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Abstract—With the hyperspectral imaging technology, hyper-
spectral data provides abundant spectral information and plays
a more important role in the geological survey, vegetation anal-
ysis, and military reconnaissance. Different from normal change
detection, hyperspectral anomaly change detection (HACD) helps
to find those small but important anomaly changes between mul-
titemporal hyperspectral images (HSI). In previous works, most
classical methods use linear regression to establish the mapping
relationship between two HSIs and then detect the anomalies from
the residual image. However, the real spectral differences between
multi-temporal HSIs are likely to be quite complex and of nonlin-
earity, leading to the limited performance of these linear predictors.
In this article, we propose an original HACD algorithm based on
autoencoder (ACDA) to give a nonlinear solution. The proposed
ACDA can construct an effective predictor model when facing
complex imaging conditions. In the ACDA model, two siamese
autoencoder networks are deployed to construct two predictors
from two directions. The predictor is used to model the spectral
variation of the background to obtain the predicted image under
another imaging condition. Then the mean square error between
the predictive image and corresponding expected image is com-
puted to obtain the loss map, where the spectral differences of the
unchanged pixels are highly suppressed and anomaly changes are
highlighted. Ultimately, we take the minimum of the two loss maps
of two directions as the final anomaly change intensity map. The ex-
periments results on public “Viareggio 2013” datasets demonstrate
the efficiency and superiority over traditional methods.

Index Terms—Anomaly change detection, autoencoder (AE),
feature extraction, hyperspectral image (HSI).

I. INTRODUCTION

CHANGE detection for remote sensing images refers to ac-
quiring the different information of landscapes in the same

location by observing it at different times [1]–[3]. With high
spectral resolution, the hyperspectral image could distinguish
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various objects more accurately [4], [5]. Nowadays, HSI change
detection has been extensively applied in land use and land cover
change analysis [6], resource exploration [7], vegetation change
analysis [8], and damage assessment [9].

Compared to the conventional hyperspectral change detec-
tion, hyperspectral anomaly change detection (HACD) [10]–
[13] focuses on finding those small and rare changes, which
have different distribution with the background changes. The
background refers to all ground objects that present at the
same location in both HSIs. And the anomalous changes may
arise from insertion, disappearance, or movement of small size
objects (generally man-made). Besides, the camouflage, con-
cealment, and deception of little stationary objects also bring
about anomaly changes. HACD serves as a reminder of these
easily overlooked changes for decision makers [14] and has been
widely applied in airborne defense and surveillance, agricultural
surveying, and illicit crop identification [15]–[17].

A straightforward procedure for HACD is to detect anomaly
from the difference images of multitemporal HSIs. However, the
spectral variations resulting from diverse imaging conditions in
the difference image can result in plenty of pseudo changes, since
the solar height angle, illumination, and atmosphere condition
may have altered tremendously. In theory, these pseudo changes
could be suppressed if the multitemporal images were acquired
under the same imaging condition and the unchanged landscapes
would show quite similar spectral features. Therefore, anomaly
change detection could be done by establishing the mapping
relationship from one image to another in order to get a predictive
image and then comparing the spectral differences. The idea of
predicting the image under the imaging condition of another
image is concluded as a predictor model [18]. Chronochrome
(CC) [19] is such a classical predictor that models the spectral
differences of background by the least square linear regression.
CC is the first global linear predictor that obtains a predicted
image and detects the anomaly changes from the residual image.
Since misregistration error quite influences the performance of
CC, the emergence of covariance equalization (CE) [20] solves
this problem. CE functions as whitening [21] and is assumed
to be able to unify the distribution of two HSIs. Concretely,
the two classical methods for HACD, CC, and CE employ the
statistical features of the two images to establish the relation-
ship mapping from one imaging space to another. But both of
them obey the linear space-invariant assumption, which refers
to the affine transformation containing no target changes for
global linear predictors. Carlotto [22] combined clustering with
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Reed-Xiaoli (RX) [23], [24] to detect man-made changes, which
first segmented the reference image into several clusters and
then used RX to detect anomaly changes within each cluster.
RX aims at finding out those pixels that deviate from the main
distribution. And the clustering provides additional freedom to
adapt to the space-variant background. Eismann et al. [11], [18]
proposed a new method that divided the background into several
classes and mapped one by one to get a prediction. The approach
really obtains better detection effect with the segmented linear
prediction. But the number of clusters is hard to determine and
need to be selected by trial-and-error in the experiment. It is
worth noting that most previous predictor models are all linear
models.

To sum up, the traditional methods use the statistical features
of images to construct linear predictors, which suffer from
the inability of representing the complex relationship of the
imaging conditions. Specifically, there are abundant bands of
hyperspectral images, which cover a wealth of surface features.
Thus a predictor model for HACD requires strong capability
of feature extraction. And a nonlinear predictor based on deep
learning may give a solution.

