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A Pixel Cluster CNN and Spectral-Spatial Fusion
Algorithm for Hyperspectral Image Classification

With Small-Size Training Samples
Shuxian Dong, Yinghui Quan , Wei Feng , Gabriel Dauphin , Lianru Gao , and Mengdao Xing , Fellow, IEEE

Abstract—Convolutional neural networks (CNNs) can automati-
cally learn features from the hyperspectral image (HSI) data, avoid-
ing the difficulty of manually extracting features. However, the
number of training samples for the classification of HSIs is always
limited, making it difficult for CNN to obtain effective features and
resulting in low classification accuracy. To solve this problem, a
pixel cluster CNN and spectral-spatial fusion (SSF) algorithm for
hyperspectral image classification with small-size training samples
is proposed in this article. First, spatial information is extracted by
the gray level co-occurrence matrix. Then, spatial information and
spectral information are fused by means of bands superposition,
forming spectral-spatial features. To expand the number of training
samples, the pixels after SSF are combined into pixel clusters
according to a certain rule. Finally, a CNN framework is utilized to
extract effective features from the pixel clusters. Experiments based
on three standard HSIs demonstrate that the proposed algorithm
can get better performance than the conventional CNN and also
outperforms other studied algorithms in the case of small training
set.

Index Terms—Convolutional neural network (CNN),
hyperspectral image classification (HSIC), pixel cluster, small
training set, spectral-spatial fusion (SSF).

I. INTRODUCTION

HYPERSPECTRAL image (HSI) contains abundant
amount of spectral information, and the 3-D data blocks

can effectively reflect the information of the imaging target.
So HSIs are widely used in the fields of precision agriculture,
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environmental monitoring, urban planning, and military recon-
naissance [1]–[3]. Among these applications, hyperspectral im-
age classification (HSIC) is one of the important links and has
attracted more and more attention [4]–[9]. The ultimate goal of
the classification is to give each pixel in the image a unique
category identifier accurately.

Numerous algorithms have been proposed for HSIC [10]–[21]
and they can be mainly classified into unsupervised classifi-
cation, semisupervised classification, and supervised classifi-
cation based on whether the prior information is required in
the classification process. Iterative self-organizing data anal-
ysis techniques algorithm [10] and k-nearest neighbor [11]
are typical unsupervised classification algorithms. Instead of
using prior knowledge, both algorithms classify the HSI only
based on the distribution of spectral characteristics of HSIs.
Traditional semisupervised HSIC algorithms mainly include
semisupervised SVM [12] and graph based algorithms [13].
Those algorithms train the labeled samples with the help of
unlabeled samples, which can effectively make up for the short-
age of training samples. Supervised classification is to train
and learn the classifier using the labeled samples. Then, the
trained classifier is used as decision rules to discriminate and
classify the testing samples. Numerous supervised classification
algorithms have been proposed and discussed, including support
vector machine (SVM) [14], random forest [15], [16], decision
tree [17], neural network [18]–[21], etc. All of those algorithms
provide good ways for the classification of HSIs. But there is a
disadvantage that the algorithms mentioned previously produce
classification results only using the mechanism of shallow layer,
cannot deal with the complex classification problem [3].

In recent years, deep learning-based algorithms have at-
tracted increased attention and achieved remarkable progress
in HSIC [22]. Deep learning allows the computer to auto-
matically extract deep features and more abstract features to
improve the accuracy of the classification. As the most popular
and successful deep learning framework, convolutional neural
network (CNN) utilizes a series of hidden layers to extract
hierarchical features that have been proved to be effective in
HSIC [23]–[28]. Wei et al. [23], first, employed the CNN with
multiple layers for HSI classification. The deep CNN was used
to classify HSIs directly in the spectral domain. After that, a
set of improved algorithms based on CNN have been used to
extract features for HSIC and yielded excellent performance.
In [27], a novel supervised deep feature extraction algorithm
combined siamese CNN with linear SVM was introduced. Chen

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6541-9441
https://orcid.org/0000-0003-1907-2664
https://orcid.org/0000-0002-0677-6702
https://orcid.org/0000-0003-3888-8124
https://orcid.org/0000-0002-4084-0915
mailto:sxdong@stu.xidian.edu.cn
mailto:yhquan@mail.xidian.edu.cn
mailto:wfeng@xidian.edu.cn
mailto:gabriel.dauphin@univ-paris13.fr
mailto:gaolr@aircas.ac.cn
mailto:xmd@xidian.edu.cn


4102 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

et al. [28] combined deep learning and ensemble algorithms
for HSIC first. Two deep learning ensemble-based classification
methods [i.e., CNN ensemble and deep residual network en-
semble] are proposed for HSI classification. Those algorithms
achieved better classification performance than some traditional
classifiers (SVM, extended morphological profiles, etc.).

