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Abstract—Despite the successful applications of unsupervised
sparse dimensionality reduction (USDR) in pattern recognition, the
USDR still suffers from two challenges for hyperspectral images
(HSIs), which limit its discriminative performance: first, it cannot
be applied for dimensionality reduction using both training samples
and testing samples; second, it lacks the ability to integrate the
spectral with spatial information for improving the discriminative
performance of HSIs. In order to tackle the first challenge, we ex-
tend it to a supervised scenario, which can be applied for both train-
ing samples and testing samples, namely dimensionality reduction
sparse representation (DRSR). Then, we propose a novel method
called local and global DRSR (LGDRSR) to integrate the spectral
information and spatial information of HSIs to further improve
the discriminative performance of HSIs. The proposed LGDRSR
computes the distance information between pixels of HSIs including
the whole samples and their corresponding locations with a unified
metric matrix. Experimental results show the proposed LGDRSR
outperforms other state-of-the-art algorithms significantly.

Index Terms—Hyperspectral images (HSIs), local and global
dimensionality reduction sparse representation (LGDRSR),
spectral and spatial information, unsupervised sparse
dimensionality reduction (USDR).
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I. INTRODUCTION

U TILIZING hyperspectral images (HSIs) technology for
imaging is gaining more and more attention since the de-

velopment of hyperspectral sensor technology [1], such as land
cover investigation and target detection, usually with hundreds
of spectral bands. The high dimensionality with hundreds of
bands imposes several challenges to image classification, such
as Hughes phenomenon (the problem between huge spectral
bands and the limited training samples) [2] and high demands
of computational resources [3].

In order to address the Hughes phenomenon [2], many algo-
rithms have been proposed, such as sparse multinomial logistic
regression (SMLR) [4], support vector machine (SVM) [5],
sparse representation classification (SRC) [6], extreme learning
machine [7], and collaborative representation classification [8].
Among these methods, SRC has attracted the most attentions due
to its merits, i.e., sparsity and robustness [8]. The SRC represents
a test sample as a linear combination of all training samples and
then adopts the representation coefficients as a feature vector
of the test sample [8], [9]. Finally, SRC directly assigns the
class label to the test sample via calculating the minimum
representation error of classes [8]. Sparse representation (SR)
based methods have been applied for many applications, such as
face recognition [10], brain signal processing [11], and image
super-resolution [12]. Even in HSIs processing, as examples,
Chen et al. [13] proposed a dictionary-based SR method for HSIs
classification and achieved a good performance. In [14], Zhao
et al. combined the SR and low-rank representation for HSIs
denoising. In [15], Chen et al. proposed an SR-based method
for HSIs target detection.

Although SR-based methods have achieved great success, it
still faces several challenges in HSIs classification [16]. First, the
huge number of spectral bands, which implies huge computation
load. Second, the spatial variability of the spectral pixel, in
other words, within the same categories (classes), they may have
different spectral characteristic whilst the similar features may
have been shared by different classes [17]. Third, the high cost
of obtaining labels of training samples. Hence, it’s important to
reduce the dimensionality of HSIs without sacrificing significant
information under the situation with limited training samples
[18].
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The goal of the dimensionality reduction (DR) technique
is to reduce the complexity of the data [16] and preserve the
desirable intrinsic information of the data simultaneously. The
existing DR methods can be broadly divided into two cate-
gories, supervised methods and unsupervised ones according
to whether the supervision information (class labels) is needed
[18]. The examples of unsupervised dimensionality reduction
(UDR) methods widely used for DR of HSIs are locality preserv-
ing projection (LPP) [19], neighborhood preserving embedding
(NPE) [20], and principal component analysis (PCA) [21]. Many
supervised dimensionality reduction (SDR) methods have also
been proposed for DR, such as linear discriminant analysis [22],
nonparametric weighted feature extraction (NWFE) [23], local
fisher discriminant analysis (LFDA) [24], supervised Laplacian
eigenmaps [25], and local discriminative embedding [26]. In
addition, there are also some semisupervised dimensionality
reduction methods being proposed for HSIs DR and achieved
a good performance, such as semisupervised dimensionality
reduction based on sparsity preserving [18] and semisupervised
discriminant analysis (SDA) [27].

Although the methods discussed earlier have obtained good
results in some applications, they still exhibit some drawbacks
when being applied for HSIs classification. First, most DR-based
methods consist of two steps for HSIs classification, i.e., 1)
extraction of the most discriminative features from data, and 2)
feeding the features to specific classifiers. Such separation often
leads to limit the overall classification performance of HSIs.
Second, most of the existing DR methods lack the ability to
integrate the spectral and spatial information, despite that some
of them use the spectral information whilst others use the spatial
information for HSI classifications [28]. This will also restrict
the overall classification performance of HSIs.

