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Abstract—Training deep learning-based synthetic aperture
radar automatic target recognition (SAR-ATR) systems for use
in an “open-world” operating environment has, thus far proven
difficult. Most SAR-ATR systems are designed to achieve maximum
accuracy for a limited set of classes, yet ignore the implications of
encountering novel target classes during deployment. Even worse,
the standard deep learning training objectives fundamentally in-
herit a closed-world assumption, and provide no guidance for how
to handle out-of-distribution (OOD) data. In this work, we develop
a novel training procedure called adversarial outlier exposure (Ad-
vOE) to codesign the ATR system for accuracy and OOD detection.
Our method introduces a large, diverse, and unlabeled auxiliary
training dataset containing samples from the OOD set. The AdvOE
objective encourages a deep neural network to learn robust features
of the in-distribution training data, while also promoting maximum
entropy predictions for adversarially perturbed versions of the
OOD data. We experiment with the recent SAMPLE dataset, and
find our method nearly doubles the OOD detection performance
over the baseline in key settings, and excels when using only syn-
thetic training data. As compared to several other advanced ATR
training techniques, AdvOE also affords significant improvements
in both classification and detection statistics. Finally, we conduct
extensive experiments that measure the effect of OOD set granu-
larity on detection rates; discuss the implications of using different
detection algorithms; and develop a novel analysis technique to
validate our findings and interpret the OOD detection problem
from a new perspective.

Index Terms—Automatic target recognition (ATR), deep
learning (DL), out-of-distribution (OOD) detection, synthetic
aperture radar.

I. INTRODUCTION

IN THE design of automatic target recognition (ATR) systems
for synthetic aperture radar (SAR) data, we recognize that it

is critical to consider an operating environment in which test
samples may or may not be from one of the known classes (i.e.,
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an “open-world” environment). In such a setting, there are two
primary goals. First, the system must be capable of accurately
identifying and classifying some set of “in-distribution” (ID) tar-
get classes. These are categories of targets that the ATR models
are trained on, and at test time, we seek generalization to their
many views and perspectives. The second goal is to be capable of
reliably detecting and rejecting any “out-of-distribution” (OOD)
data observed during the model’s deployment. For example, if a
military-vehicle classifier encounters the signature of a minivan,
it should refrain from outputting a classification and instead
reject the sample. In this work, we codesign a deep learning (DL)
based SAR-ATR algorithm that is both accurate on ID data and
can robustly identify OOD test data under a variety of training
conditions. These goals are most commonly associated with the
topic areas of open-set recognition (OSR) [1], [2] and OOD
detection [3]–[5], and are distinct from open world recognition
(OWR) [6], [7] in that we do not strive to incrementally learn
the new classes during deployment.

As motivation, we find that most current research of SAR-
ATR algorithms only considers the objective of being accurate
and robust on ID data [8], [9], while ignoring the fundamental
OOD problem in DL-based ATR systems. Notably, Inkawhich
et al. [10] have recently shown that purely optimizing for accu-
racy in an SAR-ATR system can yield substantial gains in the
ID classification performance, but result in only meager gains
in the OOD detection performance. Such findings lead to the
observation that ID accuracy is not well correlated with OOD
detection, and instigate our codesign in this work. To reason
about these findings, we postulate that training deep neural
networks (DNNs) on a fixed set of classes, and always striving
for confident predictions, implicitly suggests a closed world
assumption. There is no indication that other classes exist, nor is
there any directive for what to do when such data is encountered.
Thus, the lack of consideration for OOD data in the phrasing of
the DNN’s learning objective is an inherent weakness in their
design, which we strive to mitigate.

The basic ATR system design we consider consists of two
modifiable parts. The first is a DNN model that is trained as
a classifier on the training dataset, and at test time attempts to
categorize the input data as one of the known classes. The second
is an “OOD scoring” mechanism that probes signals of the DNN
(which is regarded as a feature extractor) and produces a decision
about whether or not the data is ID. If the OOD prediction
component determines that the data are OOD, the classifier
abstains from releasing the prediction; otherwise, the prediction
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is released. Many related works in OSR and OOD detection
consider a similar system design, and focus expressly on the
construction of the OOD scoring mechanic, while assuming
that a “good-enough” pretrained feature extractor exists [1], [2],
[11]. However, we posit that in a significant way, the detection
is limited by the information content in the extracted features.
So, in this work, we take a different approach where we focus
on improving the training process of the DNN classifier/feature-
extractor, for use with existing OOD scoring methods.

Intuitively, to overcome the challenge of having an implicit
closed world assumption during the DNN model training, we
propose to modifying the learning objective to include instruc-
tions for what to do when OOD data are encountered. We use
the recently released Synthetic and Measured Paired Labeled
Experiment (SAMPLE) dataset [12] as the ID task. We then aug-
ment the training set with a large, diverse, and unlabeled dataset
containing SAR signatures of large ships collected across a
variety of sensor platforms (note, the SAMPLE dataset contains
classes of landlocked military vehicles). In essence, the models
are trained to be accurate on the SAMPLE data and to produce
maximum entropy predictions on the ship dataset, following a
concept called outlier exposure (OE) [13]. Importantly, we de-
velop a novel extension of OE called adversarial outlier exposure
(AdvOE), which greatly improves the performance through the
inclusion of active attackers within the training objective.

For the primary evaluations, we follow the Experiment 4.3
design in [12] to construct a difficult OOD detection problem
using a holdout-class scheme. Critically, our AdvOE method
assumes no knowledge-of the expected OOD set, making
its application significantly more realistic. We also prioritize
studying the impact of OOD set granularity on the detec-
tion performance by considering a spectrum of OOD data
types, from highly granular/nearly-ID (e.g., other SAR data) to
less-granular/obviously OOD (e.g., natural images and random
noise). Ultimately, our AdvOE method outperforms all other
methods across the OOD granularity spectrum, yielding state-
of-the-art performance in both accuracy and detection abilities
amongst competing SAR-ATR training methods.