Deep learning is composed of multiple processing layers,
which are similar to neurons of the human brain, and is able
to learn multiple levels of representation of data [25], [26].
And deep learning has gained remarkable performance in image
processing of remote sensing [27], such as classification [28],
[29], target detection [30], [31], and change detection [32],
[33]. Among deep learning architectures, autoencoder (AE) has
shown powerful feature extraction ability in [34], which makes it
possible to establish a nonlinear complex mapping relationship.
The under-complete autoencoder (hereafter referred to as AE)
is characterized by the design of the bottleneck, which limits the
dimension of information transmitted after the input layer and
helps to extract the crucial features.

Therefore, inspired by the ability of the feature extraction
of AE, we proposed a method that employs AE as a nonlinear
predictor for HACD called hyperspectral anomaly change de-
tection based on autoencoder (ACDA). In the proposed method,
we utilize two AE networks to get two predictive images, re-
spectively. The special structure “bottleneck” of AE is able to
extract the essential features at a lower dimension and recon-
struct the input. Using predetected unchanged pixels as training
samples, the input is the spectral vector of one HSI and the
desired output is corresponding to one of another HSI. These
two spectral vectors both belonging to the background own
consistent essential features but differ in the spectral values.
The spectral differences between them result from the different
imaging conditions. Thus, the AE network transforms the HSI
into another imaging condition to get a predictive image. Then
the loss maps will be calculated by computing the mean square
error (MSE) between the predictive images and corresponding
expected images. Finally, we take the minimum of the two loss
maps as the anomaly intensity map. In addition, the ability of
feature extraction and nonlinearity of AE enable the model
to deal with the problem of space-variant background. The
intention of AE predictor is to minimize the spectral differences

of multitemporal HSIs and highlight the anomaly changes. The
main contributions of this article are concluded as follows.

1) A nonlinear predictor method based on AE denoted
as ACDA is proposed for HACD, which gains greater
detection performance against other state-of-the-art ap-
proaches. And the network structure of the model is
compact and simple, which is easy to implement and less
time-consuming.

2) By utilizing the bottleneck structure of the AE, the pro-
posed method is effective in extracting the intrinsic infor-
mation of the high dimensional spectral vector, which is
critical to construct the predictive relationship of different
imaging conditions.

3) In practice, one of the major issues encountered by HACD
lies in the variant background space, which causes the vi-
olent and unbalanced spectral variance between two back-
grounds of multitemporal HSIs. Combined the feature
extraction and nonlinear mapping, the proposed ACDA
obtains good results in this case.

The rest of this article is organized as follows. Section II
gives a representation of the proposed method ACDA. Then
we implement the algorithm and two experiments results on
real-world datasets are presented in Section III. And Section IV
concludes this article.

II. METHODOLOGY

A. Autoencoder

AE is an unsupervised deep learning network that is able to
learn features from the unlabeled data [34]. AE aims at replicat-
ing the output from the input and learning the representation of
the input and has broad application, such as dimension reduction
[35], image classification [36], and hyperspectral unmixing [37].
Generally, the architecture of AE consists of an encoder and a
decoder, where the encoder is used to extract the features of
the input, and the decoder is designed to decode the feature and
reconstruct the input. Concretely, for a single-layer AE network,
the encoder is composed of an input layer as well as a hidden
layer, and the decoder is made up of the hidden layer and an
output layer. And joint hidden layer between the encoder and
decoder is also called the code layer. The structure of AE is
generally symmetrical.

There are two significant characteristics of the AE. 1) The
neural unit number of the input layer is equal to the one in the
output layer. 2) The size of the hidden layer is smaller than
the input layer. As for a high-dimensional input, the encoder
first transforms it into a low-dimensional code, and then the
decoder recovers the data from the code. Such a special structure
is referred to as a bottleneck, which is vital to learn feature
representation in an unsupervised manner.

For an input sample z ∈ RP , the output of the encoder can be
written as

E (z) = g
(
w(e)z + b(e)

)
(1)
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Fig. 1. Architecture of the proposed ACDA. The top part of the network trains a predictor from HSI of Time 1 to HSI of Time 2, and the bottom part of the
network trains a predictor from the HSI of Time 2 to Time 1. Then the predicted vector of Time 2, x̂ and the original spectral vector of Time 2, y is used to compute
the loss map I1. So is the loss map I2. After two loss maps are acquired from two directions, the minimum of the two loss maps are computed as the final loss map
I .

wherew(e) ∈ RK×P is the weight matrix withK features, b(e) ∈
RK×1 is the bias vector, and g refers to the activation function,
individually. Then the hidden code is put into the decoder to get
a reconstructed result ẑ

ẑ = g
(
w(d) E (z) + b(d)

)
(2)

where w(d) ∈ RP×K is the weight matrix with P features and
b(d) ∈ RP×1 is the bias vector, separately. And θ refers to all
parameters {w(e), b(e), w(d), b(d)} that need to be trained in the
AE network. Given the training sets zi, i = 1, 2, . . . , N , the
θ can be iteratively updated by minimizing the reconstruction
error which adopts the MSE as the cost function, as the following
equation depicts:

L (θ) =
1

N

N∑
i=1

(∥∥ẑi − zi
∥∥2). (3)

The AE tries to learn an approximation that the output is
as similar as possible to the input. Under the constraint that
the unit number of the hidden layer is less than the one of
the input layer, the code layer is forced to learn a compressed
feature representation of the input information. Furthermore, the

hidden representation extracts the essential information, which
can reconstruct the input.