In [29], Zhang et al. proposed a UDR method based on
SRC and produced a good performance, namely unsupervised
sparse dimensionality reduction (USDR). However, it can only
be used for unsupervised learning and, thus, some information
that already existed in training samples and testing samples
can’not be used for HSIs classification. On the other hand,
recall the first drawback in most of the existing DR-based
methods, they input the features to a specific classifier after
extracting the discriminative features. This operation will limit
the recognition performance. In view of these two aspects,
we, hence, extend the UDR to SDR, which can be used for
DR for both utilizing the information of training samples and
classifying testing samples, namely dimensionality reduction
based sparse representation (DRSR). Also, the proposed DRSR
can solve the drawback existed in most DR methods since
the proposed DRSR can be used for DR and classification
simultaneously.

Furthermore, we proposed a method based on DRSR to incor-
porate the local and global information of HSIs namely local and
global DRSR (LGDRSR) to further improve the discriminative
performance of HSIs. Our LGDRSR approach has the ability
to integrate the spectral information with spatial one to address
the second drawback in the existing DR methods, as mentioned
earlier.

The main contributions of our proposed LGDRSR can be
summarized as follows.

1) Both the training samples and testing samples information
have been introduced for DR and classification of HSIs.

2) The local and global spectral and spatial features in HSIs
have been incorporated into the sparse optimization of
HSIs for improving the performance of the DR and clas-
sification.

The rest of this work can be summarized as follows. The SRC
framework is briefly reviewed in Section II. In Section III, the
proposed LGDRSR will be introduced in detail. The extensive
experimental results and analysis are given in Section IV. Sec-
tion V concludes this article and remarks some future work.

II. RELATED WORK

A. Sparse Representation Classification

SRC aims to represent signals using as few atoms as pos-
sible in a given super complete dictionary to obtain a more
concise representation of the signals, so that the features ex-
traction becomes easier and more efficient. Thus, given a hy-
perspectral image with N training samples from K classes
of imagesX = [X1, X2, . . . , XN ] = [XN1

, XN2
, . . . , XNK

] ∈
Rd×N whereN1 +N2 + · · ·+NK = N .NK denotes the num-
ber of training samples of kth category. d is the number of the
spectral bands, and K is the number of the categories. Then, for
a testing sample y ∈ Rd×1, the optimization problem of SRC
can be expressed as follows:

ŝ = arg min
s

{
1

2
‖y −Xs‖2F + λ‖s‖1

}
(1)

where λ is a parameter that weights the importance of the two
terms, s is an expansion coefficient that represents the testing
sample with the training samples and F denotes the F -norm.
As can be seen from (1), the first term denotes the redundancy
between the testing sample y and the whole training samples
X multiplies by the coefficient s. The second term denotes the
regularization term, which prevents the overfitting.

In the SRC, it is assumed that the samples belonging to the
same class approximately lie in a low dimensional subspace
[6], and this subspace can be captured by l1 regularization [8].
Hence, the class label lay of testing sample y can be acquired
by the following equation:

lay = arg min
k=1,...,K

(‖ y −XNk
ŝNk
‖22). (2)

B. Unsupervised Sparse Dimensionality Reduction

Based on SRC, USDR finds a way to reduce the dimension
of HSIs with training samples. This method can be regarded as
the combination of SRC and PCA. That is to say, in addition to
find the spare coefficient, the USDR tries to find an additional
coefficient that can be used for reducing the dimensions of HSIs.
Thus, let X = [X1, X2, . . . , XN ] ∈ Rd×N be N samples, and
Di = [X1, X2, . . . , Xi−1, Xi+1, . . . , XN ] ∈ Rd × (N − 1) be
the collection of samples excluding the ith sample, the objective
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Fig. 1. Flowchart of proposed LGDRSR.

function of USDR can be defined as follows:

min
β,p

N∑
i=1

(‖PXi − PDiβi‖22 + α1‖βi‖1) + α2‖X − PTPX‖2F

s.t.PPT = I (3)

where βi is the SR coefficient of Xi over Di, α1 and α2 are
scalar parameters, P ∈ Rdim×d (dim denotes the final number
of dimensions) is a matrix that is used for reducing the dimen-
sions of training samples [29], T is the matrix transpose oper-
ation. The first term

∑N
i=1 ‖PXi − PDiβi‖22 and second term∑N

i=1 α1‖βi‖1 in cost function (3) are approximation and sparse
constraints, respectively. In more details, the first term denotes
the redundancy between the reconstructed sample (PXi) and
the other reconstructed sample (PDi) multiplies by the classi-
fication coefficient (βi). The third term α2‖X − PTPX‖2F in
cost function (3) is to ensure samples to be well reconstructed
from the projected subspace by P (DR term).

The solution of (3) can be obtained by the following steps.
Step 1: Apply PCA to X in order to obtain the initial P .
Step 2: Fix P , compute each βi by solving the following

objective function:

min
βi

‖PXi − PDiβi‖22 + α1‖βi‖1 (4)

which can be solved by some convex optimization techniques
or the method in [30].