Overall, our main contributions are as follows.
� We introduce a novel DNN training procedure called Ad-

vOE, which simultaneously teaches the model to be ac-
curate on ID data and have maximum entropy outputs for
OOD data, all while in the presence of an active adversary.

� We show that using a large, unlabeled, and unrelated SAR
dataset to the ID task can significantly boost the OOD
detection capabilities of an SAR-ATR system.

� We achieve state-of-the-art performance in both accuracy
and OOD detection for the SAMPLE experiment, includ-
ing when using 100% synthetic training data and 100%
measured test data.

� We provide a novel and informative analysis of the impacts
of OOD set granularity on the detection performance.

II. BACKGROUND

A. SAMPLE Dataset

As mentioned, we employ the SAMPLE dataset and the
Experiment 4.3 design from [12] to evaluate our methods.

This dataset contains (measured, synthetic) pairs from the ten
MSTAR [14] target classes. In total, there are 806 training and
539 test pairs. The measured components were taken directly
from the MSTAR public release dataset while the corresponding
synthetic targets were constructed via electromagnetic signature
prediction from meticulous computer aided design (CAD)
models [12]. The class number to class name decoding used
in this work is as follows: {0:“2S1”; 1:“BMP2”; 2:“BTR70”;
3:“M1”; 4:“M2”; 5:“M35”; 6:“M548”; 7:“M60”; 8:“T72”;
9:“ZSU23”}.

There are two key parameters associated with this dataset and
its experiments that are referenced throughout this work. K sets
the fraction of measured training data, while the test data are
always 100% measured (0 ≤ K ≤ 1). For example, ifK = 0.75
then 604/806 training pairs are represented by their measured
component while the remaining 202/806 are represented by
their synthetic component. As a special case, if K = 0 then
100% of the training samples are synthetic. To manufacture the
OOD problem, parameter J is introduced to set the number of
classes that are held-out from the training set (1 ≤ J ≤ 8). So,
the classifiers are trained on the remaining 10− J classes, and
at evaluation time the test data for the held-out J classes is
considered OOD while the test data for the other 10− J classes
is considered ID.

Finally, we emphasize the unique opportunity afforded by the
SAMPLE dataset to study the impacts of training SAR-ATR
models on synthetic data. In many situations where rapid devel-
opment is required, it may not be feasible to collect a representa-
tive set of measured training data (if constrained by time and/or
money) [15]. For this reason, we prioritize the case of having
exclusively synthetic training data (K = 0). This assumption
strictly increases the complexity of our “open-world” problem
by introducing a distribution-gap [10] between the training and
test sets, while also contributing to practicality.

B. Detecting Unknown Inputs

In related literature, there are several research areas that focus
on the similar problem of detecting novel/unknown classes of
inputs during deployment: OSR [1], [2], [11], [16], OWR [6],
[7], [17], [18], OOD detection [3]–[5], [19]–[21], anomaly de-
tection [22]–[25], and in some ways meta-recognition [26], [27].
Importantly, there are several distinctions to be made between
our goals and the goals of some of these related topics. Different
from OWR, we do not consider the problem of incrementally
learning the new classes of data that have been detected. Our
stated objective of accurate classification and reliable detection
of novel data can be considered a subproblem of OWR that stops
short of incremental learning. Different from most anomaly de-
tection works, we wish to integrate the multiclass classification
and novel input detection into a single system, rather than only
considering the binary case of predicting whether or not a test
sample emanates from the training distribution. Lastly, different
from meta-recognition, we do not outwardly strive to identify
incorrect predictions made on ID data. Thus, our work is most
similar to the topics of OSR and OOD detection.

1) Open-Set Recognition: The crux of the problem in OSR
research is to manage open space risk while maintaining the
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reasonable generalization performance [1], [7]. One aspect of the
problem that is often assumed is that there exists a “good” feature
extractor that preprocesses the input data into an informative fea-
ture space. Early OSR works were built around non-DNN-based
feature extractors (e.g., histogram of oriented gradients [28],
scale invariant feature transforms [29], and nonnegative matrix
factorization [30]), and focused solely on techniques to best
separate ID from OOD data in the given feature space. For ex-
ample, Scheirer et al. [1] develop the 1-vs-Set machine, Scheirer
et al. [16] introduce the compact abating probability (CAP)
model and Weibull-calibrated SVM algorithm, and Dang et
al. [31] devise a two-stage technique specifically for the SAR-
ATR domain that relies on exemplar selection and kNN-style
classifiers.

However, with the advent of DL algorithms and convolutional
neural networks (CNNs), recent OSR techniques have focused
on using CNN features to take advantage of the generalization
and expressive power of such algorithms. Bendale and Boult [2]
determined that the key problem in this domain is the use of
the softmax function to separate ID from OOD, as computing
normalized probabilities over a fixed set of classes is inherently
closed world. Thus, they replace the softmax layer (in a pre-
trained DNN) with an OpenMax layer to provably bound open
space risk using per-class CAP models defined through extreme
value theory. The extreme value machine [18] then improves
on [2] through inclusion of nonlinear radial basis functions [7].
In summary, even though our work shares motivational com-
monalities with such OSR works, we propose that in large
part our approach is technically orthogonal. As emphasized
previously, OSR system designs tend to take for granted the
existence of an informative feature extractor. In many recent
papers, this turns out to be a pretrained AlexNet [32] model,
where the OSR algorithm’s input features are taken from the
penultimate layer (i.e., logit layer) [2], [7], [18]. In contrast, most
of our effort is spent training the DNN models to better separate
ID and OOD data in the feature space. An interesting direction
of future work is to evaluate the effect of using models trained
with our developed algorithms as pretrained feature extractors
within an OSR/OWR framework, where open space risk can be
formally bounded.

