first row: En, Qabf ;second row: FMIw, SSIMa), the numbers on the X-axis in
each graph represent four cases: ∗1 without multiscale features and CWA, ∗2 without edges features, ∗3 without IR features, and ∗4 IR-MSDNet.

TABLE I
EFFECT OF DIFFERENT MODULES UPON FUSION RESULTS WITH

DIFFERENT METRICS

Condition ∗1 without multiscale features and CWA, ∗2 without edges features, ∗3
without IR features and ∗4 IR-MSDNet.

Graphical and numerical illustrations in Fig. 10, and Table I
show the performance on TNO dataset with different modules
of IR-MSDNet, respectively. There are four different condition
cases: without multiscale features and CWA, without edges
features, without IR features, and IR-MSDNet. The effective-
ness of each module can be seen from their values of each
metric in four cases. It is noticed that If without IR features, all
metrics decline. It implies that IR features are the most important
features. Moreover, edges feature has been also found to be more
prominent than multiscale and CWA. Obviously, by taking all
features into the fusion, the best fusion is given by IR-MSDNet.

D. Comparison and Analysis of Subjective Evaluations

To comprehensively evaluate the performance of IR MSDNet,
traditional and deep learning-based methods (as mentioned in
Section IV-B) are involved in these comparisons. Moreover,
twenty image pairs of TNO dataset and Aerial image dataset
are evaluated here. Figs. 11 (3)–(10) and 12 (3)–(10) are the
fused images of “umbrella” from TNO and “Warehouse” from
Aerial Image dataset.

Manifestly, the proposed IR-MSDNet differs from the rest
comparative methods mainly in the target region and the region
of the details in the background. In order to facilitate observation,
a small region of the IR target is marked with a green frame, and
the region of the details in the background is marked with a
red frame. It can be seen that all the traditional fusion methods
not only spot the target information existing in the IR images,
but also contain some noises, which leads to blurred effects
and not more salient in the fusion images. The fused images
in Figs. 11 (3) and (4) and in 12 (4) and (5), hold several
blocking artifacts, demonstrating in ringing around the salient
features. Deep learning-based methods all have better human
visual perception than traditional methods except Fig. 12(7),
which produce a blur effect in Aerial Image dataset.

In a word, it can be seen from Figs. 11 and 12 that the proposed
IR-MSDNet preserves more precise intensity information of the
IR image and captures more textured from the visible image on
both datasets.

E. Comparison and Analysis of Objective Evaluations

Objective evaluations for the proposed IR-MSDNet and all
studied fusion methods is given in Table II on TNO dataset and
Table III on Aerial image dataset. The value of the assessment
metrics in boldface indicate the optimal ones and in underline
for suboptimal ones. It can be seen from Table II that the
objective evaluations are consistent with the conclusions from
the subjective evaluations. In particular on TNO dataset, the
proposed IR-MSDNet has optimal values for four of the seven
metrics and suboptimal values for the other three. It also has
the optimal and suboptimal values with least average value for
FMIdct on aerial image dataset that can be seen from Table III.
Different datasets may have slight inferior performances, but
for Qabf, the proposed IR-MSDNet is considerably superior
compared with other methods, which means that IR-MSDNet
can produce fused images with rich details. The IR-MSDNet
has significant advantages on image fidelity, which is consistent
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Fig. 11. Fusion results TNO dataset with different fusion methods. The detail
fusion results are shown by red boxes.

TABLE II
OBJECTIVE EVALUATION INDICES FOR DIFFERENT FUSION

METHODS ON TNO DATASETS

∗M. Method 1. GJSR [4], 2. JSRSD [7], 3. VggML [9], 4. DeepFuse [8], 5. FusionGAN
[11], 6. DenseFuse [12], 7. IFCNN [10], 8. IR-MSDNet

Fig. 12. Fusion results on Aerial Image dataset with different fusion methods.
The different fusion results in green frame represent IR intensity regions.