Step 3: Fix Xi, update P , then the objective function can be
reduced to

min
β,p

N∑
i=1

‖PXi − PDiβi‖22 + α2‖X − PTPX‖2F

s.t. PPT = I. (5)

This optimization problem can be solved by singular value
decomposition [29].

Step 4: Go back to step 2 until the maximum number of itera-
tions is hit or the abovementioned objective function converges.

III. PROPOSED LGDRSR

This section is divided into the following two subsections.
First, we present the proposed DRSR, which extends the UDR
[29] to SDR for simultaneous HSIs DR and classification in
Section III-A. Then, based on DRSR, the proposed LGDRSR
will be elaborated in Section III-B. The spectral and spatial
information of HSIs will be incorporated into the proposed
LGDRSR to improve the performance of DR and classification
of HSIs. The corresponding flowchart of proposed LGDRSR
framework can be seen in Fig. 1.

A. Dimensionality Reduction Sparse Representation

In this section, we will design the SR-based method to reduce
the dimensions and classify the samples simultaneously. The
USDR only uses the training samples for DR, which omits some
prior information and causes the relative low recognition rate.
To address this drawback, we incorporate the testing samples
with the training samples to improve the efficacy of DR. Given
a 2-D image H = [X;Y ] ∈ Rd×(N+n)being transformed from
a hyperspectral image, where there are N number of samples
in the training set X and; n number of testing samples in the
testing set Y , respectively. Then, the proposed DRSR can be
formulated by the following equation:

min
A,P

{
1

2
‖PY − PXA‖2F + λ1‖A‖1 + 1

2
λ2‖H − PTPH‖2F

}

(6)
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where P ∈ Rm×d is a matrix that is used for reducing the
dimensions of HSIs, i.e., training samples and testing sam-
ples, λ1 and λ2 are two parameters, which weight the three
items, A is the representation coefficient for the discriminative
features acquired by the matrix P . The redundancies between
reconstructed testing samples (PY ) and reconstructed training
samples (PX) multiply by the classification coefficient can be
denoted by the first term. For the third term, we can see that the
HSIs dataset H can be well reconstructed from the projected
subspace by P . Furthermore, due to the Hughes phenomenon
(curse of dimensionality), overfitting of classifier may occur, so
the regularized term ‖A‖1 can help to alleviate this problem.
Then, we impose the orthogonal constraint to the matrix P in
order to avoid the trivial solution for the optimization problem
of (6). Thus, the optimization problem can be rewritten as

min
A,P

{
1

2
‖PY − PXA‖2F + λ1‖A‖1 + 1

2
λ2‖H − PTPH‖2F

}

s.t.PPT = I (7)

where I ∈ Rm×m is the identity matrix. And compared with (5),
which just use the training samples for DR term ‖X − PTPX‖,
we can see that the (7) has introduced both the testing sam-
ples and testing samples information for the DR term ‖H −
PTPH‖2F .

In order to solve the optimization problem of (7), we adopt
the inexact augmented Lagrange multiplier (IALM) [31]–[33].
IALM is a computational framework for solving the optimiza-
tion problems, especially for the statistical learning problems.
The idea of IALM is to use the decomposition-coordination
procedure to decompose a large global problem into multiple
smaller and easier subproblems. Thus, by coordinating the
solution of those subproblems, the final solution of the large
global problem can be acquired. First, we introduce an auxiliary
variable J to split the variable to let problem (4) become more
easily solvable. Then, the equivalent model can be rewritten as
follows:

min
A,P,J

{
1

2
‖PY − PXA‖2F + λ1‖J‖1 + 1

2
λ2‖H − PTPH‖2F

}

s.t. PPT = I; J = A. (8)

Then, the corresponding augmented Lagrangian function of
model (8) can be expressed as

min
A,P,J

{
1

2
‖PY − PXA‖2F + λ1‖J‖1 + 1

2
λ2‖H − PTPH‖2F

+
〈
Y1, J −A

〉
+

τ

2
‖J −A‖2F

}
s.t. PPT = I (9)

where Y1 is the Lagrange multipliers. Then, model (9) can be
solved by the alternative optimization algorithm [31]. The details
are given as follows.

Update P : Fix A and J , then P can be updated as

P t = arg min
P

{
1

2
‖PY − PXAt‖2F +

1

2
λ2‖H − PTPH‖2F

}

s.t. PPT = I. (10)

The derivation of (10) can be solved as follows:

P t = arg min
P

{
tr(

1

2
P (Y −XAt)(Y −XAt)TPT

+
1

2
λ2(H − PTPH)(H − PTPH)T

}

= arg min
P

{
tr

(
1

2
P (Y −XAt)(Y −XAt)T

+
1

2
λ2(HHT − PTPHHT −HHTPTP

+ PTPHHTPTP )

)}
(11)

where tr is the trace operation [31] and t is the tth iteration.
According to the characters of trace and PPT = I , (11) can be
rewritten as

P t = arg min
P

{
tr

(
1

2
P (Y −XAt)(Y −XAt)TPT

+
1

2
λ2(HHT − PHHTPT )

)}
. (12)

Since the HHT has no effect to the solution of P , then (12)
can be solved by

P t = argmin
P

{
tr

(
1

2
P (Y −XAt)(Y −XAt)T

− λ2HHT )PT

)}
. (13)

Finally, P t can be determined by singular value decom-
position [29] to (Y −XAt)(Y −XAt)T−λ2HHT , which is
composed by the corresponding eigenvectors of the first several
smallest eigenvalues of (Y −XAt)(Y −XAt)T−λ2HHT .
After the P t has been acquired, which can be used for reducing
the dimensions of HSIs, the variables J and A for classification
of HSIs can be obtained as follows.