With CNN-based algorithms have shown promising results in
HSIC, spectral-spatial feature extraction and classification algo-
rithms based on CNN have been explored recently [29]–[32].
It also has been verified that the spatial correlation across HSIs
can provide complementary information to spectral features and
should be taken into account [33]–[39]. Li et al. [37] designed
a two-stream spectral and spatial feature extraction and fusion
architecture based on 2-D CNN for HSIC. In [38], a novel HSIC
framework based on a simplified 2-D–3-D CNN is implemented
by the cooperation between a 2-D CNN and a 3-D convolution
layer. Cao et al. [39] used a CNN framework in combination with
Markov random field (MRF) to classify HSI pixel vectors in a
way of fully taking spatial and spectral information into account.
Those algorithms indicate that exploring the spectral-spatial in-
formation and jointly CNN structure can boost the performance
of HSIC. Consequently, designing a deep learning model with
spectral and spatial information is a promising direction to be
explored.

However, the majority of CNN-based algorithms for HSIC
can yield only promising results when the number of labeled
samples for training is sufficiently large [27]. The CNN struc-
ture faces “overfitting” problem when the training samples are
insufficient. Unfortunately, a small number of labeled samples
are available for training in practical situations. To enhance the
performance of the CNN-based algorithm when the training
samples are limited, a pixel cluster CNN and spectral-spatial
fusion (PC-CNN-SSF) algorithm for HSIC with small-size train-
ing samples is proposed in this article. The major contributions
of this article can be summarized as follows.

1) Based on the fact that combined spectral-spatial clas-
sification improves the accuracy significantly compared
with spectral classification alone [40], the gray level
co-occurrence matrix (GLCM) is used to extract spatial
information from each band of the original spectral infor-
mation. Then, the spectral information and the extracted
spatial information are fused by bands superposition. Fi-
nally, the SSF information is utilized together to generate
an integrated classifier.

2) To guarantee the sufficient training of CNNs, Li et al. [41]
proposed a CNN with pixel-pair feature (CNN-PPF) algo-
rithm to increase the number of training samples, ensur-
ing that the advantage of CNN can be actually offered.
Inspired by the PPF, a pixel cluster algorithm is proposed
in this article to expand the number of training samples.

3) Because CNN structures have shown the excellent perfor-
mance of deep feature extraction and classification, pixel
clusters based on SSF are trained by the CNN structure in
this article. After that, the trained CNN model is used to
classify the testing samples.

The remaining part of this article is organized as follows. The
proposed pixel cluster CNN and SSF algorithm for HSIC with
small-size training samples is described in Section II. Section III

evaluates the performance of the proposed approach. Finally,
Section IV concludes this article.

II. PROPOSED APPROACH

The flowchart of the proposed algorithm is shown in Fig. 1.
And the algorithm mainly includes four steps: spatial infor-
mation extraction and SSF, theory of pixel cluster, features
extraction based on CNN, and classification by voting strategy.
Note that, the first step and the second step are the key parts of
the proposed algorithm.

A. Spatial Information Extraction and SSF

In the HSI, pixels have a strong spatial correlation because
pixels with adjacent spatial locations generally belong to the
same class of features. To improve the image classification
performance, combining spectral information with spatial in-
formation is considered in this article.

Hyperspectral spatial information extraction process is shown
in the Fig. 2. First, spatial information is extracted by the GLCM.
GLCM not only reflects the distribution characteristics of inten-
sity but also reflects the spatial distribution characteristics of
pixels with the same intensity or close to the intensity.

Let us use a 3-D matrixQ to represent the original HSI and the
size of matrix Q is Nx ×Ny ×Nz , where Nx and Ny represent
the number of pixels in the horizontal and vertical directions of
HSI, Nz means the number of bands. There exists the problem
of a large amount of calculation due to the dimension of GLCM
is equal to the square of the image gray level. Therefore, the
gray level of the HSI should be compressed before extracting
the spatial information. The value of Q is quantized to Ng levels
to get a new matrix Q′

Q′(x, y, d)

=
⌊
(Ng − 1 + 0.9999) · Q(x, y, d)− min(Q(:, :, d))

max(Q(:, :, d))− min(Q(:, :, d))

⌋
(1)

where Q(x, y, d) and Q′(x, y, d) represent the value of matrix
Q and Q′ in the column x, row y, band d, respectively. �� is the
down rounding operation. min(Q(:, :, d)) and max(Q(:, :, d))
are the minimum and maximum values of the dth band of matrix
Q, respectively.