B. HACD Based on AE

As mentioned above, AE is capable of extracting the essence
from the input data due to the bottleneck. Generally, when de-
tecting the anomaly changes from multitemporal hyperspectral
images, we suppose that the ground objects of background do
not change, but the spectral features may alter because of the
different imaging conditions. Therefore, taken the spectral vec-
tor of Time 1 as the training input and the corresponding vector
of Time 2 as the training output, the spectral variation of the
pair pixel vectors can be fitted by the AE network, since the two
spectral vectors of the unchanged pixel have the same essential
information. AE functions as a predictor that establishes the
mapping relationship between two imaging conditions. And
anomaly changes could be detected from the residual image
where the spectral differences of the background between the
predicted image and the expected image are suppressed.

The overview of the proposed ACDA is shown in Fig. 1. The
inputs of ACDA are pairwise spectral vectors of hyperspectral
imagery. Then ACDA could be roughly divided into two parts:
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predictor module and postprocessing module. In the predictor
module, two systematic AE, whose layers are all fully connected
(FC) layers, are used to get two predictive images. In Fig. 1,
the red nodes represent the nodes of the input layer, the orange
nodes are used to represent the output layer, and the blue nodes
are the nodes of hidden layers. After acquiring two predicted
images, we choose the MSE between the predictive image and
the expected image as the loss map. And in the postprocessing
module, we use the minimum between the two loss maps as the
final anomaly change intensity map.

1) AE Predictor Model: Generally, AE is used to reproduce
the output from the input. In this article, AE is deployed as
a predictor by changing the loss function, where the spectral
vector of one HSI is taken as input and the corresponding vector
of another multitemporal HSI is served as the desired output.
We choose the training samples from the predetection results
of unsupervised slow feature analysis (USFA) [38], [39], which
has showed outstanding comprehensive results in [40]. USFA
tries to extract the invariant features and detects the anomalies
from transformed difference features.

Mathematically, the AE predictor model is defined as follows.
Let us denote X ∈ RM×Q as a HSI acquired at Time 1 and
Y ∈ RM×Q as another HSI acquired at Time 2, individually,
where M and Q refer to the number of pixels and spectral
channels, separately. Let us also denote x = [x1, x2, . . . , xQ]

T

as a training pixel vector of X , y = [y1, y2, . . . , yQ]
T as the

corresponding pixel vector of Y .
Supposing there are n hidden layers and hi denotes the

number of nodes of ith hidden layer. Given x fed into the AE
model, the output of the first hidden layer can be written as

f1
1 (x) = g

(
w1

1 x+ b
1
1

)
(4)

where w1
1 ∈ Rh 1 × P and b11 ∈ Rh 1 × 1 are weight matrix and

bias vector, g refers to the activation function. The superscript
of f1

1 means the first predictor model mapping from X to Y and
subscript of f1

1 means the first hidden layer. The same are true
for w1

1 and b11. The output of the last hidden layer can be written
as

f1
n (x) = g

(
w1

n f1
n−1 (x) + b

1
n

)
(5)

where w1
n ∈ Rh n × P and b1n ∈ Rh n ×1 are weight matrix and

bias vector, separately. The output of the model can be formu-
lated as

x̂ = f (θ1, x) = g
(
w1

n+1 f1
n (x) + b

1
n+1

)
(6)

where w1
n+1 ∈ RQ × hn and b1n+1 ∈ RQ×1 are weight ma-

trix and bias vector, respectively. And θ1 refers to all pa-
rameters {w1

1 , b11 , . . . , w1
n , b1n , w1

n+1 , b1n+1} that need
be trained in the first predictor model. Given the training
sets xi, i = 1 , 2 , . . . , S and corresponding desired output
yi, i = 1, 2, . . . , S, the loss function of the model can be de-
scribed as

L (θ1) =
1

S

S∑
i=1

(∥∥x̂i − yi
∥∥2)+ λ1

n+1∑
j=1

∥∥w1
j

∥∥2 (7)

where the cost function is the MSE, w1
j refers to the weight

parameter of different layers, and λ1 is the regularization coef-
ficient of the first predictor model.