Update J : Fix A and P , then J can be updated as

J t+1 = arg min
J

λ1

τ t
‖J t‖1 + 1

2
‖J t −At +

Y t
1

τ t
‖2F . (14)

The solution of (14) can be solved by the soft-threshold [35]
rule

J t+1 = soft

(
At − Y1

t

τ t

)
= max

{
0, abs(e)− λ

τ t
× sign(e)

}

(15)
where abs(e) is a function to get the absolute value of each
elements in e, e = At − Y1

t

τt and sign is the sign function [35].
Update A: Fix P and J , then the A can be updated as

At+1 = arg min
A

×
{
1

2
‖P tY − P tXA‖2F +

τ t

2
‖J t −At +

Y1
t

τ t
‖2F

}
.

(16)
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The solution of (16) can be acquired by the first-order deriva-
tion

At+1 = (XTP tTP tX + τ tI)−1(XTP tTP tY + τ tJ t + Y1
t).

(17)

B. Local and Global DRSR

In the abovementioned Section III-A, we entailed the DRSR
method to reduce the dimensions of HSIs and classify the HSIs
simultaneous. Inspired by Wang et al. [31], which introduced
a new distance metric to low-rank representation for HSIs
classification, we adopt this distance metric in our proposed
DRSR, which can further preserve the intrinsic information and
integrate the spectral and spatial information when reducing the
dimensions of HSIs.

Given a hyperspectral image H = [X;Y ] =
[X1, X2, . . . , XN ;Y1, . . . , Yn] ∈ Rd×(N+n) where Xi

and Yj (i = 1, 2, . . . , N ; j = 1, 2, . . . , n) are the spectral
column vector of training samples and testing sam-
ples respectively. Denote the spatial feature matrix by
L = [L1, L2, . . . , LN , LN+1, . . . , LN+n] ∈ R2(N+n) where
Li (i = 1, 2, . . . , N + n) is the position coordinate of the ith
spectral pixel. It should be noted that the values of Xi, Yi,
and Li are normalized to the range of [0,1]. Then, a good way
to integrate the spectral and spatial information of HSIs is to
compute the distance matrix, which can be formulated as

Mi,j =
√
‖Xi − Yj‖22 +m‖Li − Lj‖22 (18)

where i = 1, 2, ·, N ; j = 1, 2, ·, n; m is a parameter to control
the weight of the spectral and spatial distance. For each training
sample in a hyperspectral image, the training samples located
either near to or far away from the testing samples, if the training
samples are near to testing samples, we can regard this type as
the local information, otherwise, this can be regarded as the
global information. If the spectral information (‖Xi −Xj‖22)
and spatial information (‖Li − Lj‖22) can be incorporated into
the DRSR, the DR and classification performance can be im-
proved. From (18), we can see that M contains the local and
global information of HSIs since both the spectral distance value
‖Xi −Xj‖22 and the spatial distance value ‖Li − Lj‖22 (it’s a
feature of relative Euclidian distance between the locations of
pixels) contain local and global spectral and spatial information
of a training and testing pixel in HSIs. By constructing the matrix
M , and introducing a new variable J , the LGDRSR can be
written as

min
A,P,J

{
1

2
‖PY − PXA‖2F + λ1‖M � J‖1

+
1

2
λ2‖H − PTPH‖2F + 〈Y1, J −A〉+ τ

2
‖J −A‖2F

}

s.t. PPT = I (19)

where � is the Hadamard operator [34]. Then, the solution of
LGDRSR can be obtained as follows.

Update P : Fix A and J , then the matrix P can be updated as

P t = arg min
P

{
1

2
‖PY − PXAt‖2F +

1

2
‖H − PTPH‖2F

}

s.t.PPT = I.
(20)

The solution of P at the tth iteration can be acquired by com-
puting SVD of (Y −XAt)(Y −XAt)T − λ2HHT . The size
of P t is composed by the dim eigenvectors of the first smallest
dim eigenvalues of (Y −XAt)(Y −XAt)T−λ2HHT (dim
denotes the number of dimensions, such as 5, 10, and 15).