After the value of each band was quantized to [0, Ng − 1],
the GLCM is calculated by two moving windows—basic win-
dow (denoted by w1) and transformed window (denoted by
w2). The size of two window are both Nwx ×Nwy . And the
spatial information is extracted from each band independently.
Let P (i, j, dx, dy) represents the number of occurrences of a
pixel pair between a gray value of i and a gray value of j,
0 � i, j � Ng − 1, the number of rows and columns between
the pairs of interest are dy and dx, respectively. For each pixel
in the Q′, the calculation formula for GLCM is

P (i, j, dx, dy)

= �{[(m,n), (m′, n′)], (m,n) ∈ w1, (m
′, n′) ∈ w2|

I(m,n) = i, I(m′, n′) = j,m′ −m = dy, n
′ − n = dx}

(2)
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Fig. 1. Flowchart of the proposed algorithm.

Fig. 2. Processing of spatial information extraction.

where � is the number of pixels in the collection, (m,n) denotes
the pixel of the mth row and the nth column in the basic
window, and (m′, n′)means them′th row and then′th column in
the transformed window, 1 ≤ n, n′ ≤ Nwx, 1 ≤ m,m′ ≤ Nwy .
I(m,n) and I(m′, n′) denote the gray level of the mth row and
the nth column in basic window and the m′th row and the n′th
column in the transformed window, respectively.

After calculating the GLCM, normalization is adopted to the
matrix, represented as P ′(i, j, dx, dy)

P ′(i, j, dx, dy) =
P (i, j, dx, dy)

Nwx ×Nwy
. (3)

In actual application, some statistics are defined as a fea-
ture value of texture analysis based on GLCM [42]. Haralick
et al. [43] extracted 14 features from the GLCM. The mean
statistic (denoted as I ′) is used to extract texture features in this
article

I ′ =
Ng−1∑
i=0

Ng−1∑
j=0

i · P ′(i, j, dx, dy). (4)

When there are pixels in the basic window or the transformed
window but not in the matrix Q′, the gray value of the center
pixel in spatial information is set to 0.

After the spatial information is successfully extracted from
each band, all of them are superimposed on the original multi-
spectral matrix Q to form the spectral-spatial matrix R. And the
size of matrix R is Nx ×Ny × 2Nz .

B. Theory of Pixel Cluster

With the purpose of increasing the number of training sam-
ples, a pixel cluster algorithm is designed to ensure that the
advantage of CNN can be actually offered. Suppose there
are N pixels in a training set, e1, e2, . . . , eN be N train-
ing pixels with labels f(e1), f(e2) · · · f(eN ), respectively.
f(e1), f(e2) · · · f(eN ) ∈ {1, 2, . . . , C}, where C is the number
of classes in the hyperspectral dataset to be classified. The
number of training samples per class is expressed as nc and
the total number of training samples is N =

∑C
c=1 nc.

The pixel cluster proposed in this article is composed of P
pixels, all of them are randomly selected from the training set.
Therefore, a pixel cluster can be represented as (e1, e2, . . . , eP ),
and the label of the pixel cluster is denoted as f(e1, e2, . . . , eP ).
The label of pixel cluster is defined by using the following
criteria: if the P samples are from the same class, the label
of f(e1, e2, . . . , eP ) does not change; if the P samples are from
different classes, the label of f(e1, e2, . . . , eP ) is set to be 0.
That is

f(e1, e2, . . . , eP ) = {c if f(e1)=f(e2)=···=f(eP )=c)
0 else }. (5)

Theoretically, if there are P pixels in a cluster, the number
of pixel clusters is AP

N = N × (N − 1)× · · · × (N − P + 1).
Denoting the number of training clusters per class isn′

c, andn′
c =

nc × (nc − 1)× · · · × (nc − P + 1), c = 1, 2, . . . , C. For the
c = 0, number of n′

0 is larger than the number of n′
c(c =

1, 2, · · ·C), since samples can be chosen from any different
classes. To keep the data balanced, only an approximately equal
number of clusters is determined. So the number of clusters used
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Fig. 3. Spectral-spatial features extraction from a deep CNN architecture.

to train the CNN model is about N ′ =
∑C

c=0 n
′
c. It is obvious

that N ′ is larger than N when P �= 1, solving the shortage of
training set obviously and enabling the training of a deep CNN
model.

C. Spectral-Spatial Features Extraction Based on CNN

After obtaining the spectral-spatial pixel clusters, the training
clusters, and training labels are feed into the designed CNN
with the purpose of feature extraction. The CNN architecture is
shown in Fig. 3. It transforms a pixel cluster with P pixels into
C+1 channels, each of which predicts the reliability with which
P pixels belong to the same class.