2) OOD Detection: Finally, our work is most related to OOD
detection for DNNs. The principle distinction from OSR is
that it is not necessary to provably bound open space risk,
but the ultimate goal is still high generalization and reliable
novelty detection. An important design detail in OOD detection
research is whether or not the method trains the base classi-
fier. Several of the most popular approaches assume that the
DNN is pretrained, and focus on deriving an ID/OOD score
from the signals available in the model. For example, the work
in both [3] and [4] rely on thresholding values at the output
layer of a DNN. In contrast, the Mahalanobis distance-based
detector leverages the intermediate feature space, and creates
OOD scores through measurement of Mahalanobis distance to
class-conditional Gaussian distributions [5]. In this work, we
do extensive experimentation using these three methods as the
“OOD scoring” mechanic, and defer further descriptions to the
following sections.

There are also several popular OOD detection techniques that
involve training the base DNN classifier. The OE method [13]
leverages a diverse unlabeled dataset of OOD samples during
training to drastically improve the performance of confidence
score-based detectors (i.e., [3]) in natural image settings. Crit-
ically, the OOD samples used in OE training are not sampled
from the OOD test sets. More details about OE will be discussed
in the following sections. Another popular training technique
is from Lee et al. [20], who use a generative adversarial net-
work [33] to generate “hard” OOD samples given only the ID
dataset. The image classifier is then trained to have confidence
calibrated predictions on the ID and OOD data (in a similar
spirit to [13]). However, in order to tune hyperparameters, this
method assumes access to OOD samples from each of the test
OOD distributions (see [20, Appendix B]), which is beyond any
assumption made in our work. Also, the OE method is shown
to consistently outperform this method in [13]. Finally, Mundt
et al. [19] operate at the intersection of DL-based OSR and OOD
detection, and propose to train generative classifiers (as opposed
to discriminative ones) to better separate ID from OOD data and
reduce epistemic uncertainty. We leave it as a future work to
investigate the utility of generative classifiers in our setting, with
special attention paid to their ability to generalize with a very
small amount of training samples, and in the K = 0 case where
there is a distribution gap between the training and test data [10].
Also, it would be useful to develop a way to leverage any known
OOD samples in the formulation of the variational evidence
lower bound used in training such generative classifiers.

III. METHODOLOGY

Our methodological design is guided by a two-step workflow.
Step 1 is to train a base classifier to be accurate on the ID dataset.
Here, training is performed “offline” with no knowledge of the
expected OOD testing sets. Step 2 instantiates an OOD detector
for the trained classifier, which produces a real-valued “OOD
score” for each test input sample. The ID/OOD decision is then
made via thresholding the score. In this section, we first discuss
the five training procedures we consider for Step 1, then define
the OOD detection algorithm for use with the trained models.

A. Training Procedure

For notation, let g(x; θ) represent the DNN model with
parameters θ, which inputs an image x and outputs a logit
vector over the set of C ID classes (where |C| = 10− J). Then,
f(x; θ) = softmax(g(x; θ)) is the softmax normalized output
vector, which constitutes a valid probability distribution over the
C classes. Finally, let H(f(x; θ), y) represent the cross-entropy
loss between the predicted probabilities and the truth-encoded
label distribution y.

1) Standard: The first training procedure we consider is
referred to as the standard method, and will be used as a
baseline for comparison for the remainder of this work. The
standard method represents a vanilla empirical risk min-
imization objective over the samples in the 10− J class ID
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training set Did, and is described as

min
θ

E
(x,y)∼Did

[H(f(x; θ), y)] . (1)

The model’s parameters are updated to minimize the expected
risk (as measured with cross-entropy loss) for samples in Did,
where the ground truth label y is defined as a one-hot vector.

2) Label Smoothing: The second training procedure is a
straightforward extension of (1) calledlblsm [34]. This method
redefines the one-hot truth label y as a smooth-label yLS using
equation yLS

c = yc(1− α) + α/|C|, where α is an introduced
smoothing parameter. We include lblsm at levelα = 0.1 because
it has been shown to improve the generalization and calibration
abilities of DNNs [34], and more specifically, has recently
shown to improve the classification performance of SAMPLE
classifiers [10].

3) Adversarial Training: The third training procedure is
called adversarial training (AT) [35] and works to minimize an
adversarial risk. AT operates using the same empirical dataset
Din, however, adds an inner maximization term, which actively
perturbs the input data to maximize the same cross-entropy loss
that is being minimized through parameter updates. Mathemat-
ically, the AT procedure [35] is described as

min
θ

E
(x,y)∼Did

[
max
δ∈Sid

H(f(x+ δ; θ), y)

]
. (2)

Notice, the perturbation δ that is applied to the input image
is constrained to exist in an allowable perturbation set Sid. In
this work, we define Sid using the �∞ norm, so ε ≤ ||δ||∞ for
some predefined ε hyperparameter that controls how large the
pixel-wise perturbation is in image space.

To approximate the inner maximization, we use an iterative
projected gradient descent (PGD) [35] adversarial attack algo-
rithm, computed as

xt+1 = clip(xt + α ∗ sgn(∇xH(f(xt; θ), y)), xt=0 ± ε). (3)

At each iteration, the image is perturbed by a small amount
α in the direction of the gradient of the loss w.r.t. the input
(sgn(∇xH(f(xt; θ), y))), effectively maximizing the loss on
that sample. To ensure that the perturbed sample’s effective δ ex-
ists in the S, defined by ε, there is a pixel-wise clipping operator,
which defines the projection onto the �∞ norm-ball. In this work,
we consider two adversarial levels, (ε = 2/255, α = 0.5/255)
and (ε = 8/255, α = 2/255) both with 7 perturbing iterations.

We include AT because it brings several potential benefits to
our ATR system. First, it has shown to learn robust features of the
data that maintain strong correlation with the true classification
labels [36]. In the context of SAR-ATR, AT has also shown to
improve the robustness of ATR classifiers [8], including ones
trained on synthetic SAMPLE data [10]; while also learning
representations that focus on the features of the SAR targets
rather than features of the background clutter [10]. We posit that
the improved quality of the learned features in AT will help in
the OOD detection task.