Update J: Fix A and P , then J can be updated as

J t+1 = arg min
J

λ1

τ t
‖M � J t‖1 + 1

2
‖J t −At +

Y1
t

τ t
‖2F . (21)

The solution of (21) can be solved by the transformation of
soft-threshold rule

J t+ = soft

(
At − Y1

t

τ t
,M × λ1

τ t

)

= max

{
0, abs(e)−

(
M × λ1

τ t

)}
× sign(e) (22)

where e = At − Y1
t

τt .
Update A: Fix P and J , then A can be updated as

At+1 = arg min
A{

1

2
‖P tY − P tXA‖2F +

τ t

2
‖J t+1 −A+

Y1
t

τ t
‖2F

}
.

(23)

The solution of (23) can be achieved by

At+1 = (XTP tTP tX + τ tI)−1

(XTP tTP tY + τ tJ t+1 + Y1
t). (24)

Finally, the overall optimization problem for solving the pro-
posed LGDRSR is described in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section has been divided into the following five sections.
First, two benchmarking HSIs datasets have been described in
Section IV-A followed by benchmarking approaches in Sec-
tion IV-B. In Section IV-C, the parameters and our contributions
have been evaluated with four experiments. The effectiveness
of different dimensions and training samples on our proposed
LGDRSR, and the comparison with other state-of-the-art algo-
rithms have been presented in Sections IV-D and IV-E, respec-
tively.

A. HSIs Datasets

1) Indian Pines: The airborne visible infrared imaging spec-
trometer sensor captured this image in northwestern Indiana
USA with 145× 145 pixels and each pixel has 200 spectral
bands after removing 20 noisy bands. The wavelength ranges of
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Algorithm 1: The proposed LGDRSR.

Input: Hyperspectral image: H = [X;Y ] ∈ Rd×(N+n);
N training samples from K classes of H:
X = [XN1

, XN2
, . . . , XNK

] ∈ Rd ×N ;
n testing samples: Y = [Y1, Y2, · · · , Yn] ∈ Rd×n;
spatial feature matrix:
L = [L1, L2, . . . , LN , LN+1, . . . , LN+n ∈ R2×(N+n)];
Parameters:λ1, λ2, τ t, m, Y1 = 0,
J t = At = (XTX + 2−10I)−1XTY .
1.1 Set t = 0
Update P : P t =
arg min

P
{ 12‖PY − PXA‖2F + λ2‖H − PTPH‖2F }

s.t. PPT = I=⇒ P t ←
SV D((Y −XAt)(Y −XAt)T−λ2HHT ):

the corresponding dim eigenvectors of the first dim
smallest eigenvalues

1.3 Update J : J t+1 = min
J

J t+1 =

arg min
J

λ1

τt ‖M � J t‖1 + 1
2‖J t −At + Y1

t

τt ‖2F
=⇒ J t+1 = soft(At − Y1

t

τt ,M × λ1

τt ).
1.4: Update A:
At+1 =
arg min

A
‖P tY − P tXA‖2F + τt

2 ‖J t+1 −A+ Y1
t

τt ‖
2

F

=⇒ At+1 = (XTP tTP tX + τ tI)−1(XTP tTP tY +
τ tJ t+1 + Y1

t).
1.5 Update other parameters:
Y1

t+1 = Y1
t + τ t(J t+1 −At+1); τ t+1 = 1.1× τ t.

1.6 Quit the algorithm if the stopping criterion is met;
otherwise, go back to Step 1.2.

1.7 Predict the testing sample label:
laY ∗i = arg min

K
(‖Xα̂−XNk

α̂Nk
‖22); i =

1, . . . , n, k = 1, . . . ,K.

the spectral bands ranges from 0.4 to 2.4μm. In addition, there
are 16 classes with 10 366 pixels need to be classified [36], [37].

2) Pavia University: The reflective optics system imaging
spectrometer sensor captured this image in the urban area of
Pavia University Italy with 610× 340 pixels and each pixel
has 103 spectral bands after removing 12 noisy bands. The
wavelength of the spectral band ranges from 0.43 to 0.86μm.
In addition, there are 9 classes with 42 776 pixels need to be
classified [38], [39].

B. Benchmarking Approaches

We have selected state-of-the-art DR methods for compari-
son with the proposed LGDRSR including PCA [21], NWFE
[23], linear discriminant embedding (LDE) [40], regulariza-
tion LDE (RLDE) [40], LFDA [24], SDA [27], semisuper-
vised local discriminative analysis LPP (SELDLPP) [40], and
semisupervised local discriminative analysis NPE (SELDNPE)
[41]. The LIBSVM [42] software is used for implementation of

the kernel SVM (KSVM). The MATLAB code of abovemen-
tioned methods can be downloaded at [43]. For the parame-
ter setting of abovementioned methods (KSVM-PCA, KSVM-
NEFE, KSVM-LDE, KSVM-RLDE, KSVM-LFDA, KSVM-
SDA, KSVM-SELDLPP, and KSVM-SELDNPE), they follow
on the setting of [40].