After the predictor has been trained, all pixel vectors of the
image X are fed into the predictor to get a predictive image X̂ .
The predictor is not a prophet that predicts what will happen on
Time 2, but rather a transformer that maps the landscape from the
imaging condition of Time 1 to the imaging condition of Time
2. Consequently, the imaging condition of the predicted image
X̂ is the same as the one of expected image Y . Furthermore,
the spectral differences of the background between X̂ and Y are
highly suppressed. While the location with a new appearance
or disappearance will get high-intensity value. We use the MSE
between the predicted X̂ and the expected Y as the anomaly
change intensity as follows:

I1 = MSE
(
X̂ , Y

)
. (8)

Considering the change direction of two images, we can
get another AE predictor model with predicted image Ŷ when
feeding the pixel spectral vectors of Y . The loss function of the
training model from Y to X be described as

L (θ2) =
1

S

S∑
i=1

(∥∥ ŷi − xi
∥∥ 2

)
+ λ2

n+1∑
j=1

∥∥ w2
j

∥∥ 2
(9)

where θ2 is the training parameter {w2
1 , b21, . . . , w

2
n, b

2
n,

w2
n+1 , b2n+1} of the second predictor. w2

j refers to the weight
parameter of different layers and λ2is the regularization coef-
ficient. The loss map I2 can be described as the MSE of the
spectral vector between Ŷ and Xas follows:

I2 = MSE
(
Ŷ , X

)
. (10)

2) Postprocessing: After two loss maps are obtained, we
adopt the minimum operation on the two loss maps I1 and I2 in
order to get better detection performance with less noise. Since
the anomaly change detector adopts MSE, both loss maps cover
bidirectional changes, such as the appearance and disappearance
of small objects. The final anomaly change intensity map I can
be expressed as follows:

I = min (I1 , I2) . (11)

The reasons for using min operation can be summarized as
follows.

1) If a pixel belongs to anomalous change, the anomaly
intensity value in both loss maps is large, and then the
smaller one is also a big value. As a result, the anomalous
information is preserved after min operation.

2) If a pixel does not have an anomalous change, both of
the intensity values in the two loss maps are small, the
minimum of those two makes it less possible to be an
anomalous one.

3) If one of the two intensity values is largely resulting
from the training error or local environment, the minimum
operation can cut down the possibility of being anomaly
change, leading to less noise of the final result. Thus, the
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Algorithm 1: Process of Training and Generating Anomaly
Change Intensity Map for ACDA

Input:
Hyperspectral images X and Y ;
Output:
The anomaly change intensity map I;
1: Employ USFA pre-detection to generate training

samples xi, i = 1 , 2 , . . . , S and
yi, i = 1 , 2 , . . . , S;

2: Initialize the AE network’s parameters {θ1 , θ2};
3: while epoch < max_epochs do
4: Calculate the predictive spectral vector x̂ and ŷ;
5: Calculate the loss function value L(θ1) and L(θ2);
6: Back propagation to update the parameters with

gradient descent algorithm;
7: epoch++;
8: end while
9: Calculate the predicted image X̂ and Ŷ ;

10: Calculate the loss map I1 = MSE(X̂ , Y ) and
I2 = MSE(Ŷ , X);

11: Compute the final anomaly intensity map
I = min(I1 , I2);

12: return I;

min operation can absorb and amplify the advantage of
the two loss maps.

3) Scheme of Proposed ACDA: The detailed implementation
of ACDA is depicted in Algorithm 1.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In order to illustrate the effectiveness of the proposed method,
abundant experiments on two benchmark hyperspectral datasets
for HACD have been conducted. In this section, the description
of the two real hyperspectral datasets and the experiments are
first introduced in detail. Then the anomaly change detection
performance and analyses are represented, which are followed
by the parameter analyses about the hidden units and the selec-
tion strategies of training samples. Finally, we present the time
cost analysis of four involved deep learning based algorithms.

A. Hyperspectral Datasets

The benchmark datasets, “Viareggio 2013” datasets [41],
include three hyperspectral images acquired on May 8–9, 2013,
in Viareggio, Italy, by an airborne hyperspectral sensor SIM.GA.
The sensor collects spectral information ranging from 400 to
1000 nm at a spectral resolution of 1.2 nm approximately.
Besides, the ground spatial resolution is 0.6 m. As shown in
Fig. 2, (a) is D1F12H1 that acquired on May 8, 2013, 14.18
(Greenwich Mean Time, GMT), (b) is D1F12H2 that acquired
on May 8, 2013, 14.33 (GMT), and (c) is D2F22H2 that acquired
on May 9, 2013, 12.64 (GMT). Since D1F12H1 and D1F12H2
are acquired on a cloudy day and the radiation comes from the
scattered light of the sun, the imaging conditions of D1F12H1

Fig. 2. Viareggio datasets used for experiments. (a) D1F12H1. (b) D1F12H2.
(c) D2F22H2.

and D1F12H2 are closely similar. While D2F22H2 is obtained
on a clear sunny day, it is obvious that there is a shadow in
region A, which indicates that D2F22H2 is under a space-variant
condition. In this article, two groups of experiments are carried
out, where D1F12H1 and D1F12H2 make up EX-1, while EX-2
consists of D1F12H1 and D2F22H2. These public datasets are
available with five different preprocessing levels. We choose
preprocessed data with destriping, noise-whitening, and spec-
trally binning. Concretely, the data was processed at first by
multilinear regression to eliminate residual striping noise. And
noise-whitening was used to normalize the noise variance. A
spectral binning was also employed to reduce random noise by
averaging the four consecutive spectral channels. All images
have been coregistered available on these public datasets. For
each HSI, there are 127 spectral bands with a scene size of
450 × 375.

