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Abstract—Classification is one of the most important research
topics in hyperspectral image (HSI) analyses and applications.
Although convolutional neural networks (CNNs) have been widely
introduced into the study of HSI classification with appreciable
performance, the misclassification problem of the pixels on the
boundary of adjacent land covers is still significant due to the
interfering neighboring pixels whose categories are different from
the target pixel. To address this challenge, in this article, we propose
a center attention network for HSI classification. The proposed
method simultaneously captures spectral-spatial features of the
target pixel and its neighboring pixels for classification. Specifically,
the method adopts a center attention module (CAM) that pays more
attention to the features which are more correlated with the target
pixel, that is, the central pixel of the sample, and then sums up
the weighted features to generate more relevant and discriminative
features. In this way, our method has a high potential for improving
the performance of HSI classification. In addition, the CAM greatly
reduces the number of parameters in the network via weighted sum
of the spectral-spatial features, thus improving the computing effi-
ciency while still maintaining classification accuracy. We evaluate
the proposed method on three public datasets, and the experimental
results demonstrate the superiority of our method on accuracy and
efficiency compared with several state-of-the-art methods.

Index Terms—Attention mechanism, convolutional neural
network, deep learning, hyperspectral image classification,
spectral-spatial feature extraction.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) classification is an active
research topic in remote sensing and earth observation

fields due to its important role in land-use and land-cover
applications [1]–[3]. HSI is a 3D cube with 1D spectral in-
formation and 2D spatial information. While the spatial infor-
mation reflects the location and structure of objects, the abun-
dant spectral information can be used to distinguish different
materials, which is beneficial for analyzing and detecting the
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Fig. 1. Different cases of the relationship between the target pixel and its
neighboring pixels in subcube samples of hyperspectral images. “*” (red aster-
isk) denotes the target pixel, and different colors represent different classes of
neighborhood pixels.

earth’s surface. Therefore, HSI has gained wide application in
miscellaneous domains, such as land scene classification [4],
environment monitoring [5],[6], precision agriculture [7], and
mineral exploration [8]. Since each HSI pixel can be regarded
as a high-dimensional vector, HSI classification, as a significant
direction of HSI study, aims to assign each pixel with a proper
land-cover class label [9]. However, the high dimensionality of
HSI and the large quantity of data compose great challenges for
traditional methods to achieve ideal classification results.

Recently, deep learning has been recognized as a powerful
feature-extraction tool and has shown great advantages in HSI
classification [10]–[12]. In terms of whether spatial information
is used, deep learning methods for HSI classification fall into
spectral-based classification methods and spectral-spatial-based
classification methods. The spectral-based methods [13], [14]
treat hyperspectral data as a collection of spectral signatures and
only use the spectral information when classifying HSIs. As a
result, the spatial information of HSI data is ignored so that it is
difficult to attain a breakthrough in classification performance.
In contrast, the spectral-spatial-based methods [15]–[17]
comprehensively integrate the spectral information and spatial
information of HSI data. These methods usually take the
target pixel and its neighbor pixels as a subcube sample
(i.e., a patch) whose class label is that of its central pixel.
In addition, Zheng et al. [18] proposed a fast patch-free
learning framework which took the whole image as global
spatial information. By simultaneously utilizing both the spatial
information and spectral information of the subcube samples,
the distinguishability of the features is significantly enhanced,
thus improving the performance of classification.

Generally, the class labels of all pixels or most of them in
a subcube sample are the same, as shown in Fig. 1(a) and (b).
However, when the target pixel is located on the boundary
of adjacent land covers of different classes, many of its
neighboring pixels may actually have different labels, as shown
in Fig. 1(c)–(e). In these cases, the classifier may give the target
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pixel a label to which most pixels in the neighborhood belong
rather than its real label, leading to classification mistakes,
especially when the neighborhood is large. Furthermore,
spectral-spatial features extracted from a subcube sample for
HSI classification contain many redundant features. Not all
these features have a positive effect for HSI classification, but
some of them may heavily interfere with the classification
performance. It is difficult to distinguish these unfavorable
features because the weights of all the features are equal. These
problems bring great challenges to the classification algorithms
and affect the further improvement of their performance.