All the experiments are conducted using MATLAB R2015a
running on a computer with 2.9 GHz i7 7820HQ CPU and
32 GB RAM. The training samples (up to 50% in each class) are
randomly generated from HSIs and the remaining for testing. All
the experimental results are repeated 10 times and the results are
averaged to obtain classification accuracies. The performance
has been measured in terms of overall accuracies (OA), average
accuracies (AA), category accuracies (CA), kappa coefficient
(k), and computational time. The computational time includes
training time (Tr) and testing time (Ts).

OA is the ratio of the total number of correctly classified
testing samples over the total number of the testing samples; CA
is the ratio of the number of correctly classified testing sample
in each class over the number of testing sample in each class;
AA is the mean of accuracies achieved in each class and k is the
statistics computed by weighting the measured accuracies.

C. Parameters and Contributions Analysis

In this section, we will analyze the impact of the parame-
ters and the contributions of the proposed LGDRSR with four
experiments, including λ1, λ2, and τ t in (19), and m in (18).
We also applied some DR methods to SRC for the performance
comparison, including PCA, NWFE, and LDE. All the experi-
mental results are carried out with five training samples per class
and we set the target dimension to be 10. Besides, we will also
apply the SR for comparison, which means it will use the whole
dimensions in this method.

1) Experiment #1: In this experiment, we evaluate λ2 = 2a2

where a2 ranges in [−15, −14 ,. . .,10] while fixing λ1= 2−10,
τ0= 2−10 for the proposed DRSR, λ1= 22, τ0= 2−10, and
m = 20 for the proposed LGDRSR (m = 0 means that the
proposed LGDRSR just use the spectral information). From
Fig. 2, we can see that a2 has some effect on DRSR and
LGDRSR (m = 0) in both Indian Pines and Pavia University
dataset. The results become more stable while incorporating the
spatial information into the LGDRSR. Hence, we set a2 to be
0 for DRSR, LGDRSR (m = 0), and LGDRSR in both Indian
Pines and Pavia University.

2) Experiment #2: In this experiment, we evaluate λ1 = 2a1

where a1 ranges in [−20, −19,. . ., 5] while fixing λ1 = 2−10,
τ0 = 2−10 for the proposed DRSR, τ0 = 2−10 for SR, SR-PCA,
SR-LDE, and SR-NWFE, λ1 = 22, τ0 = 2−10, and m = 20
for the proposed LGDRSR. From Fig. 3, we can see that
the SR-PCA, SR-LDE, and SR-NWFE produce lower classi-
fication accuracies than DRSR. We can also observe that the
LGDRSR (m = 0) has achieved better accuracies than DRSR
and LGDRSR (m = 20) has achieved higher accuracies than
LGDRSR (m = 0) when incorporated with the spectral and
spatial information. Also, we will set a1 = −8 for SR, SR-PCA,
DRSR, and LGDRSR (m = 0), a1 = 1 for LGDRSR in Indian
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Fig. 2. Effect of key parameters of λ2
a2 on Indian Pines (left) and Pavia University (right).

Fig. 3. Effect of key parameters of λ1
a1 on Indian Pines (left) and Pavia University (right).

Pines. In Pavia University, a1 will be set to −10 for SR and
DRSR, a1 = 0 for SR-PCA and LGDRSR (m = 0), a1 = −7
for LGDRSR. For both Indian Pines and Pavia University
dataset, a1 is set to −8 and −9 for SR-LDE and SR-NWFE,
respectively.

3) Experiment #3: In this experiment, we evaluate the pa-
rameter τ = 2a3 (a3 belongs to [−15,. . . 5]) where m is set
to 20 for the proposed LGDRSR. From Fig. 4, we can see
that the proposed DRSR obtains better recognition rate than
others, including SR-PCA, SR-LDE, SR-NWFE, etc. It can also
be seen that the LGDRSR (m = 0) and LGDRSR achieved
higher classification accuracies than DRSR when the spectral
and spatial information are incorporated for DR. In the following
experiments, we will set a3 = −4 for SR-PCA and the pro-
posed DRSR, a3 = −2 for SR-LDE, a3 = −10 for SR-NWFE,
LGDRSR (m = 0), and LGDRSR (m = 20) in Indian Pines
dataset. In Pavia University dataset, we set a3 = 3 for SR-PCA,
a3 = −10 for SR-LDE, SR-NWFE, DRSR, LGDRSR (m = 0),
and LGDRSR (m = 20).

4) Experiment #4: In this experiment, we will evaluate the
impact of parameter m. From Fig. 5, we can see that the

proposed LGDRSR becomes stable when m ≥ 5, which shows
a good performance of the proposed LGDRSR. In the following
experiment, we will set m = 30 in both Indian Pines dataset and
Pavia University dataset.