The framework includes eight convolutional layers, three
max-pooling layers, and two fully connected layers. All of
the convolutional layers are followed by a rectified linear unit
(ReLU) layer to increase the nonlinear relationship between
different layers. In the convolution layer, multiple shared con-
volution kernels are used to perform convolution operations
on the input pixel-clusters to obtain multiple feature maps.
Besides, the dimension of each feature map will be reduced
according to the size of the convolution kernel if there is no
padding used. Suppose the dimension of input map is d1, and
the size of convolution kernel is k1, then the dimension of output
layer is d1 − k1 + 1. Pooling layers are often used in CNN to
reduce feature dimensions, model parameters and slow down
the “overfitting” problem after convolutional layers. The pooling
layer can ensure the invariance of the feature to the rotation and
reduce the feature dimension. If the dimension of input map is
d2, and the size of kernel is k2, then the dimension of output
layer is d2/k2 after pooling downsampling. In this article, the
max-pool function is used to calculate the maximum value of a
rectangular area, which will be used to represent the area. After
the input pixel-clusters of the network going through multiple
convolutional layers and pooling layers, two fully connected
layers are used to reassemble the local features extracted by the
convolutional layer into a complete feature map, which is more
conducive to classification. After two fully connected layers,
the feature map is transformed into the feature vector of the
corresponding label. Ultimately, the softmax function is used

to calculate the probability distribution of input pixel-clusters
being classified into different categories.

The 13 layers in the CNN structure can be divided into 7
different kinds of layers as follows:

1) NP : a neuron combining for each wavelength and chan-
neling the intensity of each of the P pixels into one single
intensity;

2) NW : a neuron combining for each channel the intensity
of each wavelength into one single intensity;

3) CT : a convolution combining intensities of neighboring
wavelengths in ten different convolutional kernels, yield-
ing intensities for 10 different channels;

4) CD : a convolution combining for each channel intensities
of neighboring wavelengths, yielding intensities for twice
the number of channels;

5) CS : a convolution combining for each channel intensities
of neighboring wavelengths, yielding intensities for the
same number of channels;

6) PL : a pooling layer computing the maximal intensity,
for each channel and each pair or triplet of neighboring
wavelength;

7) FC : a fully connected layer combining the intensities of
all channels in a certain number of ways and yielding a
certain number of channels; and

8) MV : a majority voting, based on values ofC + 1 outputs.
A simplified description of the deep CNN architecture is done

by considering five sets of layers

c = CNN
�
x

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 = NPCT
�
x

x4 = PL1 CS1x2

x7 = PL2 CS2 CD1x4

x10 = PL3 CS3 CD2x7

c = MVFC2 FC1 NWx10

(6)

and
�
x is the set of all intensity values of a pixel cluster with P

pixels for all wavelengths and c is the predicted class.
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Denoting ReLU(x) = max(0, x) and using p to address the
pixel in a given pixel-cluster, d to address a wavelength and l
to address a channel, we get a layer-by-layer description of the
studied architecture.

The first set of layers consists of CT and NP⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1,p,d,l = ReLU
(∑8

d′=0 a
0,d,′lx0,p,d+d′ + b0,l

)
with 1 ≤ p ≤ P, 1 ≤ d ≤ 2Nz − 8, 1 ≤ l ≤ 10

x2,d,l = ReLU
(∑P

p=1 a
1,p,lx1,p,d + b1,l

)
with 1 ≤ d ≤ 2Nz − 8, 1 ≤ l ≤ 10

. (7)

The second set of layers consists of CS1 and PL1⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x3,d,l = ReLU
(∑2

d′=0 a
2,d,′lx2,d+d′ + b2,l

)
with 1 ≤ d ≤ 2Nz − 8, 1 ≤ l ≤ 10

x4,d,l = max
0≤d′≤2

(x3,3d−d,′l)

with 1 ≤ d ≤ � 2Nz−8
3 	, 1 ≤ l ≤ 10

. (8)

The third set of layers consists of CD1, CS2, and PL2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x5,d,l = ReLU
(∑2

d′=0 a
4,d,′lx4,d+d′ + b4,l

)
with 1 ≤ d ≤ � 2Nz−14

3 	, 1 ≤ l ≤ 20

x6,d,l = ReLU
(∑2

d′=0 a
5,d,′lx5,d+d′ + b5,l

)
with 1 ≤ d ≤ � 2Nz−20

3 	, 1 ≤ l ≤ 20

x7,d,l = max
0≤d′<2

(x6,2d−d,′l)

with 1 ≤ d ≤ � 2Nz−20
6 	, 1 ≤ l ≤ 20

. (9)

The fourth set of layers consists of CD2, CS3, and PL3⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x8,d,l = ReLU
(∑2

d′=0 a
7,d,′lx7,d+d′ + b7,l

)
with 1 ≤ d ≤ � 2Nz−32

6 	, 1 ≤ l ≤ 40

x9,d,l = ReLU
(∑2

d′=0 a
8,d,′lx8,d+d′ + b8,l

)
with 1 ≤ d ≤ � 2Nz−44

6 	, 1 ≤ l ≤ 40

x10,d,l = max
0≤d′≤2

(x9,2d−d,′l)

with 1 ≤ d ≤ � 2Nz−44
12 	, 1 ≤ l ≤ 40

. (10)