To address these challenges, in this article, we propose a
novel method, the center attention network (CAN), for HSI
classification. First, the proposed method employs 3D CNN
to extract basic spectral-spatial features of the sample. Then,
the method adopts a center attention module (CAM) that pays
more attention to the features which are more correlated with the
target pixel, i.e., the central pixel of the sample, and assigns them
different weights according to their correlation levels. The CAM
sums up these weighted features to generate new spectral-spatial
features and meanwhile reduces the number of the features.
Finally, the sample is classified by the classification module with
new spectral-spatial features.

To sum up, the major contributions of this article are listed as
follows. We propose a novel end-to-end method for HSI classi-
fication and first present the CAM. Specially, the CAM focuses
on the features that are more correlated with the target pixel and
generates more relevant and discriminative spectral-spatial fea-
tures. Furthermore, the proposed method considerably reduces
the number of parameters in the network by reducing the number
of spectral-spatial features, thus improving the computing effi-
ciency while still maintaining classification accuracy. Finally,
experiments on three public datasets show the superiority of
our method on accuracy compared with several state-of-the-art
methods.

The remainder of this article is organized as follows. First,
Section II reviews the works related to HSI classification. Then,
the proposed method and its rationale are detailed in Section III.
Next, Section IV illustrates a series of experiments and results.
Finally, conclusions are drawn in Section V.

II. RELATED WORK

CNNs have been widely applied in HSI classification, as at-
tention mechanisms have become increasingly active in this field
for effective feature selection. In this section, CNNs and basic
attention mechanism related to HSI classification are reviewed.

A. CNNs for HSI Classification

In recent years, CNNs have been successfully applied in the
field of image processing, such as image classification [19],
image recognition [20], and image inpainting [21]. CNNs are
usually a multilayer network structure. When CNNs are used for
classification, they mainly include two parts: a feature-extraction
(FE) network and a classification network. The FE network
aims to learn high-level representations of the inputs, and the

classification network performs the final classification task to
assign each input sample with a certain class [3]. There are two
main types of approaches for CNNs applied in hyperspectral data
classification: spectral analysis and spectral-spatial analysis.
The methods based on spectral signatures regard the original
spectral vectors or a reasonable number of spectral channels as
the input data for HSI classification. In [13], [22], 1D CNNs
were employed to capture deep spectral features of pixels for
HSI classification. Charmisha et al. [23] proposed a vectorized
CNN to perform dimension reduction. Zhan et al. [14] used
1D generative adversarial network to learn the spectral features.
1D CNN only uses the spectral information, but the spatial
information is ignored. Actually, spatial information has been
reported to be very useful in improving the representation of hy-
perspectral data and increasing the classification accuracies [2],
[24]. Some works have explored 2D CNN for extracting spatial
features of pixels. In 2D CNN framework, the spectral features
are usually processed by dimension reduction methods. In [25],
[26], the authors extracted the first principal component as
spectral features and then employed the 2D CNN to extract the
spatial features for HSI classification. Song et al. [27] adopted
residual learning to extract deep features and fused the features
of hierarchical layers to improve the classification accuracy.
Zhu et al. [28] proposed a deformable CNN-based method,
in which the authors compressed adjacent similar structural
information into fixed grids to extract features. In [29], the au-
thors decoupled the feature maps of input patches into multiple
response maps and adaptively selected the meaningful maps
for classification.