D. Effect of Different Dimensions and Training Samples

In this section, we further evaluate the performance in dimen-
sions reduction and classification of the proposed DRSR and
LGDRSR by varying the dimensions of samples and the number
of training samples. The training samples vary between 5, 10,
and 15 while the dimensions vary between 10, 15, and 20 (Q and
Dim denotes the number of training samples and dimensions,
respectively in the table). As can be seen from Tables I and II,
the classification accuracies achieved by the proposed DRSR
in Indian Pines and Pavia University datasets are worse than
KSVM-NWFE, but more stable and better than SR-PCA when
varying the number of training samples and dimensions. The
classification accuracies of the proposed DRSR are higher than
SR-PCA, with more than 10% in each metric (OA, AA, and k).
The proposed LGDRSR can further improve the performance
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Fig. 4. Effect of key parameters of τ
a3 on Indian Pines (left) and Pavia University (right).

TABLE I
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR TESTING SAMPLES WITH DIFFERENT DIMENSION AND TRAINING

SAMPLES PER CLASS FOR INDIAN PINES DATASET

TABLE II
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR TESTING SAMPLES WITH DIFFERENT DIMENSION AND TRAINING

SAMPLES PER CLASS FOR PAVIA UNIVERSITY DATASET

in term of OA, AA, and k, about 20% higher than DRSR.
This further shows the outstanding performance of the proposed
DRSR and LGDRSR.

E. Comparison With Other State-of-the-Art Algorithms

In this section, we evaluate our proposed methods by compar-
ing them with a list of state-of-the-art methods in three scenarios:

fixed training samples, fixed dimensions, and fixed both training
samples and dimensions.

First, we fix the number of training samples (5 per class) to
show the effect of dimensions on classification accuracies. As
can be seen from Fig. 6, the proposed DRSR acquired worse
accuracies than some state-of-the-art algorithms in some cases,
this is because proposed DRSR is just utilizes the spectral
information of HSIs. However, by incorporating the spectral-
spatial information, our proposed LGDRSR (the error bar of the
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TABLE III
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR TESTING SAMPLES WITH DIFFERENT TRAINING SAMPLES PER

CLASS FOR INDIAN PINES DATASET

Fig. 5. Effect of key parameters of m in Indian Pines and Pavia University.

proposed LGDRSR has been plotted in Fig. 6) has achieved
better classification accuracies than the other state-of-the-art
methods with different dimensions in both Indian Pines and
Pavia University dataset. It is worth noting that the proposed
LGDRSR can achieve very a good performance even at lower
dimension (below 5). This attributes to the capability of our
algorithm to incorporate the spectral and spatial information to
improve the DR and the classification performance. It verifies
that the proposed LGDRSR has a good performance.

Second, we fix the dimensions (5) to show the effect of the
number of training samples on classification accuracies. As can
be seen from Tables III and IV, the proposed LGDRSR (m =
0) has obtained a good performance than some state-of-the-art
algorithms while the performance is worse than some other

algorithms in some experimental conditions. This indicates that
the proposed LGDRSR (m=0) has similar DR and classifica-
tion capacity with these state-of-the-art algorithms since only
the spectral information has been used in proposed LGDRSR
(m = 0). However, with integrating the spectral and spatial
information simultaneously, the proposed LGDRSR achieves a
significant improvement on classification accuracies and outper-
forms other state-of-the-art methods when varying the training
samples. This further verifies the performance of the proposed
LGDRSR.

Third, we fix the dimensions (5) and 1% training samples
(TR) to show the classification accuracies by using the metrics,
OA, AA, k, and CA, and the remaining testing samples (TS) for
testing. We also report the time consumed by the algorithms
for comparison. As can be seen from Tables V and VI, the
situation is similar with the Tables III and IV for proposed
LGDRSR (m = 0), and with integrating the spectral and spatial
information, the proposed LGDRSR has outperformed other
state-of-the-art methods in terms of recognition rates. Figs. 7
and 8 show the corresponding classification maps. It can be
seen there are many classification errors existed in the classi-
fication maps of the other comparison methods while the ones
obtained by the proposed LGDRSR have better clarity (less
classification errors than others). This again verifies the proposed
LGDRSR.

At the last three rows of Tables V and VI, we report the
computation time (DR time, training time, and testing time of
each method). It can be seen that the proposed LGDRSR requires
more processing time than other methods in an acceptable range
in both Indian Pines and Pavia University dataset. Given the
much better classification accuracies achieved by our proposed
method and the accessibility of the ever increasing processing
power, the proposed LGDRSR presents a strong performance
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Fig. 6. Classification accuracies with five training samples per class under different dimensions. (a) Indian Pines dataset. (b) Pavia University dataset.

TABLE IV
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR TESTING SAMPLES WITH DIFFERENT TRAINING SAMPLES PER

CLASS FOR PAVIA UNIVERSITY DATASET

improvement over other candidate algorithms for HSIs classifi-
cations.

F. Extended Experiments and Analysis

In this section, we have conducted extended comparison
experiments to further validate the performance of the proposed
DRSR and LGDRSR.