It should be noted that all anomaly changes including ap-
pearance and disappearance are taken into consideration for the
ground truth map, for these two types are all anomaly changes.

B. Experimental Setting

In our ACDA model, AE predictors are composed of FC
layers. There are three hidden layers with ReLU [25] as ac-
tivation function and all weight along with bias matrices are
initialized by he-normal way [42]. Using Adam [43] as an
optimizer, the ACDA is implemented by PyTorch. Besides,
adding L2 regularization to loss function is good for avoiding
over-fitting. For each experiment, the regularization coefficient
is selected as 0.001 by trial from the range [10e-8, 10e-1]. The
training epochs are set as 200 in all experiments, and the learning
rate and batch size are 0.001 and 256, respectively. As for the
number of different hidden units, we design an AE network
with three hidden layers, which are defined as h1, h2, and h3,
respectively. The size of h3 is the same as the size of h1. We
denote ACDA-h1-h2as ACDA model with the unit size of h1

in the first hidden layer and h2 in the second hidden layer. In
the experiments, we adopt ACDA-60-40 model and the detailed
analysis about the influence of the different number of hidden
units on algorithm performance is discussed in Section III-D.

Training samples are selected from predetected results of
USFA instead of manual selection. For each experiment, 10 000
samples, which are 6% approximately of the total number of
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the pixels, are chosen from the predetected results at random.
Specifically, the number of bands whose 1/eigenvalue is greater
than 1 is automatically selected for the anomaly detection of
USFA. Then the anomaly change intensity result is sent to the
K-means classifier with 3 clusters and the cluster samples with
the smallest cluster center are assigned as the desired training
set. Owning to the random initialization of weight matrices and
bias vectors, we take the average of ten independently repeated
results as the final anomaly intensity map. And the assessment
is based on the average result.

Ten comparable algorithms are conducted on the datasets
mentioned above, including difference reed-xiaoli algorithm
(Diff-RX) [24], straight anomalous change detector (SACD),
simple difference anomalous change detector (SDACD), simple
difference hyperbolic anomalous change detector (SDHACD)
[44], CC [19], CE [20], three FC [45] neural networks and USFA.
RX is known for anomaly detection, and the diff-RX algorithm
detects anomalies directly from the difference of two images to
achieve the purpose of detecting anomaly changes. Based on
the assumption that images are subject to multivariate Gaussian
model, SACD, SDACD, and SDHACD detect anomaly changes
from the likelihood ratio between probability density functions
of HSIs. CC and CE are two canonical predictor methods based
on the statistical features of the images. As for the three FC neu-
ral networks, they are all predictor models for unusual change
detection, which uses no labeled data and a three-layer quick
prop-trained neural network to build a nonlinear predictor used
for multispectral and panchromatic data sets. We refer to this
algorithm here for HACD. The training settings and cost function
adopted by the FC networks are the same as that of ACDA,
but the number of hidden layer units is greater than or equal
to the number of input layer units. Concretely, each network
has three hidden layers and refers to FC-h1-h2, with the first
hidden layer having the same number of cells as the third. The
three networks, FC-127-127, FC-127-200, and FC-200-200, are
specifically designed to be compared with bottleneck structure
in this article. And USFA is the predetection algorithm used
in this article. Various types of predictor models are used for
comparison, including CC, CE, FC-127-127, FC-127-200, and
FC-200-200. Note that the total framework as well as the min
operation suggested in this article is also used for these predictor
models to produce the final results for them. Besides, all the
methods based on deep learning are repeated ten times and
the average of the anomaly change intensity maps is taken as
the final anomaly change map as well as the evaluation.

Moreover, receiver operating characteristic (ROC) [46] curve
as well as area under curve (AUC) are adopted for quantitative
assessments. ROC is widely used for no threshold to test the
performance of anomalous change detection. The horizontal axis
of the ROC curve is the false alarm rate and the vertical axis is
the detection rate. In detail, the closer the ROC is to the upper
left corner, the better the performance of the method is. With
the same false alarm rate, the method with a higher detection
rate gains superior detection results. And the AUC is the area
enclosed by the ROC curve, horizontal axis and vertical axis.
The bigger the AUC is, the greater the algorithm is.

C. Results and Analysis

In this section, the detection results of the experiments are first
analyzed. Then the analysis of the impact of the min operation
on the final results is presented.