The last set of layers consists of NW, FC1, and FC2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x11,l = ReLU
(∑� 2Nz−44

12 	
d′=1 a10,d,

′lx10,d′ + b10,l
)

with 1 ≤ l ≤ 80

x12,l = ReLU
(∑80

l′=1 a
11,l′x11,l′ + b11,l

)
with 1 ≤ l ≤ 80

x13,l = ReLU
(∑80

l′=1 a
12,l′
c x12,l′ + b12,l

)
with 1 ≤ l ≤ C + 1
c = argmax (softmax(x13))

. (11)

D. Classification With Voting Strategy

The CNN described previously predicts category of a pixel
using the pixel cluster algorithm. Such a classifier can be trans-
formed into a pixel classifier by combining the given testing

pixel x and the surrounding pixels. The testing process is shown
in Fig. 4. As first step, a w × w size window W is set around
the center testing pixel x (w being here an odd integer), forming
pixel set [x]

[x] = SWx (12)

where SWx denotes pixels in the window W when the center
pixel of the window W is x. Note that to simplify notations, we
assume that x stands for a pixel and the intensity values on the
hyperspectral image at that pixel.

The second step is to set the Q pixel clusters denoted as [
�
x ]

by joining each x with its neighbors

[
�
x ] =

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

x1,1

x2,1

...
xP−1,1

x

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

x1,2

x2,2

...
xP−1,2

x

⎤
⎥⎥⎥⎥⎦ , . . . ,

⎡
⎢⎢⎢⎢⎣

x1,Q

x2,Q

...
xP−1,Q

x

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ (13)

where xp,q(p = 1, 2, . . . , P − 1, q = 1, 2, . . . , Q) are pixels
randomly selected form the set [x] (except for the center
pixel x).

In the last step, the Q pixel clusters are fed to the CNN-
classifier and yield Q possible predicted class values. The pre-
dicted label is the class chosen most often by the Q clusters of
pixels. Denoting [

�
xq] as the qth column of [

�
x ], the category of

testing pixel x is determined by the following formula:

c = PC-CNNx = max
1≤c′≤C

Q∑
q=1

1
(
CNN

�
xq = c′

)
(14)

where 1(Statement) is equal to 1 when Statement is true and is
equal to 0 when Statement is wrong.

III. EXPERIMENTAL RESULTS

A. Experiment Settings

There are nine algorithms discussed in the experiment: SVM,
SVM-RFS [44], SVM-MRF [45], conventional CNN [23],
CNN-MRF [39], CNN-PPF [41], R-PCA-CNN [46], GCN-
CNN [47], and the proposed PC-CNN-SSF. The configurations
of the above methods are as follows.

1) SVM: A classical machine learning algorithm, which
is widely used in small-size training datasets. The SVM
algorithm applied in this section is implemented using the
“e1071” package.1 The kernel function used for SVM is
the radial basis function. Both the gamma and the cost
value used in the kernel are jointly selected so as to
optimize the average performance obtained with cross val-
idation. The optimized values of the gamma and the cost
are searched respectively within [2−8 : 28] and [21 : 28].

2) SVM-RFS [44]: Multiple classifier systems (MCSs) based
on SVM and random feature selection (RFS). According
to the discussion of the optical parameters in [44], the
number of selected features and the size of the MCS are
set to 30% and 25 in the experiment.

1Online. [Available]: https://cran.r-project.org/web/packages/e1071/index.
html

https://cran.r-project.org/web/packages/e1071/index.html
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Fig. 4. Testing Process with voting strategy.

3) SVM-MRF [45]: A traditional spectral-spatial algorithm,
which consists in performing a probabilistic SVM pixel-
wise classification, followed by MRF-based regularization
for incorporating spatial and edge information into classi-
fication.

4) CNN [23]: A conventional deep CNN structure, which
is used to classify HSIs directly in spectral domain. And
experimental results demonstrate that the algorithm could
achieve higher accuracy even with a small number of
training samples.

5) CNN-MRF [39]: A typical CNN combined with MRF
method, both spectral and spatial information are fully
considered in the algorithm.

6) CNN-PPF [41]: A CNN framework based on CNN-PPF.
The PPFs are used to expand the number of training
samples, which can make up for the shortage of training
samples.

7) R-PCA-CNN [46]: A typical SSF algorithm based on
CNN, which extracted spatial information by randomized
principal component analysis (R-PCA) first, and then a
CNN was used to encode pixel spectral and spatial infor-
mation and a multilayer perceptron was used to conduct
the classification task.

8) GCN-CNN [47]: A new concatenated fusion framework
by integrating features extracted from CNNs and mini-
batch graph convolutional networks (GCNs). The joint use
of CNNs and GCNs extracts more diverse and discrimi-
native feature representations for the HSIC task.