We add noise (independent identically distributed: zero mean
with σ2 covariance) to the Indian Pines and Pavia Univer-
sity dataset and show the impact of the noise to the pro-
posed LGDRSR. We set TR = 10 per class and dim = 10.
As can be seen from Fig. 9, the performance of the proposed
LGDRSR decreases slightly when the noise level σ increases
in Indian Pines. The proposed LGDRSR still performs very

robust in Pavia University dataset when the noise intensity is
increased.

In addition, we conduct some experiments for comparing the
proposed LGDRSR with some other state-of-the-art algorithms
(we have used “-” in the Tables VII, VIII, and IX to denote the
unavailable values in the references.), including spatial-spectral
manifold reconstruction preserving embedding with k-nearest
neighbors (SSMRPE-KNN) [44], the ensemble discriminative
local metric learning with KNN and SVM (EDLML-KNN and
EDLML-SVM) [45], fast dimensionality reduction and clas-
sification with extreme learning machine (FDRC-ELM) [46],
and segmented stacked autoencoders (S-SAE) [47], respectively.
The classification results for abovementioned state-of-the-art
algorithms are directly taken from abovementioned references,
respectively. As can be seen from Table VII, under the same
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TABLE V
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR TESTING SAMPLES WITH 1% TRAINING SAMPLES PER CLASS FOR INDIAN PINES DATASET

TABLE VI
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR TESTING SAMPLES WITH 1% TRAINING SAMPLES PER CLASS FOR PAVIA UNIVERSITY DATASET

situations, the proposed LGDRSR has obtained a better perfor-
mance than these methods. Also, we have conducted experiment
in Salinas dataset [48]. The size of this dataset is 512× 217
with a ground resolution of 3.7 m, and the number of the
band and the land cover types are 204 and 16, respectively.
We choose about 1.5% samples for training and remaining
for testing. As can be seen from Table VIII, the proposed
LGDRSR has achieved better classification accuracies than
scale-orientation morphological profiles (SOMPs) [49] based

methods (the classification results are also directly taken from
reference [49] as well), such as SOMP-spectral angle distance
(SOMP-SAD), SOMP-spectral information divergence (SOMP-
SOD), and SOMP-hidden Markov model-based information
divergence (SOMP-HMMID). This verifies the validity of the
proposed LGDRSR.

Furthermore, the Table IX reported some additional experi-
ments to verify the proposed DRSR and LGDRSR, as can be seen
from Table IX, under the setting with five samples per class and
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Fig. 7. Classification accuracies on Indian Pines dataset. (a) KSVM-PCA. (b) KSVM-NWFE. (c) KSVM-LDE. (d) KSVM-RLDE. (e) KSVM-LFDA.
(f) KSVM-SDA. (g) KSVM-SELDLPP. (h) KSVM-SELDNPE. (i) LGDRSR. (j) Ground Truth.

Fig. 8. Classification accuracies on Pavia University dataset. (a) KSVM-PCA. (b) KSVM-NWFE. (c) KSVM-LDE. (d) KSVM-RLDE. (e) KSVM-LFDA.
(f) KSVM-SDA. (g) KSVM-SELDLPP. (h) KSVM-SELDNPE. (i) LGDRSR. (j) Ground Truth.

TABLE VII
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR INDIAN PINE AND PAVIA UNIVERSITY DATASET

TABLE VIII
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR SALINAS DATASET
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TABLE IX
CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR INDIAN PINE AND PAVIA UNIVERSITY DATASET

Fig. 9. Impact of noise level on proposed LGDRSR.

five dimensions, we can seen the proposed DRSR has achieved
better classification accuracies than DRSR without testing sam-
ples (USDR). This verified the proposed DRSR; and the Table IV
also shows the classification accuracies of well-known firefly
algorithms (FA) based band selection method [50], such as,
FA-minimum estimated abundance covariance (FA-MEAC) and
FA with Jeffreys–Matusita distance (FA–JM). As can be seen
from Table IX, with the same dimensions (15), the proposed
LGDRSR has obtained better results than these methods even
the training samples are less than FA-MEAC and FA-JM. Hence,
these verified the proposed DRSR and LGDRSR.

V. CONCLUSION

In this article, a novel framework based on local and global
dimensionality reduction for SRC has been proposed to simul-
taneously reduce the dimensions of HSIs and classify them.
By constructing the DRSR method, which extracts the most
discriminative features from data and classifies the classes HSI
images, the proposed DRSR has demonstrated improvement on
the overall classification performance. Furthermore, the local
and global information of HSIs to integrate the spectral and spa-
tial information of HSIs has greatly improved the classification
accuracies. The experiments results have shown the outstanding
performance our proposed method achieved compared to other

state-of-the-art methods. In comparison with some DR+ SVM
methods with 1% training samples, the improvement is more
than 20% and 10% in Indian Pines and Pavia University dataset,
respectively.

For the future work, we will investigate the second-order
Taylor series [51] to further improve the recognition rate of the
proposed methods. Besides, some mathematical methods, such
as singular value decomposition, algebraic property, and prob-
abilistic method [52], will be applied to the proposed methods
for improving the computational efficiency.
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