However, the existing spectral-based methods and some 2D
spectral-spatial-based methods only use spectral features or
capture local spatial features of the pixels. The performance
of these methods is restricted as a result of not exploring both
spectral and spatial features simultaneously. Recently, 3D CNN
can extract the spectral-spatial features of HSI concurrently,
which has attracted the interest of many researchers. Ying
et al. [15] directly employed 3D CNN to extract deep
spectral-spatial features for HSI classification. Chen et al. [26]
used 3D CNN with regularization to obtain spectral-spatial
features for HSI classification. Zhong et al. [30] designed a
3D spectral and spatial residual block which can consecutively
learn the deep spectral-spatial features. Mei et al. [31] used a
3D convolutional autoencoder to learn spectral-spatial features
without supervision. HSIs are data cubes in which spectral and
spatial information coexist, and 3D CNN filters are a natural
method for discovering the spectral-spatial features within such
images. To explore the spectral-spatial features as a whole, our
method employs 3D CNN for extracting basic spectral-spatial
features. The existing methods directly use the basic features or
select key features from them for HSI classification. Different
from them, our method focuses on the features that are more
relevant to the target pixel and assign them different weights
according to their correlation levels through CAM, and then
sums them up to generate new spectral-spatial features with
more discriminative characteristics.
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Fig. 2. Process of the basic attention mechanism. h1,h2. . .,ht−1, and ht

are input features. α1, α2. . ., αt−1, and αt are their weights. hout is the output
feature.

B. Attention Mechanism

As a research hotspot in computer vision, attention mecha-
nism has been widely used in various fields of deep learning,
such as machine translation [32], object recognition [33], pose
estimation [34], saliency detection [35], and scene segmenta-
tion [36]. Fu et al. [36] adopted the position attention module
and channel attention module to learn the spatial and channel
information separately. Hu et al. [37] employed squeeze and
excitation operations to assign different weights to different
channels for selecting important feature maps.

Attention mechanism is a method that simulates human visual
perception. When a person observes an object, the vision quickly
scans the global image, focuses on the key area, and suppresses
other useless information and background information. Atten-
tion mechanism in computer vision is similar to that in human
vision. Its purpose is to focus on some important features of
the target and select more critical features from a large number
of features. Fig. 2 shows the process of the basic attention
mechanism.

As shown in Fig. 2, under the basic attention mechanism,
the output feature is the weighted sum of each input feature
according to its importance. The formula is as follows:

hout =

t∑
i=1

αihi (1)

wherehout is the output feature,h1. . .,ht are the input features,
α1. . ., αt are the corresponding weights, and t is the number of
input features. αi is obtained by a softmax function. It is defined
as

αi =
exp(F (hi))∑t
i=1 exp(F (hi))

(2)

where F (·) denotes the scoring function and exp(·) denotes the
exponential function.

Recently, the attention mechanism has shown great potential
in the field of remote sensing. Some researchers have introduced
it into HSI classification. Fang et al. [38] exploited 3D dilated
convolutions to capture the spectral-spatial features, and then
adopted spectralwise attention to enhance the distinguishability
of spectral features. Ma et al. [39] applied two types of attention
mechanism in two branches to extract spectral and spatial fea-
tures and then concatenated them for classification. The work
in [16] applied the spectral attention Bi-RNN branch for spectral

features and applied the spatial attention CNN branch for spatial
features. Sun et al. [9] embedded the attention module after both
the spectral module and spatial module to suppress the impact of
interfering pixels. In early works, the attention mechanism was
independently applied to spectral and spatial features and then
merged the outputs, or it was sequentially used after spectral
modules and spatial modules to select key features. In our
method, the CAM is exploited to seek the desired spectral-spatial
features that are more correlated with the target pixel and assign
them different weights. Then, the CAM sums of the weighted
features to get more discriminative features, which not only
introduces a target focused strategy but also reduces the number
of parameters.

III. PROPOSED METHOD

In this section, we describe the proposed CAN in detail.
CAN contains three parts: a 3D CNN module, a CAM, and a
classification module. The 3D CNN module is used to capture
the basic spectral-spatial features of the target pixel and its ad-
jacent pixels; the CAM aims to fuse these features and generate
more discriminative features; the target pixel is classified by the
classification module with a softmax function. Fig. 3 illustrates
the architecture of our proposed CAN.

A. 3D CNN Module for Spectral-Spatial Features

An HSI is represented in a 3D cube. In the proposed method, to
explore both spectral and spatial information simultaneously, the
3D CNN module is employed as a feature extractor, consisting
of convolution layers, batch normalization layers, nonlinearity
layers, and pooling layers.