4) Outlier Exposure: The remaining two training methods
introduce a fundamentally different term from the previous
three. Notice that the standard, lblsm, and AT methods

are all trained exclusively using the Did empirical training set,
which only contains training data from the 10− J ID classes.
As a result, the models are implicitly trained under a “closed-
world” assumption where accuracy on the training dataset is
the one-and-only goal. Furthermore, these learning procedures
encourage maximally confident predictions on all training data,
making the models inherently ill-conceived for identifying OOD
data.

The OE method [13] works to inform the DNN’s behavior on
both ID and OOD data during model training. Functionally, it
introduces a new dataset containing OOD samples, called DOE

ood.
Critically, the DOE

ood set is entirely exclusive of any OOD samples
we shall evaluate against (e.g., we do not include any data from
the J hold-out classes in DOE

ood), which we believe to be a more
realistic/useful case. The OE training objective is

min
θ

E
(x,y)∼Did

[H(f(x; θ), y)] + λ E
x̃∼DOE

ood

[H(f(x; θ),UC)] . (4)

The first term in (4) is the same as (1), and works to minimize
the cross-entropy loss between the predicted distribution and
the one-hot label distribution for samples in Did. Intuitively, this
term is striving for ID accuracy. The second term encourages
the DNN model to output a uniform distribution over the classes
UC for samples from DOE

ood. In other words, the model is trained
to have a maximum entropy output for samples not from the
ID classes. Here, λ is a tune-able hyperparameter that weights
the importance of the two terms. Small λ values down-weight
the contribution of the outlier samples and, hence, place more
emphasis on ID classification term. In contrast, large λ values
prioritize the model to output uniform predictions for the OOD
samples and may sacrifice the ID classification performance. In
this work, according to [13], we use λ = 0.5, which was shown
to be a useful value for image-based classifiers while having a
nondetrimental impact on accuracy.

5) Adversarial Outlier Exposure: Finally, we introduce the
AdvOE training procedure, which combines concepts from AT
and OE. The learning objective for AdvOE is described as

min
θ

E
(x,y)∼Did

[
max
δ∈Sid

H(f(x+ δ; θ), y)

]

+ λ E
x̃∼DOE

ood

[
max
δ∈Sood

H(f(x̃+ δ; θ),UC)
]
. (5)

The critical difference between AdvOE and OE is the inclusion
of the inner maximization terms to both components of the
objective. As applied to the first term, the model is trained
to be accurate on the ID data while learning the most robust
features for classification. As applied to the second term, the
maximizer is constructing more difficult outlier samples for
the DNN to learn with. By maximizing the cross-entropy loss
against a uniform truth distribution, the perturbed x̃ samples
are pushed toward lower entropy predictions, meaning they are
perturbed such that they appear more ID to the DNN. The overall
goal of AdvOE is to learn higher quality features of the ID data
for classification while also learning a more reliable confidence
estimator for OOD data via training on maximally difficult
samples. In this work, we use Sid = Sood for the perturbation
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Fig. 1. Samples from both the Did and DOE
ood sets.

sets and approximate the innermaximizations using the same
�∞ PGD attack and ε levels as the AT method.

B. Defining DOE
ood

From [13], the DOE
ood set introduced in OE training is meant

to be a large, diverse, unlabeled, yet somewhat realistic dataset
containing samples from the wider OOD set. Given that our
ID task is SAR target classification of military vehicles, we
use data from the SAR-ship-dataset [37] to define a reasonably
granularDOE

ood distribution. The SAR-ship-dataset was originally
proposed as a large object detection dataset that covers a variety
of sensors, imaging modes, resolutions, and polarizations (with
no relationship to the MSTAR collection process). In total,
there are 59 535 ships from 43 819 full frame images. For our
purposes, each ship was chipped from the full images using the
ground truth box information. Fig. 1 shows samples from both
the SAMPLE and SAR-ship-dataset which make up the Did and
DOE

ood sets, respectively.
We emphasize that the SAR-ship-dataset represents a large

and diverse set of SAR targets that has no special relationship
to SAMPLE or MSTAR data, yet can still be useful to guide
the confidence levels on unobserved OOD data. However, we
do not claim that this is the “best” outlier set, and acknowledge
that the selection of DOE

ood may impact the performance of our
methods. For example, if DOE

ood is chosen such that samples from
it can be easily separated from Did, or there is a lack of diversity,
the OE-based methods may not have any performance gains
because the model can learn a trivial solution for identifying
samples from DOE

ood. On the other hand, if DOE
ood is purposely

constructed to be closer to Did, this may significantly improve
OE-based methods as the models will be forced to learn higher
fidelity representations of the ID target classes in order to achieve
confidence calibration on the outlier samples. An important
direction of future work is to measure the impact of DOE

ood choice

and to devise ways to construct maximally informative outlier
datasets w.r.t. a given Did.

C. OOD Detection Method

Step two of our workflow is to define the OOD detection
method. In step one, we outlined five techniques for training
DNNs to be accurate on the classification task. Now, we use
the pretrained classifiers as “feature extractors” [2], and define a
method for producing a real-valued “OOD Score” for each test
sample. In this work, we use the popular ODIN detector [4],
which scores inputs based on the maximum confidence level
from a temperature scaled softmax function. However, we note
that our models are not limited to use with ODIN, and may be
combined with other OOD/OSR methods such as OpenMax [2]
in the future. Specifically, the ODIN score SODIN(x) for some
test input x is computed as

SODIN(x) = max
i∈C

exp(gi(x)/T )∑C
j=1 exp(gj(x)/T )

. (6)

Here, T is a temperature hyperparameter, which is set to T =
1000 according to [4]. The intuition for ODIN is simple: OOD
test samples should have low-confidence predictions, while ID
test samples should have high-confidence predictions. The tem-
perature scaling is a numerical trick empirically shown to help
separate the ID/OOD scores. Note, SODIN(x) is real valued and
bounded in [1/|C|, 1], so to actually make an ID/OOD detection
decision, a threshold βthresh must be set. If SODIN(x) ≥ βthresh,
x is considered ID and the classification prediction is given. If
SODIN(x) < βthresh the sample is deemed OOD and rejected.