Figs. 3 and 4 show the anomaly change intensity maps
of D1F12H1-D1F12H2 and D1F12H1-D2F22H2 by diff-RX,
SACD, SDACD, SDHCD, CC, CE, FC-127-127, FC-127-200,
FC-200-200, USFA, and ACDA-60-40, respectively. There
are all 2% linearly stretched for visual comparison. For the
D1F12H1-D2F22H2 dataset, there are 849 pixels of anomaly
changes showed in Fig. 3(l). And Fig. 4(l) is the ground truth map
of D1F12H1-D2F22H2, with 1778 pixels of anomalous changes.
The brighter region is more likely to be the anomaly change. As
shown in Fig. 3, most of the bright regions in the result of SACD,
SDHACD, FC-200-200, and ACDA-60-40 correspond to the
anomalous changes of the ground truth map for the D1F12H1-
D1F12H2 dataset. And there are lots of noises on results of
diff-RX, SACD, SDACD, CC, and CE. By contrast, FC-127-
127, FC-127-200, FC-200-200, USFA, and ACDA-60-40 are
effective in suppressing the background, where the methods
based on deep learning work better. For the D1F12H1-D2F22H2
dataset, it is obvious that SACD, CE, USFA, and ACDA-60-40
detect most of the anomaly changes presented in Fig. 4. Yet there
are lots of noises and pseudo changes in the result of diff-RX,
SACD, SDACD, CC, and CE, which are consistent with the
results of D1F12H1-D1F12H2. Since D2F22H2 is acquired on
a sunny day and there are large distinct shadows of the vegetation
on the image, it is a challenge to deal with huge gaps between
the imaging conditions. Except for several algorithms seriously
affected by noise mentioned above, e.g., SACD, the analyses
about the performance of the other algorithms on the shadow
problem are summarized as follows. It is apparent that there
are high anomaly intensity values in the shadow area for the
results of SDHACD and USFA. As for SDHACD, it belongs to
the space invariant assumption and supposes that the spectral
vector is sampled from the multivariate Gaussian model. But
D1F12H1-D2F22H2 dataset is under a variant background space
and the dataset might not obey the distribution perfectly. And
USFA is designed to suppress the spectral differences of the
slowly varying pixels to highlight the changed ones. But the per-
formance of USFA, in this case, is not satisfying, which may lie
in the large differences of the shadow area hard to be compressed.
Whereas the ACDA-60-40, FC-127-127, FC-127-200, and FC-
200-200 suppress the big spectral differences greatly, of which
ACDA-60-40 detects more anomaly changes. It is indicated that
ACDA-60-40 shows good performance on shadow suppression
and anomaly change detection. The powerful nonlinearity of
neural networks promotes the effect of the predictor methods
based on deep learning. Furthermore, compared to the other FC
networks, the special structure bottleneck enables AE to extract
the essential features of the input and is critical to establish a
valid mapping relationship between the two backgrounds.

Fig. 5 represents the ROC performance of the eleven tech-
niques for two data sets and the details are zoomed in. It can
be observed that the ROC of ACDA-60-40 in black is closest
to the top left. Concretely, when the false alarm rate is under
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Fig. 3. Anomaly change intensity map of D1F12H1-D1F12H2. (a) Diff-RX. (b) SACD. (c) SDACD. (d) SDHACD. (e) CC. (f) CE. (g) FC-127-127. (h)
FC-127-200. (i) FC-200-200. (j) USFA. (k) ACDA-60-40. (l) Ground truth map.

Fig. 4. Anomaly change intensity map of D1F12H1-D2F22H2. (a) Diff-RX. (b) SACD. (c) SDACD. (d) SDHACD. (e) CC. (f) CE. (g) FC-127-127. (h)
FC-127-200. (i) FC-200-200. (j) USFA. (k) ACDA-60-40. (l) Ground truth map.

the low-level range, CE, diff-RX, and USFA all show high
detection rates from the left enlarged view of Fig. 5(a) and (b).
And ACDA-60-40 obtains the best detection rate from the right
enlarged view under a high false alarm rate range. Fig. 6 presents
the quantitative evaluation of two experiments. The bigger AUC
value refers to the greater effect. And the maximum is high-
lighted in bold in figures. For D1F12H1-D1F12H2, the proposed
method has the largest AUC values of 0.8221. The performance
of USFA ranks second with 0.8112, followed by FC-127-127
with 0.8019, FC-200-200 with 0.7996, and diff-RX with 0.7984.
And other approaches based on deep learning also perform well,
especially compared with SACD and CC. In addition, CC works

worst at an AUC value of 0.7412, which may be attributed to the
impact of misregistration. In the case of D1F12H1-D2F22H2,
the proposed method gains the largest AUC values again with
0.8451. FC-200-200, FC-127-200, and CE also acquire satisfy-
ing results with 0.8387, 0.8365, and 0.8359. Besides, the AUC
values of SDACD and SDHACD are extremely low at 0.6778
and 0.6708, respectively, whereas SACD gains a nice AUC value
with 0.8252. These three methods are all under the multivariate
Gaussian model, but the performances are quite different. The
reason may be that the SACD adopts a joint vector observation
model while SDACD and SDHACD both employ the difference
vector observation model, since the spectral differences between
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Fig. 5. ROC performance for two data sets. (a) D1F12H1-D1F12H2. (b) D1F12H1-D2F22H2.