1) 3D Convolution Layer: The convolution layer is a layer
where each neuron computes the dot product between its weights
and a small region of the input volume matched to it. The layer’s
goal is to identify certain features from the previous layer and
transform them to feature maps. It is formulated as follows [17]:

Od′×r′×l′ = Id×r×l ⊗W k1×k2×k3 + b (3)

where I is the input volume, O is the output volume, W is
the filter (neuron or kernel) with the size k1 × k2 × k3, b is
the bias, d× r × l represents the size of the input volume,
and d′ × r′ × l′ represents the size of the output volume. ⊗
denotes the convolution operation. Fig. 4 shows the process of
3D convolution.

Generally, multiple 3D convolution filters are stacked in one
layer to explore different kinds of spectral-spatial features. The
3D convolutional layer can produce many spectral-spatial fea-
ture maps. When 3D convolutional layers are connected sequen-
tially, more abstract spectral-spatial features are extracted.

2) Batch Normalization Layer: This layer is often used to
improve the numerical stability. The batch normalization [40] is
represented as

BN(x) =
x−mean[x̂]√

var[x̂] + ε
∗ γ + β (4)

where x̂ is a minibatch of inputs, mean[x̂] and var[x̂] represent
the mean and standard deviation of x̂ which are calculated over
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Fig. 3. Architecture of the proposed CAN method. It is an end-to-end method. First, subcube samples are cropped from the dataset. Next, basic spectral-spatial
features are extracted from the 3D CNN module. Then, the center attention module (CAM) processes these features and weights them together. Finally, the
classification module assigns labels to samples.

Fig. 4. Process of 3D convolution. I is the input volume, O is the output
volume, W is the filter, and ⊗ denotes the convolution operation.

a minibatch, γ and β are the learnable parameters, and ε is a very
small constant value.

3) Nonlinearity Layer: This layer is applied to learn the
nonlinear relationship contained in the previous volume by
leveraging a nonlinear function. In this article, we adopt the
rectified linear unit (ReLU) [41] as the nonlinear function. It is
defined as

σ(x) = max(0, x). (5)

4) Pooling Layer: This layer is often used to summarize the
features and reduce the feature dimensions through a pooling
function. In our proposed method, 3D max pooling is applied
to extract spectral-spatial features after the nonlinear layer. The
3D max pooling operation takes the maximum value within a
small spatial region of the input volumes, and it is defined as

Op,q,z = max(Ip+δp,q+δq,z+δz ) (6)

where Ip+δp,q+δq,z+δz represents the input values at position
(p, q, z) with a region of size (δp, δq, δz) and Op,q,z represents
the output value at position (p, q, z) after 3D max pooling.

B. Center Attention Module

The basic attention mechanism automatically selects the key
features and ignores trivial features. The key features selected
usually represent the major information of the samples. How-
ever, when the samples contain considerable disturbing informa-
tion, the key features selected may not correctly represent the
salient information of the target, thus leading to classification
mistakes. Taking HSI classification as an example, when the

Fig. 5. Details of the CAM. The input feature is a cube of size s× s×m.
The output feature is a vector of size 1×m. � denotes matrix multiplication.

target pixel is on the edge of two or more classes of land
covers, as shown in Fig. 1(c)–(e), there will be many interfering
pixels around it. The interfering pixels often have different labels
from the target pixel. Sometimes, they occupy the majority in
the neighborhood of the target pixel. Under these cases, the
key features selected by the basic attention may not correctly
represent the target pixel, leading to classification mistakes. How
to accurately extract and choose better features representing
the target pixel becomes the core of improving classification
accuracy.