Critically, there is no global optimal value for βthresh, rather
it must be set according the consequences of an error (e.g.,
a false-negative). Therefore, to measure the performance of
our detector, we follow [5] and leverage two metrics: area
under the receiver operating characteristic curve (AUROC) and
true negative rate at a detection threshold set to achieve a
95% true positive rate (TNR@95TPR). AUROC is a threshold-
independent performance metric that assess the tradeoff between
true positive and false positive rates across possible thresh-
olds. TNR@95TPR represents a situation where βthresh is set
to achieve 95% TPR, which constitutes the high performance at
identifying ID samples, and measures what the TNR is for the
OOD set at that fixed threshold.

IV. EXPERIMENTAL RESULTS

The experiments in this work are broken up into two major
sections. First, we extensively evaluate the accuracy and the
OOD detection performance of our trained models on the J
class holdout dataset, following the procedures described in [12,
Experiment 4.3]. Second, we investigate the impact of OOD
set granularity, and measure how the detection performance
changes as the OOD set transitions from nearly ID to obviously
OOD.
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TABLE I
DETECTION RESULTS FOR DIFFERENT MODEL TRAINING ALGORITHMS AND COMBINATIONS OF K AND J (NOTATION = AUROC / TNR@95TPR)

The bold entries indicate the highest performance results in each column.

A. Experimental Setup

In all following experiments, the setup is nearly identical.
Regardless of the five different training procedures, all mod-
els are trained with Gaussian noise augmentation, use the
ResNet18 [38] model architecture with dropout layers [39], and
input 64× 64 pixel crops of the SAMPLE images. Inkawhich
et al. [10] recently show this configuration to be helpful for
training accurate SAMPLE classifiers. Every model is trained
with a specified [K,J ] setting, and for each configuration, we run
100 iterations. Within a single iteration, we randomly initialize
the model parameters and select a random set of J classes to
holdout from the training set. We then train the model and
evaluate the detection statistics for the specific holdout dataset
(and any other OOD dataset of interest). All final reported
statistics are averaged over the 100 iterations. Finally, every
model is trained for 60 epochs using the ADAM optimizer, and
has an initial learning rate of 0.001 and a single learning rate
decay step at epoch 50 to 0.0001. We do not use a validation set,
so to measure accuracy and detection statistics, we simply take
the final model after 60 epochs of training.

B. Holdout Set Performance

The first primary experiment is to measure ATR performance
using the J classes of holdout data. We consider performance
as a function of detection rates on the OOD set and accuracy on
the ID task. We also measure the impact of holdout class choice.

1) Detection: To quantify detection ability across a vari-
ety of operating conditions we measure how the AUROC and
TNR@95TPR detection metrics change with K, J , and training
algorithm. Table I shows results for values of K ∈ {1, 0.5, 0},
J ∈ {1, 2, 3}, and all five training algorithms (for the AT-based
methods, we include two levels of perturbation).

First, we notice that the value of K significantly affects the
performance. It appears markedly easier for models trained at
K = 1 and K = 0.5 to detect the holdout OOD data, as com-
pared to the K = 0 models. As evidence, the average AUROC
values for the standard trained models are 92, 88, 72 for
values of K = {1, 0.5, 0.0}, respectively. This is a somewhat
expected result, as the K = {1, 0.5} models are able to learn
high-quality features from the measured data distribution during
training, which evidently makes them better equipped to detect
measured OOD samples during evaluation. The K = 0 models
learn exclusively from the synthetic data representations, so

for the detection task such models must also contend with the
existing distribution gap between the synthetic and measured
datasets [10].

Next, it appears that within a specified value of K, the value
of J does not drastically impact the performance. In this work,
we only consider values of J from 1 to 3 because we wish
to focus on how the detection rates change with the training
method and not how detection rates are affected by extremely
low training data counts. We believe that for higher values of
J , our training parameter choices (i.e., model architecture and
levels of Gaussian noise and Dropout) may be suboptimal, which
will inadvertently affect detection rates. We leave the study of
training dataset size versus the detection performance as a future
work.

Finally, we look across training procedures, where we con-
sider the standard model as the baseline for comparison.
Before discussing the implications of OE, we note that across
all combinations of K and J , training with AT (ε = 8) leads
to detection improvements over the standard model. On av-
erage, AT (ε = 8) improves AUROC / TNR@95TPR by: 2.5
/ 8.2 for K = 1; 3.7 / 16.1 for K = 0.5; and 0.4 / 3.8 for K = 0.
We postulate that the quality of the learned robust features is a
driving reason for the improved detection performance of theAT
(ε = 8) model. In all but one case, lblsm also improves the
performance over the standard model by similar margins.

When vanilla OE is included, the models are also better than
the standard model across all combinations of K and J .
However, in most cases OE performs only slightly better than
the AT (ε = 8) model, and in the K = 0.5 setting, OE un-
derperforms AT (ε = 8) in the TNR@95TPR statistic. Lastly,
we see that our AdvOE (ε = 8) training procedure is the top
performer in all cases. On average, AdvOE (ε = 8) improves
AUROC / TNR@95TPR over the standard model by: 7.0
/ 22.1 for K = 1; 9.0 / 30.3 for K = 0.5; and 10.3 / 17.9
for K = 0. Its margins over the vanilla OE model are also
considerable, meaning that the addition of the innermaximizers
proves substantive.

2) Accuracy: Besides detection ability, accuracy on the ID
test sets is a key priority. Table II shows the average classification
accuracy of the K = 0 models on the 10− J class measured
test datasets. In agreeance with the accuracy versus K results
from [10], all of the K = 1 and K = 0.5 models are near or
above 99% accurate, and thus, we do not include them here.
Interestingly, the primary observation from Table II is that our
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TABLE II
ACCURACY OF K = 0 MODELS FOR EACH TRAINING ALGORITHM

The bold entries indicate the highest performance results in each column.