9) PC-CNN-SSF: Parameters designed in the proposed algo-
rithm are demonstrated as follows. In spatial information
extraction and SSF stage, window size Nwx = Nwy = 5,
each band of the original HSI is quantized to Ng =
64, dx = 1, dy = 0. During the testing stage, window
size around the center testing pixel and the number of
pixel clusters for a testing pixel are set to w = 5 and
Q = 24.

B. Evaluation Algorithms

The effectiveness of the proposed classification algorithm
is measured in the experiment with three indicators: Overall
accuracy (OA), average accuracy (AA), and Kappa coefficient
(KC). These indicators are computed using the number of testing
pixels T and the confusion matrix [Tcc′ ] specific to a given
classifier. Tcc′ is the number of testing pixels whose actual class

is y∗ and whose predicted class is ŷ

Tcc′ =

T∑
t=1

1 (y∗t = c)1 (ŷt = c′) (15)

where y∗t and ŷt are, respectively, the true class and predicted
class of testing sample number t.

1) OA refers to the ratio of the number of correctly classified
pixels to the total number of pixels

OA =
1

T

C∑
c=1

Tcc. (16)

2) AA measures the average per-class classification accu-
racy, where the per-class accuracy is defined as the number
of correctly classified pixels of a given class to the number
of pixels of that given class

AA =
1

C

C∑
c=1

Tcc∑C
c′=1 Tcc′

. (17)

3) KC is a statistic that attempts to correct OA by reducing
its value when agreement could be obtained by chance

KC =
1
T

∑
c Tcc − 1

T 2 (
∑

c′ Tcc′) (
∑

c′ Tc′c)

1− 1
T 2 (

∑
c′ Tcc′) (

∑
c′ Tc′c)

. (18)

C. Experiment Data

Three well-know hyperspectral datasets, including Pavia Uni-
versity, Salinas, and Indian Pines, are employed to validate the
effectiveness of the proposed algorithm in this article.

The Pavia University scene is acquired by the reflective optics
system imaging spectrometer sensor during a flight campaign
over Pavia, northern Italy. There are 610 × 340 pixels, with a
spatial resolution of 1.3 m. The number of spectral bands is 103,
covering 0.43 to 0.86 μm. As is shown in Table I, the Pavia
University data scene mainly includes 9 classes, denoted by
labels from 1 to 9. The background pixels are represented by
label 0 and will not be taken into account for classification.

The second one is the Salinas scene collected by the airborne
visible-infrared imaging spectrometer (AVIRIS) sensor over
Salinas Valley, California. It contains 512 × 217 pixels with
a ground resolution of 3.7 m. 204 (out of 224) bands after 20
water absorption bands removed are utilized in the experiment.
The spectral coverage is also from 0.43 to 0.86 μm, which is
similar to the wavelength of the Pavia University dataset. There
are 16 classes in the scene, details are shown in Table I.
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TABLE I
HYPERSPECTRAL DATA INFORMATION

Bold highlights the highest classification accuracy.

TABLE II
CLASSIFICATION PERFORMANCES OF DIFFERENT ALGORITHMS FOR THE PAVIA UNIVERSITY DATASET

Bold highlights the highest classification accuracy.

The last data is Indian Pines gathered by AVIRIS sensor over
the Indian Pines test site in North-western Indiana. It consists of
145× 145 pixels and 200 (out of 220) spectral reflectance bands
by removing bands covering the region of water absorption. The
wavelength range is 0.4− 2.5μm and the ground truth available
is designated into 16 classes.

D. Experiment Results and Analysis

1) Comparison With Other Algorithms: In this section, the
proposed algorithm is compared with some of the state-of-the-
art algorithms for HSIC. Specifically, 50 training samples are
randomly selected from each class to construct the training set,
and the remaining samples are used to validate the effectiveness
of the proposed algorithm. The number of pixels in a pixel is set
to P = 2. We note that for the smallest classes Alfalfa, Grass-
pasture-mowed and Oats of the Indian Pines dataset, only half
of their samples are selected randomly to construct the training
set.