Fig. 6. AUC performance for two data sets. (a) D1F12H1-D1F12H2. (b) D1F12H1-D2F22H2.
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Fig. 7. Influence of min, max, and average operation on the final loss maps about the D1F12H1-D1F12H2. (a) Loss map I1 of predictor X → Y . (b) Loss map
I2 of predictor Y → X . (c) Loss map of max operation. (d) Loss map of average operation. (e) Loss map I of min operation. (f) Ground truth map.

Fig. 8. Influence of min, max, and average operation on the final loss maps about the D1F12H1-D2F22H2. (a) Loss map I1 of predictor X → Y . (b) Loss map
I2 of predictor Y → X . (c) Loss map of max operation. (d) Loss map of average operation. (e) Loss map I . of min operation. (f) Ground truth map.

the two images are quite large. The quantitative assessments
of two experiments manifest that the proposed ACDA has the
best performance on anomaly change detection and background
suppression.

And there is another trick need to be discussed as follows.
For each experiment, there are two predictors trained to reap
two loss maps. The final result comes from the min operation
of the two loss maps as above mentioned. Fig. 7 displays the
influence of min, max, and average operation on the final loss
maps about the first experiment. As Fig. 7 shows, it can be
known from the ground truth map that region B has anomaly
changes, which is also bright in the loss map I1 and I2. And the
min operation still reserves the bright anomalous information.
The max operation and average operation also perform well in
keeping the anomalous change information. For region C, there
is no anomalous change in fact. But there are still some twinkling
spots detected in region C of loss map I1. And region C in loss
map I2 seems darker. The min operation takes the minimum of
the two anomaly intensity values as the final results, leading to
smaller anomaly values and reducing the probability of being
anomaly changes and less noise. Since the anomalous intensity
of max operation and average operation is larger than the one of
min operation, the min operation does a better job of suppressing
the background and noise. Fig. 8 shows another example of
D1F12H1-D2F22H2. Region A is the shadow area and does not
have anomaly changes. But there are large spectral differences
between the two HSIs. As Fig. 8 shows, region A in loss map
I1 is bright and the whole shadow area is likely to be detected
as anomalous change. While region A in loss map I2 has low
anomaly intensity value and is less possible to be anomalous
change. So the minimum result of the two loss maps yields a

low possibility of being the anomalous change. In contrast, the
max and average operations make region A maintain a high prob-
ability of being anomalous. And when a region such as region
D has high values in both two loss maps, the result of the min
operation can still preserve the high-intensity information. The
max and min operations have a good performance on holding
the anomalous change information too. Moreover, Figs. 9 and
10 give a quantitative evaluation to test the effectiveness of min
operation. As Fig. 9(a) shows, the five curves are closely similar
during the stage of low false alarm rate, while the ROC curve
of the final loss map I in red obtains the best performance at
a higher false alarm rate. For EX-2: D1F12H1-D2F22H2, it is
obvious that the ROC curve of final loss map I in red overtops the
other in Fig. 9(b). Fig. 10 makes a more intuitive comparison,
where the AUC performance of min operation outstands the
performance of the other operations on two experiments.

All in all, when a pixel has anomaly change, in fact, the
anomaly intensity values detected by two predictors are both
high. The minimum of them is still a large value that still retains
anomaly change information. When a pixel does not contain
anomaly change actually, the anomaly intensity values detected
by two predictors are both low. The minimum of them becomes
lower that makes the pixel less likely to be anomalous change.
Another alternative max operation is proved to be less effective
than min operation by trial. Taking region A, for example, the
maximum of the anomaly value on two loss maps is the one
on loss map I1, which makes it high likely to be anomaly
change. The min operation reduces the noise on the final in-
tensity map but at the expense of some anomaly changes, which
brings about a low detection rate under a low false alarm rate
range.
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Fig. 9. ROC performance about the influence of min, max, and average operation on two data sets. (a) D1F12H1-D1F12H2. (b) D1F12H1-D2F22H2.

TABLE I
AUC COMPARISON UNDER DIFFERENT PARAMETER h1 AND h2 FOR D1F12H1-D1F12H2

Fig. 10. Comparison of AUC performance between the influence of min, max,
and average operation on two data sets. (a) D1F12H1-D1F12H2. (b) D1F12H1-
D2F22H2.

D. Parameter Analysis

This section discusses the influence of the units of hidden
layers and the selection of training samples on the experiment
performance.

The number of the units of hidden layers is a group of
crucial parameters of ACDA. Considering that deeper networks
aggravate the time cost and the possibility of over-fitting, we
design an ACDA model based on AE with three hidden layers.
Since the configuration of a neural network can be various and
there are no accurate means to choose the optimum number of
the units of hidden layers, we set the range of h1 as [120 100
80 60 40] and h2 as [100 80 60 40 20] to tune the parameters.