To address this problem, we propose a novel CAM to seek the
desired spectral-spatial features which are more discriminative
for the classification. The CAM focuses more on the features
that are highly correlated with the central pixel (i.e., the target
pixel) in the subcube sample. Since the convolution filters scan
the samples sequentially, the central filtered features can often
better represent the central (target) pixel. So we calculate the
correlation scores between all the features and the central fea-
tures to evaluate the contribution of different features for the
classification of the target pixel. Then, the CAM exerts unequal
weights on these features according to their correlation scores.
The stronger the correlation, the greater the weight, and vice
versa. Finally, it sums up these features of different weights to
reduce the number of features and generate new spectral-spatial
features. These new features are more discriminative for clas-
sification in that they are more relevant to the target pixel. The
details of the CAM are shown in Fig. 5.
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As illustrated in Fig. 5, first, we take an output of the prior con-
volution block as the input feature map H ∈ Rs×s×m for CAM.
Then, we perform three convolution layers with the kernel size of
(1× 1× 1) [42], [43] and three ReLU layers on H separately,
and generate three different new feature mapsH1,H2, andH3.
The (1× 1× 1) convolution layers and ReLU layers are used to
enhance the nonlinear representation of the features. In fact, H1

and H2 are to calculate the attention vector that softly weights
the importance of different features, and the goal of H3 is a
simple nonlinear transformation of the input feature map but
with suitable dimensions. In order to do matrix operations, H1

and H3 are reshaped into U1,U3, where U1,U3 ∈ Rss×m

and ss = s× s. The center feature vector hcenter is extracted
from the center of H2, where hcenter ∈ R1×m. Both U1 and
hcenter are fed into the scoring function F (·) to calculate the
correlation scores between them, and then a softmax function
are applied on correlation scores to calculate the attention vector
α. Finally, the output feature vectorhout of the CAM is obtained
by multiplying matrices α and U3, where hout ∈ R1×m. It is
formulated as

hout = αU3 (7)

αi =
exp(F (gi))∑ss
i=1 exp(F (gi))

(8)

where α ≡ [α1, . . ., αss], U1 ≡ [h1, . . .,hss]
T, αi is obtained

by the softmax function, hcenter is the center feature vector,
and exp(·) denotes the exponential function. F (·) denotes the
scoring function, which is implemented by a full connection
layer, parameterized by a weight matrix, W ∈ Rss×ss. gi are
used to calculate the correlation between hi and hcenter, and m
is the length of hcenter. The correlation scores are obtained by
multiplying all the gi with W and activating the results by a
nonlinear function δ(·), i.e., ReLU. They are formulated as

F (gi) = δ

(
ss∑
i=1

giW

)
(9)

gi =
1

m
‖hi − hcenter‖22 . (10)

C. Center Attention Network

CAN is an end-to-end method based on patch for HSI classi-
fication. It takes the target pixel and its neighbor pixels together
as a subcube sample (i.e., patch) whose class label is that of its
central pixel. The method mainly contains three parts: the 3D
CNN module, the CAM, and the classification module. Fig. 3
portrays the architecture of the proposed method.

First, many subcube samples are cropped from the dataset.
Next, basic spectral-spatial features are extracted from the 3D
CNN module built with two sequential 3D convolution blocks.
Each block consists of a convolutional layer, a batch normal-
ization layer, a ReLU layer, and a max pooling layer. Then, the
CAM assigns different weights to these spectral-spatial features
according to their relevance to the target pixel and then sums
up these weighted features to generate more discriminative fea-
tures. Its detailed process is shown in Fig. 5. Finally, these new

TABLE I
DETAILED PARAMETERS OF EACH LAYER IN THE PROPOSED METHOD

spectral-spatial features are fed into the classification module.
The label values are determined by a classifier with a softmax
function. The classifier is composed of fully connected layers,
a batch normalization layer, a ReLU layer, and a softmax layer.
The categorical cross entropy is employed as the loss function,
defined as

Loss = −
c∑

i=1

yilog(pi) (11)

where c is the number of land-cover classes, pi is the output
of the CAN, yi is the label value, and yi ∈ {0, 1} (if yi is the
ith class yi = 1, else yi = 0). For its robustness in learning, the
Adam [44] optimizer is adopted. Table I specifies the detailed
parameters of each layer in the proposed method. In Table I, c
is the number of land-cover classes.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed method for
HSI classification, we conducted a series of experiments on
three public datasets. Experimental results demonstrate that the
proposed method achieved better results compared with several
state-of-the-art methods.

A. Datasets

The datasets used in the experiments were Indian Pines (IP),
University of Pavia (UP), and Salinas Valley (SV), which are
widely used in the validation of HSI classification methods.
Next, we introduce these datasets in detail.