Per class accuracy, OA, AA, and KC obtained by nine clas-
sification algorithms on three hyperspectral datasets are shown
in Tables II–IV. For the Indian Pines scene, the proposed algo-
rithm (PC-CNN-SSF) obtains the biggest improvement than the

comparison algorithms on the term of OA, AA, and KC. Com-
pared with the SVM-based algorithms, the proposed algorithm
achieves OA 94.02%, with the gains of 23.36%, 15.72%, and
12.77% over SVM, SVM-RFS, and SVM-MRF, respectively.
When compared to the conventional CNN and spectral-spatial
algorithm based on CNN, the proposed algorithm yields over
18.44%, 18.12%, 13.57%, and 15.77% higher accuracy than the
CNN, R-PCA-CNN, CNN-MRF, and GCN-CNN, respectively.
The reason might be explained that the pixel clusters generated
by the proposed algorithm are effective and meaningful, ensur-
ing the full training of CNN and the improvement of classifi-
cation accuracy. The proposed algorithm obtains about 9.02%
improvement compared with the pixel expanding algorithm
CNN-PPF due to exploiting more spatial context information.
When applying nine algorithms to realize the classification of the
Pavia University dataset and the Salinas dataset, the proposed
algorithm also better classification performance than the other
eight competitive algorithms.

Apart from quantitative analysis, Figs. 5–7 provide the ground
truth and classification maps of the nine algorithms with the same
labeled samples for the Pavia University dataset, the Salinas
dataset, and the Indian Pines dataset. Visually, they are consistent
with the results reported in Tables II–IV. From these figures, it
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TABLE III
CLASSIFICATION PERFORMANCES OF DIFFERENT ALGORITHMS FOR THE SALINAS DATASET

Bold highlights the highest classification accuracy.

TABLE IV
CLASSIFICATION PERFORMANCES OF DIFFERENT ALGORITHMS FOR THE INDIAN PINES DATASET

Bold highlights the highest classification accuracy.

is evident that the classification maps of the proposed algorithm
clearly shows the proper assignment of class label to each of
the reference labels, tending to result in clearer and smoother
classification maps.

It is well known that the number of training samples affects
the training of CNNs significantly. In this section, the impact of
the number of training samples on the accuracies of different
algorithms for the three datasets is tested. For all the data,
10 to 50 pixels per class are randomly selected as training
pixels and the remaining pixels are used as the test set. For
the smallest classes Alfalfa, Grass-pasture-mowed, and Oats
of the data Indian Pines AVRIS, there are only half of their
samples are selected randomly to construct training sets when
the number of training samples is more than half of the total
number of samples. Figs. 8– 10 show the OAs, AAs, and KCs

of the nine algorithms under different training sample num-
bers. Note that the CNN-based algorithms are sensitive to the
number of training samples. And all the classifiers performed
better with the increase of the number of training samples
in most cases. The proposed algorithm consistently provides
superior OAs, AAs, and KCs compared with the reference
algorithms for three HSIs. The reason can be summarized as
follows.

1) Spectral and spatial information (extracted by the GLCM)
are considered simultaneously in the proposed algorithm.

2) Sufficient training samples provided by the proposed pixel
cluster algorithm guarantee the network parameters to be
well-tuned.

3) The voting operation makes the test set get more accurate
classification results.
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Fig. 5. Classification maps generated by different algorithms for the Pavia University dataset. (a) SVM (OA = 85.07%). (b) SVM-RFS (OA = 86.11%). (c)
SVM-MRF (OA = 88.19%). (d) CNN (OA = 84.96%). (e) CNN-MRF (OA = 89.66%). (f) CNN-PPF (OA = 89.87%). (g) R-PCA-CNN (OA = 86.52%). (h)
GCN-CNN (OA = 90.46%). (i) PC-CNN-SSF (OA = 93.18%).

TABLE V
CLASSIFICATION PERFORMANCES (OA(%)) OF DIFFERENT WINDOW SIZE AND PIXEL CLUSTER NUMBER FOR THE THREE HSI DATASETS

Bold highlights the highest classification accuracy.

2) Parameter Analysis: Parameter analysis of the proposed
algorithm is presented in the following section. With the purpose
of reducing the amount of computation and improving efficiency,
20 training samples are randomly selected from per class, and
the remaining samples are used for testing.

In order to discuss the influence of the window size w and
the number of voting pixel-clusters Q on the final classifi-
cation results, the two parameters are set to w = 3, 5, 7 and
Q = 6, 12, 18, 24, respectively. The number of pixels in a pixel
is set to P = 2. Because there are only eight pixels around the

center testing pixel when the window size is w = 3, we just
use Q = 8 pixel clusters to voting the label of the center testing
pixel. Classification performance based on three hyperspectral
data is presented in Table V. It is shown that the classification
performance is improving with the increase of window size w or
the number of voting pixel-clusters Q. Therefore, randomly se-
lecting pixels from a larger window or selecting more pixels from
the same size window is helpful to improve the classification
accuracy. This might can be explained that taking into account
more pixels around the testing pixel ensures the accuracy and
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Fig. 6. Classification maps generated by different algorithms for the Salinas dataset. (a) SVM (OA=88.31%). (b) SVM-RFS (OA=90.35%). (c) SVM-MRF
(OA=91.08%). (d) CNN (OA=89.22%). (e) CNN-MRF (OA=91.48%). (f) CNN-PPF (OA=92.14%). (g) R-PCA-CNN (OA=92.62%). (h) GCN-CNN
(OA=88.72%). (i) PC-CNN-SSF (OA=93.90%).