TABLE III
OBJECTIVE EVALUATION INDICES FOR DIFFERENT FUSION METHODS ON

AERIAL IMAGE DATASETS

∗M. Method 1. GJSR [4] 2. JSR [4], 3. GTVM [6], 4. DeepFuse [8], 5. FusionGAN
[11], 6. DenseFuse [12], 7. IFCNN [10], 8. IR-MSDNet
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TABLE IV
COMPARISON OF RESULTS OF OD BASED ON RPN FOR VISIBLE, INFRARED,

AND FUSED IMAGES

∗M. Method 1. Visible 2. IR 3. JSRSD [4], 4. VggML [9], 5. DeepFuse [8], 6.
FusionGAN [11], 7. DenseFuse [12], 8. IFCNN [10], 9. Two streams (feature fusion
from visible and IR image) [2] 10. IR-MSDNet

with the qualitative comparison, as it fully inherits IR target
information and visible contents. In consideration of both the
subjective and objective evaluations, it could be concluded that
the proposed IR-MSDNet is superior in almost all aspects.

In addition, the time-complexity is another key metric to
evaluate image fusion methods. Average time comparison is
made on an Intel(R) Core (TM) i7-7700 U CPU (3.1 GHz),
16 GB RAM and GTX 1080ti GPU. Besides, the test time of
traditional methods like GJSR, JSR, and JSRD on GPU version
which show 49.2, 30, and 32.6 s, respectively. Nevertheless,
deep methods like VggML, DeepFuse, FusionGAN, DenseFuse,
IFCNN, and IR-MSDNet cost 2.19s, 0.91s, 0.41s, 3.64s, 0.31s,
and 3.82s, respectively. Although IR-MSDNet is slightly slower
than other deep methods but its performance is better than theirs.

F. Objective Evaluations on OD

Furthermore, to emphasis the effectiveness of IR-MSDNet, it
is further applied to OD of remote sensing. RPN [2] is chosen as
the basic state-of-the-art detector on KAIST [42] Multispectral
(IR, Visible) benchmark datasets. Log average Miss Rate (MR)
metric [2] as the standard measure for OD is used for quantitative
evaluation. Log average MR is computed by averaging the miss
rates over different false positive per-image (FPPI) points sam-
pled within the evenly spaced in log-space. Since MR specifies
the rate of undetected objects (e.g., persons, vehicles, etc.) as
false negatives, so a lower value represents a robust OD. In
Table IV, RPN detector is used to detect different objects from
visible images, IR images, fused images generated by different
fusion methods, i.e., JSRSD [4], VggML [9], DeepFuse [8],
FusionGAN [11], DenseFuse [12], IFCNN [10], two streams
(feature fusion from visible and IR image) [2], and our proposed
IR-MSDNet, respectively. It can be seen from Table IV, the
lowest average value of 27.45% is achieved by the proposed
IR-MSDNet, which means that the proposed IR-MSDNet has
greatly enhanced the details in the fused images and makes

the RPN detector obtain the best OD results. So, the proposed
IR-MSDNet not only competes for the image fusion task, but
also can be applied to OD tasks in multispectral images (IR and
Visible) as well.

V. CONCLUSION

In this article, a novel and effective deep architecture named
IR-MSDNet is exclusively proposed to learn robust and dis-
criminative salient representation to perform IR and visible
image fusion. IR-MSDNet is based on specially designed IR
features and a multiscale dense network with attention. It mainly
contains an encoder, a multiscale decoder and a fused unit.
The dense and multiscale features fused by l1-norm strategy,
and further enhanced by attention module could capture more
scale-related features. Edges features are concatenated with the
features output by CWA module to form more detailed features
for fusing. The final fused image is reconstructed from both the
decoded multiscale features and IR features extracted traditional
methods. Taking advantage of both deep learning and traditional
methods, IR-MSDNet fully inherits IR target information and
visible rich background details in the fused image. In experi-
ments, both subjective and objective quality metrics are utilized
to evaluate the proposed IR-MSDNet with other fusion methods.
The results show that the proposed IR-MSDNet has achieved
the state-of-the-art fusion performance. A further experiment on
multispectral (RGB-Infrared) OD further validates the proposed
method has greatly enhanced the details in the fused images,
which are crucial for obtaining the best OD results.
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