1) Indian Pines: The IP dataset was collected in northwest
Indiana by the AVIRIS sensor in 1992. It includes 220 spectral
bands from wavelengths of 400–2500 nm with an interval of
10 nm. There are 200 usable bands left after the removal of
the water absorption and null bands. The size of the image is
145 × 145, and the spatial resolution is 20 m. In this dataset,
16 different land-cover categories are included, with a total of
10 249 labeled pixels. Fig. 6 shows the pseudocolor image and
the ground-truth map of the IP dataset.

2) University of Pavia: The UP dataset was acquired through
the ROSIS sensor in 2003. It includes 115 bands. After the noise
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Fig. 6. (a) Pseudocolor image of the Indian Pines dataset. (b) Ground-truth
map of the Indian Pines dataset.

Fig. 7. (a) Pseudocolor image of the University of Pavia dataset. (b) Ground-
truth map of the University of Pavia dataset.

bands were removed, 103 available bands remained. The wave-
length range is from 380 to 860 nm, and the spatial resolution is
1.3 m. The size of the image is 610 × 340. There are nine types
of land cover and a total of 42 776 labeled samples in the UP
dataset. Fig. 7 shows the pseudocolor map and the ground-truth
map of the UP dataset.

3) Salinas Valley: The Salinas Valley dataset was acquired
by the AVIRIS sensor in 1998. It includes 224 bands, with a
wavelength range from 400 to 2500 nm. After removing the
water absorption and noise bands, 204 bands remained. The size
of the image is 512 × 217, and its ground resolution is 3.7 m.
In this dataset, there are 16 types of land cover and a total of
54 129 labeled samples. Fig. 8 shows the pseudocolor map and
the ground-truth map of the SV dataset.

Fig. 8. (a) The pseudocolor image of the Salinas Valley dataset. (b) The
ground-truth map of the Salinas Valley dataset.

B. Experimental Settings and Measures

In this section, data preprocessing and data augmentation
methods are introduced. In data preprocessing, we normalize the
data with maximum and minimum values. Then, the normalized
data are subtracted from the average value of the corresponding
band.

In data augmentation, we reverse and rotate the subcubes
to alleviate the overfitting problem due to insufficient labeled
samples. First, a subcube sample is flipped horizontally and
vertically; second, the subcube sample is rotated 90, 180, and
270 degrees around the central pixel. After these operations, each
subcube sample generates five additional samples. In addition,
batch normalization adopted in the proposed method can also
relieve the overfitting problem.

To quantitatively analyze the performance of the algorithm,
we use the overall accuracy (OA), average accuracy (AA), and
kappa as evaluation measures. OA refers to the proportion of
all correctly classified samples in the test samples; AA refers to
the average classification accuracy of different categories; and
kappa measures the consistency between classification results
and ground truth. The larger the value of OA, AA, and kappa,
the better the results.

C. Comparing With Other Methods

To verify the performance of the proposed CAN method, we
perform a comparison between the proposed method and several
state-of-the-art methods, including 1D CNN, 2D CNN [26],
SMBN (squeeze multibias network) [29], DFFN (deep feature
fusion network) [27], DHCNet (deformable HSI classification
networks) [28], SSRN (spectral-spatial residual network) [30],
and SSAN (spectral-spatial attention networks) [9], and they are
all based on deep learning with CNN modules. To make a fair
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TABLE II
NUMBER OF TRAINING SAMPLES, TESTING SAMPLES, AND TOTAL SAMPLES ON

THE INDIAN PINES DATASET

TABLE III
NUMBER OF TRAINING SAMPLES, TESTING SAMPLES, AND TOTAL SAMPLES ON

THE UNIVERSITY OF PAVIA DATASET

comparison, our method and comparison methods proposed in
this article use the same experimental settings, including data
preprocessing and data augmentation. The detailed parameters
are set as follows. The spatial size of the HSI subcube of all
methods is set to 7 × 7. The number of training epochs is set
to 200, but 1000 for 1D CNN because it is trained without data
augmentation. The number of batch sizes is 100. The weight
parameters of each method are optimized by Adam [44]. The
learning rates of the competitive methods are the same as those
of the original paper. The learning rate of the proposed method
is 0.001.