The size of the input layer is equivalent to the channel of the
HSI, which is equal to 127. For the special structure bottleneck
of AE mode, h1 starts from 120 and h2starts from 100. Tables I
and II are the evaluation of AUC results on D1F12H1-D1F12H2
and D1F12H1-D2F22H2. According to Tables I and II, the AUC
decreases when the number ofh1 is very large. This phenomenon
can be explained as follows. When the number of h1 and h2

are both large, the code feature with high dimensions cannot
represent the essence of the input. When the number of h1 is
large and h2 is small, the gaps between these two dimensions
lead to a crack in the process of feature transformation and flow,
thus losing part of features. In addition, when the number of h1

is too small, the AUC turns low, which can be attributed to the
large dimensional difference between the two connecting layers.
Thus, we select h1= 60 and h2= 40 as the optimal result for
both experiments.

Fig. 11 represents the impact of three different ways of
training sample selection on the effectiveness of experiments.
Random strategy and USFA refer to choose samples from the
whole images and the predetection results of USFA at random,
respectively. And the ground truth strategy refers to select the
examples from the ground truth map. As Fig. 11 shows, the
results of both experiments show the same pattern, which can
be summarized as two points. First, the results trained by USFA
and ground truth are very similar, which demonstrates the ef-
fectiveness of the USFA. The reason for the subtle difference
between the performance of USFA and ground truth strategy can
be concluded as follows. Note that most of the unchanged pixels
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TABLE II
AUC COMPARISON UNDER DIFFERENT PARAMETER h1 AND h2 FOR D1F12H1-D2F22H2

TABLE III
RUNNING TIME OF DIFFERENT DEEP LEARNING APPROACHES

Fig. 11. Influence of different training sample selection strategies on the AUC
performance of two data sets.

detected by the USFA are background objects that are slightly
or moderately affected by external imaging conditions. Thus,
the training samples of the USFA strategy are representative of
the main spectral difference caused by the imaging conditions.
While the samples of the ground truth strategy are possible
to be mixed and messy. Consequently, the performance of the
predictor trained by USFA strategy might be a little better than
the performance of the predictor trained by the ground truth
strategy. Second, there is a slight difference between the AUC
performance of random selection and USFA selection. This is
because there are a small number of anomaly changes in the
ground truth map. And the total number of samples used for
training only occupies around 6% of the total number of pixels.
Though the probability is very small that the pixels of anomalous
change are selected, it cannot be ruled out. And once pixels of
anomaly change are fed into the model, the mapping relationship
between different imaging conditions would be contaminated,
thus impairing the effect of the predictive model.

E. Run Time Cost Analysis

The time cost of the method is significant for timely detection
in practical application, e.g., emergency response (quickly find
available roads after a hurricane). There are four algorithms

based on neural networks involved in this article, which are
FC-127-127, FC-127-200, FC-200-200, and ACDA-60-40.

Table III displays the run time analysis of them. And the CPU
used in this article is Intel Xeon E3-1220 3.00-GHz processor
with RAM of 16 GB. And the GPU adopts an NVIDIA RTX
2080 TI graphic card. According to Table III, the proposed
method runs the fastest in both experiments owing to the smaller
size of network. The time consumption of the other approaches
is a little longer but within an acceptable range.

IV. CONCLUSION

In this article, we point out that the classical linear predictors
have a limited effect in dealing with the problem of variant
space. And a nonlinear predictive model based on AE has been
proposed for HACD, which maps a hyperspectral image to the
imaging condition of another and obtain a predictive image. The
bottleneck structure of AE is capable of extracting the essence
feature from the input. Rather than replicating the output from
the input, we design the training out as the corresponding spec-
tral vector of another multitemporal HIS to construct a predictor
model. And we suggest using a min operation between the loss
maps, which is a nonparameter method and helps to reduce the
noise of the final result. In the experiments, the performances
on public hyperspectral data sets demonstrate that the proposed
ACDA outperforms other state-of-the-art techniques, especially
compared with another five classical and deep learning based
predictor approaches. On the whole, the discussion can be
summarized as follows.

1) The designed bottleneck structure is proved to perform
better than the normal FC network, which uses large size
of unit at the hidden layer.

2) The ACDA model performs well under the imaging con-
dition of space variability, which is a challenging problem
of HACD.

3) As for how to build an appropriate architecture for practi-
cal application, the results of parameter analysis indicate
that the gaps of the number of units between adjacent
hidden layers should be uniformly decreasing for the
encoder, and uniformly increasing for the decoder.
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4) The ACDA runs the fastest among all deep learning based
methods.

Since the ACDA mainly focuses on the spectral features of
multitemporal HSIs, we will put more attention on the combina-
tion of spectral and spatial features in further study for complex
space variant background changes.
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