AdvOE training procedure is also capable of yielding the most
accurate models. On average, the AdvOE (ε = 2) models are
over 1.1% more accurate than the standard and 0.97% more
accurate than the OE models, across values of J . We also see
that unlike in the detection results, which preferred ε = 8, in
the accuracy results the AdvOE (ε = 2) models are slightly
better. This finding coincides with [8], who observed that using
ATwith an �∞ ε > 2/255 may yield slight accuracy degradation
but can induce significant robustness advantages.

Although it may seem counter-intuitive that including OOD
data in training would help accuracy on the ID task, we believe
that in a similar spirit to semisupervised learning [40] theory,
there is information in the unlabeled data that the model can
leverage to improve the performance on the classification task.
For example, a standard model may learn overgeneralized
and nonrobust [36] features of Did that are also present in DOE

ood,
and thus, would clearly not be suitable for robust classification.
So, training with samples from DOE

ood would force the model
to learn higher quality/more-robust features of the ID classes
that may in-turn improve generalization. We note that [13] also
observed similar ID accuracy gains due to the inclusion of outlier
data during training. Lastly, recall that theOE andAdvOEmodels
are trained with hyperparameter λ = 0.5 according to [13].
While this value elicits a productive tradeoff between accuracy
and OOD detection as evident in Tables I and II, we remark that
tuning λ to prioritize accuracy or OOD detection (as discussed
in Section III-A) may be useful depending on one’s operational
requirements.

3) Holdout Class Dependence: In an effort to assess the
accuracy and OOD detection ability of the SAMPLE classifiers
from a different viewpoint, we examine the impact of holdout
class choice. To isolate the influence of each class on OOD
detection rates, we train standard and AdvOE (ε = 8)
models with [K = 0, J = 1] and collect the detection statistics
separately for each choice of holdout class. Fig. 2 shows the
detection rates split by which class comprises the OOD set. First,
we notice that holdout class choice does significantly impact
the detection performance. For example, classes 1 and 6 are
consistently difficult to detect, whereas classes 3 and 5 are more
reliably detected. Interestingly, between the standard and
AdvOE (ε = 8) models the trends are not exactly consistent.
With the standard model class 4 is detected often, while in

Fig. 2. Impact of holdout class choice on detection statistics.

Fig. 3. Impact of holdout class choice on classification accuracy.

the AdvOE (ε = 8) model class 4 is among the most difficult
to distinguish.

Next, to isolate the influence of each hold-out class on ID
classification accuracy, we train standard, AdvOE (ε = 2),
andAdvOE (ε = 8)models with [K = 0, J = 1] and measure
the average accuracy as a function of which class was held-out
(i.e., accuracy over the remaining 9 ID classes). Fig. 3 shows
the results of this experiment, where it is important to note that
the average accuracy across holdout classes for a given model
matches the numbers reported in Table II. Different from the
detection results, accuracy appears to be relatively invariant
to the choice of holdout class. However, we cannot say that
one training method is superior across all choices of holdout,
but on average the AdvOE (ε = 2) is the most accurate ATR
classifier. We believe the differences in class-wise detection
rates and accuracies across the models may lie in unforeseen
interactions between Did and DOE

ood.
4) Discussion: Lastly, we would like to discuss our findings

w.r.t. several related SAR OSR works that use the MSTAR and/or
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SAMPLE datasets. First, Zelnio and Pavy [11] design an OSR
baseline for the SAMPLE dataset that is comprised of a simple
pretrained CNN classifier/feature-extractor (trained under sim-
ilar settings as our standard models) and a set of One Class
SVMs to do the classification/OSR steps. Their experiments are
run using only one [K = 1, J = 5] configuration (i.e., 100%
measured training data and a fixed set of 5 ID classes) and
their results show the classification performance in the range
of 75% (see [11, Fig. 4]). Although we do not consider the
J = 5 case in this work, we point out that in our most similar
[K = 1, J = 3] results from Tables I and II, our models achieve
almost perfect OOD detection (99% AUROC) and over 99%
classification accuracy. Next, Dang et al. [31] evaluate the OSR
performance on the MSTAR dataset (K = 1), and design an
exemplar-based kNN-style classification/OSR system (they do
not use a DNN classifier/feature-extractor). Their experiments
are run in an (approximate) [K = 1, J = 7] configuration, and
the results show that their system operates at about 97% accuracy
(see [31, Table IV]). While impressive, it is unclear how this
non-DL-based method would scale as the number of ID classes
increases, or how the exemplar selection stage would be affected
by the use of synthetic-only training data (K = 0) that may
not perfectly resemble the measured data encountered during
testing [10].

C. Impact of Granularity

The holdout class method of manufacturing an OOD problem
yields a highly granular, challenging, and somewhat realistic
situation that is certainly worth studying. However, all of the
DNN models, we train will produce predictions over the 10− J
ID classes for any data that is formatted as a 64× 64 px gray-
scale image. In this section, we study how the granularity of the
OOD data w.r.t. the training task affects the detection ability of
our ATR systems. We define granularity as an intuitive metric for
how comparable the OOD dataset is to the ID training dataset.
A highly granular problem means the OOD set is qualitatively
similar to the training set. A low-granularity problem means the
OOD set is obviously OOD. Our motivation is to show that in
the general case, OOD detection for DNNs is a highly nontrivial
problem, and to introduce several novel observations about how
granularity affects the detection performance.

1) Evaluation Datasets: To evaluate across the spectrum
of granularity, we introduce several additional OOD datasets.
Samples from each are shown in Fig. 4. First, we continue to
use the J-class Holdout dataset to represent the most granular
and intuitively challenging case. We also include SAR data from
the civilian vehicle data domes (CVDome) [41] set from both the
HH and VV polarizations as a medium-to-high granularity task.
For the lower granularity tasks, we use Random noise samples
drawn from a Uniform distribution, handwritten-digit samples
from the MNIST dataset, and gray-scale natural images from the
CIFAR10 dataset; all of which are rather obviously OOD from
the perspective of a human.