These experiments are conducted on the IP, UP, and SV
datasets. On the IP dataset, we randomly select 10% of the
labeled samples in each land-cover category as training samples,
and the rest are test samples. On the UP and SV datasets, 2% of
the labeled samples are randomly selected as training samples,
and the rest of the labeled samples are test samples. The number
of training and test samples belonging to different categories on
the IP, UP, and SV datasets are shown in Tables II–IV. Table V
shows the classification results of different methods on the IP
dataset, Table VI on the UP dataset, and Table VII on the SV
dataset [16]. We highlight the best results in italic.

From the results in Tables V–VII, it is obvious that the
methods based on spectral-spatial features show superior per-
formance over the method based on only spectral features (1D

TABLE IV
NUMBER OF TRAINING SAMPLES, TESTING SAMPLES, AND TOTAL SAMPLES ON

THE SALINAS VALLEY DATASET

CNN). This demonstrates that the spatial information is helpful
for improving classification performance.

We also find that the SSAN method and the proposed method
outperform other methods based on spectral-spatial features
because the two methods manage to select the required features
and suppress unwanted ones. This indicates that some features
extracted by CNN are redundant, and many of them are useless
or even counterproductive. This also affirms that the CAM in our
method is necessary for selecting and summing up these basic
spectral-spatial features.

From these classification results, we further discover that the
classification accuracies vary greatly among different categories
because the number of samples belonging to different classes is
unequal, resulting in an imbalance among the training samples,
especially on the IP dataset. The category with the fewest sam-
ples is “Oats,” which has only 2 samples, but the “Soybean-m”
category has 246 samples. This imbalance between the number
of training samples poses a major challenge to classification
methods. In terms of AA, the proposed method is better than
comparative methods when the dataset is unbalanced.

D. Impact of Spatial Size

The spatial size of the subcube has an important impact on
the classification results [3]. In this section, we conduct several
experiments on the IP, UP, and SV datasets to explore the impact
of size on the classification results. The ratios of labeled samples
on the IP, UP, and SV datasets are 10%, 2%, and 2%, respectively.
The spatial sizes of the subcube are set to 5 × 5, 7 × 7, 9 × 9, 11
× 11, and 13 × 13. The number of training epochs is 100, and
the number of batch sizes is 100. All the other parameters retain
the settings of the previous experiments. Fig. 9 shows the OAs
of the proposed method on the three datasets with different
spatial sizes.

From Fig. 9, we find that the classification performance grad-
ually improves as the spatial size expands. The reason is that a
larger sample may contain more spatial information. However,
the effect of the increased spatial size on the classification perfor-
mance is different on the IP, UP, and SV datasets. When the size
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TABLE V
CLASSIFICATION RESULTS (%) ON THE INDIAN PINES DATASET UNDER DIFFERENT METHODS

TABLE VI
CLASSIFICATION RESULTS (%) ON THE UNIVERSITY OF PAVIA DATASET UNDER DIFFERENT METHODS

TABLE VII
CLASSIFICATION RESULTS (%) ON THE SALINAS VALLEY DATASET UNDER DIFFERENT METHODS

is 13 × 13, the performance on the IP dataset begins to decline
slightly. This is because as the size increases, there will be
more interfering pixels in subcube samples, which may affect the
classification performance of the method. Therefore, a suitable
spatial size is very important. In the following experiments, the
spatial size is set to 11 × 11.

E. Effectiveness of CAM

The CAM plays an essential role in the proposed method.
It effectively fuses the spectral-spatial features, which greatly
reduces the number of parameters and improves the training
efficiency of the method. Under the same configurations, the
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Fig. 9. The OAs (%) of the proposed method on the IP, UP, and SV datasets
with different spatial sizes.

Fig. 10. Number of parameters of our method with and without CAM.