TABLE VI
CLASSIFICATION PERFORMANCES OF THE PROPOSED ALGORITHM WHEN THE 0TH CLASS IS CONSIDERED OR NOT FOR THE THREE HSI DATASETS

Bold highlights the highest classification accuracy.

reliability. However, it also takes more computation time and
computer memory to vote the label of the center testing pixel.
Thus, we choose w = 5 and Q = 24 as the default setting as a
tradeoff between performance and the running time.

As described in Section II-B, the label of a pixel cluster is
defined as c = 0 when the P pixels in the cluster are from

different classes. Correspondingly, the impact of the 0th class
on the classification performance of the proposed algorithm
is reported in Table VI. It can be seen that there are 4.03%,
4.12% and 3.26% overall accuracy improvements on the three
hyperspectral datasets when the 0th class is added to the train-
ing pixel-clusters. For AAs and KCs, the proposed algorithm
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Fig. 7. Classification maps generated by different algorithms for the Indian pines dataset. (a) SVM (OA=70.66%). (b) SVM-RFS (OA=78.30%). (c) SVM-
MRF (OA=81.25%). (d) CNN (OA=75.58%). (e) CNN-MRF (OA=80.45%). (f) CNN-PPF (OA=85.00%). (g) R-PCA-CNN (OA=75.90%). (h) GCN-CNN
(OA=78.25%). (i) PC-CNN-SSF (OA=94.02%).

Fig. 8. Classification performances of nine algorithms with different training sample sizes on the Pavia University dataset.

Fig. 9. Classification performances of nine algorithms with different training sample sizes on the Salinas.
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Fig. 10. Classification performances of nine algorithms with different training sample sizes on the Indian Pines dataset.

TABLE VII
CLASSIFICATION PERFORMANCES OF SPECTRAL AND SPATIAL-SPECTRAL FUSION WITH PAVIA UNIVERSITY DATASET

Bold highlights the highest classification accuracy.

TABLE VIII
CLASSIFICATION PERFORMANCES OF SPECTRAL AND SPATIAL-SPECTRAL FUSION WITH SALINAS DATASET

Bold highlights the highest classification accuracy.

TABLE IX
CLASSIFICATION PERFORMANCES OF SPECTRAL AND SPATIAL-SPECTRAL FUSION WITH INDIAN PINES DATASET

Bold highlights the highest classification accuracy.

considering the 0th class also achieves higher accuracy than that
without considering the 0th class. Because the label of pixels in
a testing cluster may be different, the training pixel-clusters with
the label c = 0 should be contained within the input of CNN.
If the 0th class is not added when training the CNN model,
testing pixel-clusters with label c = 0 will be classified into
error classes, causing lower classification accuracy. Therefore,
it is necessary to consider the 0th class when training the CNN
model.

To verify the effectiveness of SSF behavior, the origi-
nal spectral feature and SSF feature are further analyzed in
Tables VII– IX. Note that the number of samples in a pixel cluster
is set to P = 1, 2, 3, 4, respectively, where P = 1 demonstrates
that no pixel-cluster algorithm is used. As can be seen, instead of

just using spectral information, incorporating additional spatial
information from the HSI achieves higher classification accu-
racy. Besides, the classification performance of the proposed al-
gorithm is influenced by the number of pixels in the pixel cluster.
When only spectral information is considered, the Pavia Univer-
sity and the Salinas datasets obtain the highest overall accuracy at
P = 4, while the Indian Pines dataset obtains it at P = 3. When
the SSF features are used for classification, the Pavia University
and Indian Pines datasets achieve the highest overall accuracy at
P = 2, and the Salinas dataset obtains the highest overall accu-
racy atP = 3. With the expansion of the training set, the classifi-
cation performance based on pixel cluster is significantly higher
than that of a single pixel. Therefore, the proposed pixel cluster
algorithm can make up for the shortage of training samples.
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IV. CONCLUSION

In this article, a pixel cluster CNN and SSF algorithm for
HSIC with small-size samples is proposed. To improve the
HSIC performance of CNN when the number of labeled pixels
is limited, the spatial information is extracted from each band
of the original spectral information by the GLCM. Then, the
spectral information and the extracted spatial information are
fused by bands superposition. Besides, a pixel cluster algorithm
is proposed in this article to expand the number of training
samples. Ultimately, a CNN structure is used to extract effective
features, which will be used as classification rules. The results
based on three standard HSIs demonstrate that the proposed
algorithm achieves better classification accuracy than the SVM,
SVM-RFS, SVM-MRF, CNN, CNN-MRF, CNN-PPF, R-PCA-
CNN, as well as GCN-CNN.
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