2) Detection Results: Using the same experimental setup
conditions described in Section IV-A, Fig. 5 shows the detection
ability of models from the five training procedures on all of the

Fig. 4. Samples from granularity test datasets.

Fig. 5. Detection rates for several OOD datasets.

evaluation datasets. The models are trained with [K = 0, J = 1]
and results are averaged over 100 iterations.

First, notice the intuitive result that samples from the Holdout
dataset are the most difficult to detect, while samples from the
Random dataset are the easiest to detect (for non-OE models).
This coincides with the two extremes of the granularity spec-
trum. Next, we see that for the non-OE models, the detection
rates for the low-granularity datasets (i.e., Random, MNIST,
CIFAR10) are relatively poor compared to how trivial this task
would be for a human observer. For some models, samples
from the MNIST dataset are even more difficult to detect than
CVDome samples, despite possessing no SAR-like qualities.
Since the ODIN detector fundamentally uses the confidence of
predictions to make ID/OOD decisions, these results confirm
that non-OE models tend to output high-confidence predictions
even when the input data clearly does not belong to any of the
training classes.

Finally, observe that the OE and AdvOE trained models are
capable of almost perfectly detecting samples from all other
OOD datasets besides Holdout. Even though the DOE

ood training
dataset contains only SAR ships, the method is able to help
detect many other forms of OOD data. In some sense, we may
say that the OE and AdvOE methods have learned a generalized
concept of OOD beyond DOE

ood, which aligns with the findings in
[13].

3) Analysis: Detection Algorithm Choice: Thus far, the out-
lier detection component of our ATR system has been built
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Fig. 6. Impact of choice of OOD detection algorithm.

around the ODIN OOD detection algorithm [4]. However, as
discussed in Sections II-B and III-C, there are many alternative
choices to consider for algorithms that estimate OOD scores
using DNN feature-extractors. In this section, we compare the
ODIN detector to two other popular OOD detection algorithms:
the softmax-threshold (baseline) method [3] and the Maha-
lanobis distance detector [5]. The baseline method relies on
the same intuition as the ODIN detector in that OOD samples
should yield lower confidence predictions than ID samples.
Functionally, the baseline detector is a nontemperature scaled
version of ODIN, meaning it is equivalent to ODIN when
T = 1 in (6). By comparing baseline to ODIN, we are eval-
uating the efficacy of temperature scaling. The Mahalanobis
detector has a decidedly different methodology, which works
to detect OOD samples using the model’s feature space; and
in some cases, it has shown state-of-the-art performance [5].
Conceptually, it relies on the intuition that OOD data should fall
in low density regions of the training data’s class-conditional
feature distributions. First, the method learns the parameters
of each class’ Gaussian feature distribution at several layers
across feature space using Did. Then, at test time, the OOD
score is computed as the proximity of an input sample’s feature
representation to the nearest class distribution as measured by
Mahalanobis distance. In this scheme, ID test samples tend to lie
closer in proximity to the modeled distributions of the training
data.

Fig. 6 shows the performance of each detection algorithm via
the TNR@95TPR statistic for standard and AdvOE (ε =
8) models with [K = 0, J = 1]. From the standard model
results, it is clear that granularity impacts each detection algo-
rithm differently. While the baseline detector consistently under-
performs ODIN, ODIN appears to be most adept at detecting
high-granularity OOD data (i.e., Holdout, CVDome-HH/VV).
Meanwhile, the Mahalanobis detector is the top performer on
low-granularity data (i.e. Random, MNIST, CIFAR10). We
point-out that this observation has not been discussed previously,
yet we consider it to be an intuitive and useful finding. The
highly granular OOD sets would seem more likely to activate the
DNN’s learned filters in an expected way, making feature space

detection particularly difficult. On the other hand, the obviously
OOD data may not activate the learned filters in a way similar to
the ID data, making it more reasonable to detect such data using
the feature space.

For the AdvOE (ε = 8) model, ODIN appears to be equiv-
alent to, or better than, the other detectors in all settings. To
reason about this result, we emphasize that the core concept of
OE and AdvOE is to train the models to have low-confidence
predictions on OOD data. Thus, it is not surprising that a
confidence-based detector (i.e., ODIN) outperforms a feature
space-based detector (i.e., Mahalanobis) when coupled with a
DNN trained with AdvOE. With that said, we do not propose
that ODIN is the “best” OOD scoring method for use with our
models, and integration with more formal OSR techniques may
boost performance.

4) Analysis: Trajectory Plots: To further explain/interpret
our observations regarding the impacts of granularity, and the
difficulty of OOD detection in general, we develop a novel
analysis technique called trajectory plots. Consider a pretrained
DNN classifier as a sequence of feature extraction layers fol-
lowed by a linear classification layer. When we input a sample
to the DNN, its signal propagates through the layers in the
form of intermediate feature maps until it reaches the output
layer. Following this intuition, a trajectory plot measures how
the features of an input sample change as they propagate through
the layers.

To create a trajectory plot, we start with a 10− J class pre-
trained base classifier with fixed weights. At each layer, we probe
the feature space and train a small 10− J class model (called a
FeatureNet) to predict which ID class the intermediate feature
map belongs to. Thus, the input to each layer’s FeatureNet is the
base classifier’s intermediate feature map, and the output is a
predicted probability distribution over the 10− J ID classes.
In this work, each FeatureNet is made of two convolutional
layers and a linear layer, and is trained for six epochs with a
cross-entropy loss and lblsm over the Did set. We intend the
intuition for the FeatureNets to be simple: given some layer’s
feature map, attempt to classify it as one of the ID classes.