TABLE VIII
TRAINING TIME OF THE METHOD WITH AND WITHOUT THE CAM (S)

number of parameters of our method with and without CAM is
shown in Fig. 10, and their training times are shown in Table VIII.
The results in Fig. 10 suggest that the number of parameters of
the method with CAM is much less than that of the method
without CAM. According to Table VIII, the time spent by the
method with CAM is less than that of the method without CAM.
The reduction in parameter quantity and the improvement in
training efficiency benefit from weighted sum of spectral-spatial
features by the CAM.

The CAM helps generate more relevant and discriminative
spectral-spatial features and improves the classification perfor-
mance. To verify the effectiveness of the CAM, the experiments
are conducted on the IP, UP, and SV datasets with and without
CAM for comparison. In these experiments, the spatial size is
11 × 11, the number of training epochs is 100, the batch size is
100, and the optimizer is Adam. Table IX shows the OAs of the
results on the IP, UP, and SV datasets at 10%, 2%, and 2% of
the labeled samples, respectively. From Table IX, it is confirmed
that the CAM significantly improved accuracy.

TABLE IX
OAS (%) OF THE METHOD WITH AND WITHOUT CAM ON THE IP, UP, AND SV

DATASETS

Fig. 11. The visual results of our methods with and without CAM on the IP
dataset. (a) The method without CAM. (b) The method with CAM.

Fig. 12. The visual results of our methods with and without CAM on the UP
dataset. (a) The method without CAM. (b) The method with CAM.

To visually display and verify the classification results,
Figs. 11–13 portray the classification results of the method with
and without CAM on the IP, UP, and SV datasets. In these figures,
“*” (red asterisk) represents the misclassified labeled samples,
and others are correctly identified labeled samples (the black
area is the background pixels).

From Figs. 11 to 13, it can be seen that the CAM is effec-
tive and helpful for improving the classification performance,
especially at the boundary of different classes. There are many
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Fig. 13. The visual results of our methods with and without CAM on the SV
dataset. (a) The method without CAM. (b) The method with CAM.

TABLE X
OAS (%) OF CAN WITH DIFFERENT RATIOS OF LABELED SAMPLES AS

TRAINING SAMPLES ON THE IP, UP, AND SV DATASETS

misclassified samples in Figs. 11–13(a) that are properly cor-
rected in Figs. 11–13(b), especially on the boundary. The main
reasons are as follows: 1) the proposed method finds the internal
correlation between the target pixel and its neighboring pixels,
and the pixels with higher correlation are more contributive to
the classification; 2) through the CAM, the proposed method
effectively fuses the spectral-spatial features and generates more
relevant and discriminative features.

F. Impact of Training Ratios

In actual applications, the number of training samples is an
important factor for classification accuracy. In this section, we
explore the performance of the proposed method with different
ratios of labeled samples. The ratios of labeled samples are set as
2%, 5%, 10%, 15%, and 20%, respectively. The result of 2% on
the IP dataset is null because some categories of samples are so
small that there are no samples. Table X shows the classification
performance of the proposed method on the three datasets with
different percentages of labeled samples as training samples.

In Table X, we can observe that the classification accuracies
improve as the ratios of labeled samples increase. This proves
that the spectral-spatial features learned by the proposed method
are effective for HSI classification. We also find that when a small
number of samples (the IP dataset is 5%, the UP and SV datasets
are 2%) are available, satisfactory results can be obtained by the
proposed method as well. Achieving good results with fewer

training samples is crucial for HSI classification since the labeled
samples are often difficult to collect in actual situations.

V. CONCLUSION

In this article, we propose an end-to-end hyperspectral image
classification method by introducing a CAM into 3D CNN to
enhance the classification accuracy of hyperspectral images.
Specifically, this method effectively learns the internal correla-
tion between the central pixel and its neighboring pixels in a sub-
cube sample and generates more discriminative spectral-spatial
features. Experimental results demonstrate that our method has
exceeded several state-of-the-art HSI classification methods
based on deep learning, and it still retains its functionality even
with an inadequate number of labeled samples. In addition,
the method effectively fuses the basic spectral-spatial features
extracted by the 3D CNN module, which significantly reduces
the number of parameters and improves the training efficiency.
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