Once we have trained a FeatureNet for each layer of the base
classifier, we can forward pass a sample and collect/assemble
the FeatureNet outputs into an interpretable image. Consider the
top-left subplot of Fig. 7, which shows the trajectory plot for a
single ID test sample as measured on astandardmodel. Since
we train with [K = 0, J = 1] settings, the x-axis is divided into
9-bins representing the remaining ID classes. The row of pixels
corresponding to a y-axis position shows a FeatureNet output
vector for a layer of the base classifier, where the sum of pixel
values is one and the intensity encodes the confidence in a class.
Critically, by stacking the FeatureNet outputs from early layers
(e.g., Layer = 1), to late intermediate layers (e.g., Layer = 8),
and finally including the output softmax vector from the base
classifier as the “out” row, we can monitor the input signal’s
trajectory/path through the network.

Fig. 7 shows trajectory plots as measured on standard (top
section) and AdvOE (ε = 8) (bottom section) [K = 0, J = 1]
models. Each column corresponds to a different test dataset,
where “ID” is the ID test set and the others are all OOD. For
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Fig. 7. Trajectory plots for several samples from each dataset. The top section is measured on a standard [K = 0, J = 1] model. The bottom section is
measured on an AdvOE (ε = 8) [K = 0, J = 1] model. Each column corresponds to a different test dataset. Each row represents a different random sample
from the dataset.
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each dataset and model, we create trajectory plots for 4 random
samples.

First, consider the standard model’s plots, and how they
differ across test datasets. The ID samples form strong column-
based trajectories, meaning the features propagate through the
network always “looking-like” a single class. Interestingly, the
Holdout and CVDome-HH samples also tend to form column-
based trajectories, meaning they propagate through the network
in a way very similar to the ID data. This finding explains the
general difficulty of detecting such OOD data in the previous
experiments. Through the lens of granularity, it also confirms
that highly granular data, which is most difficult to detect as
OOD, is processed by the model in a way similar to the ID
data. Now, consider the coarsely granular Random, MNIST, and
CIFAR10 samples. The trajectories are not column-like, and the
FeatureNet predictions have low confidence in the latter inter-
mediate layers. However, the “out” layer’s prediction remains
confident in most cases. This is indicative of undesirable DNN
model behavior, where even if the sample does not propagate
naturally, the model still makes a high-confidence prediction.
We also believe the scattered nature of these coarse OOD sample
trajectories to be the reason that the Mahalanobis detector works
well for the standard model in Fig. 6 results.

Second, consider the AdvOE (ε = 8) model’s trajectory
plots. As expected, we still see column trajectories for the ID
data, which may be indicative of high model accuracy. Unfor-
tunately, we also see column-like trajectories for the Holdout
data samples, which explains why the Holdout dataset results
remained relatively low in the Fig. 5 findings. Critically, for all
other OOD datasets including the granular CVDome-HH, we
clearly see that there are no column trajectories and no spurious
high-confidence predictions at the output layer. In fact, these
trajectories are indicative of intuitively “good” behavior in the
AdvOE (ε = 8) model. In the first few layers, the model is
extracting simple and general features, so some confidence in
the FeatureNet outputs is expected. However, toward the later
and output layers, the extracted features do not compose to form
an “ID” target representation. So, instead of forcing the feature
map to be part of a class, the model distributes the uncertainty
across all of the classes and the predicted confidence is very low.
In other words, unlike in the standard model, the AdvOE
(ε = 8) model has the capability of articulating the sentiment
of “I do not know.”

Overall, the findings in the trajectory plot analysis confirm and
even explain several of the trends found in previous experiments.
In the future, we propose that this form of analysis can be very
useful in quantifying granularity, as a prediction interpretability
method, and even as a potential starting point for creating new
OOD detection algorithms.

V. CONCLUSION

Our primary objective in this work is to design a methodol-
ogy for training DL-based SAR-ATR models that makes them
amenable to reliable operation in “open-world” operating envi-
ronments. That is, to train models that are capable of accurate
classification on a set of known ID classes, whilst also being

able to reliably detect and reject samples from unknown classes
(a.k.a., OOD data). Such ATR models are commonly composed
of two components: a DNN classifier/feature-extractor and an
OOD detection algorithm. In this work, we focus on the training
of the DNN classifier and leverage the powerful ODIN algo-
rithm [4] for the OOD detection component.

To codesign our DNNs for both accuracy and OOD detection,
we develop the AdvOE training method and introduce a useful
OOD dataset for SAR-ATR models to learn from [37]. The
AdvOE method simultaneously learns the robust features of
the ID data for the high classification performance, while also
learning to output maximum entropy predictions for generic
OOD samples. Through extensive evaluations, we find that our
improved training method significantly boosts the accuracy and
OOD detection capabilities of SAMPLE [12] classifiers, includ-
ing ones trained exclusively on synthetic data. Furthermore, we
analyze the impacts of OOD set granularity and find that our
AdvOE models have learned a generalized concept of OOD,
and are capable of almost perfectly identifying samples from a
variety of OOD sets. Finally, we investigate the influence of de-
tection algorithm and develop a novel analysis called trajectory
plots to both explain the poor detection behavior of standard
models, and provide insights into why the AdvOE models are
top-performers.

In closing, we highlight several important directions for future
work. The first is to investigate the implications of changing
DOE

ood, and to develop a methodology for assembling maximally
informative outlier sets w.r.t. a given set of ID classes/data.
The second is to integrate our AdvOE models as feature ex-
tractors for use with formal OSR algorithms, e.g., [2]. Unlike
the ODIN, Softmax-Threshold and Mahalanobis OOD detectors
used in this work, OSR algorithms place formal bounds on open
space risk and have the potential to produce “OOD scores” that
better separate the ID and OOD data through more complex
modeling techniques. Finally, one may leverage the AdvOE
training method within an OWR SAR-ATR system. In such
a system, rather than having a static model that detects and
rejects OOD data based on a fixed training set, the system would
dynamically collect and incrementally learn the new classes
of data encountered during deployment. Our AdvOE method
may be well-poised for such a system, as the Did and DOE

ood sets
could be updated with authentic data and outliers from the actual
deployment environment.
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