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Abstract—This article presents TimeSen2Crop, a pixel-based
dataset made up of more than 1 million samples of Sentinel 2
time series (TSs) associated to 16 crop types. This dataset, publicly
available, aims to contribute to the worldwide research related
to the supervised classification of TSs of Sentinel 2 data for crop
type mapping. TimeSen2Crop includes atmospherically corrected
images and reports the snow, shadows, and clouds information per
labeled unit. The provided TSs represent an agronomic year (i.e.,
period from one year’s harvest to the next one for agricultural
commodity) ranging from September 2017 to August 2018. To
generate the dataset, the publicly available Austrian crop type map
based on farmer’s declarations has been considered. To ensure the
selection of reliable labeled units from the map (i.e., pure pixels
correctly associated to their labels), an automatic procedure for
the extraction of the training set based on a multitemporal deep
learning model has been defined. TimeSen2Crop also includes a
TS of Sentinel 2 images acquired in the following agronomic year
(i.e., from September 2018 to August 2019). These data are provided
with the aim of attract more research activities for solving a typical
challenge of the crop type mapping task: adapting multitemporal
deep learning models to different year (domain adaptation). The
design of the dataset is described along with a benchmark compar-
ison of deep learning models for crop type mapping.

Index Terms—Benchmark, crop type mapping, multispectral
images, multitemporal deep learning, Sentinel-2 dataset, time series
(TSs), TimeSen2Crop.

I. INTRODUCTION

S ENTINEL 2 satellite constellation acquires multispectral
images with high spatial and temporal resolutions. Having

13 spectral bands, which has a spatial resolution ranging from
10 to 60 m, and a revisit time of 5 days (depending on the
latitude), Sentinel 2 generates dense time series (TSs) of images
at global scale. Differently from similar optical earth observation
missions (e.g., SPOT and Landsat), it acquires three bands in
the red-edge spectral range, which provide key information for
vegetation analysis. Given its temporal, spatial, and spectral
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resolutions, Sentinel 2 enables seasonal trend analysis, which
are extremely useful for crop type mapping. However, the lack
of large-scale training datasets hampers the possibility of de-
veloping and testing advanced methods for agricultural moni-
toring, such as those based on deep learning models. Indeed, to
successfully train deep learning architectures, a large amounts
of high-quality training data are required.

Recently, the RS community devoted a large effort to release
large-scale benchmark datasets. Most of them focus on the
modeling different application scenarios with single time RS
images neglecting the temporal component. In [1], Helber et al.
presents the EuroSAT dataset made up of 27 000 labeled and
geo-referenced Sentinel 2 satellite image patches (i.e., 64 ×
64 pixels). Although the classification scheme is made up of
ten different classes, including land covers having peculiar tem-
poral patterns (i.e., annual crops, permanent crops), the dataset
is based on single-time images. In [2], the DeepGlobe2018
benchmark dataset provides 6867.6 million of labeled samples
related to very high resolution satellite images (i.e., 50 cm). The
dataset is made up of 10 146 RGB images of size 20448× 20448
pixels associated to manual annotations based on pixelwise
segmentation masks. No spectral or temporal information is
provided.

Recently, by taking advantage from the open and free images
acquired by the Sentinel satellites, a large-scale training dataset
made up of geo-referenced Sentinel 1 SAR images and Sentinel
2 multispectral images has been released [3]. The dataset aims to
facilitate the development of deep learning methods capable to
extract and exploit the complementary information provided by
multisensor RS data. Although the data employed have been
acquired between December 2016 and November 2017, the
temporal information was used only to split the data into four
seasons, namely, winter (1 December 2016 to 28 February 2017),
spring (1 March 2017 to 30 May 2017), summer (1 June 2017 to
31 August 2017), and fall (1 September 2017 to 30 November
2017). Similarly in [4], Sumbul et al. propose a large-scale
training set for testing and developing novel methods in the
context of the multilabel image classification task by considering
Sentinel 2 images acquired between June 2017 and May 2018.
Also in this case, the temporal information is used only to
represent the land cover classes in different seasons.

In the context of the TS analysis, few benchmark datasets are
available. The 2019 MediaEval Benchmark dataset was defined
for monitoring flooding events [5]. The sequences of satellite
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images provided are focused on a fixed length of time around
a flood event. The benchmark aims to test the capability of
existing methods to create binary maps depicting the flooding
event ongoing in an urban area. In [6], the Onera Satellite Change
Detection dataset is proposed for urban change detection on Sen-
tinel 2 images. The dataset includes 24 regions of approximately
36 km2 with various levels of urbanization where urban changes
are visible. Given the target application, only pairs of bitemporal
images are provided.

Differently from standard land cover classification tasks,
where the class types can be identified by analyzing single-time
images (e.g., build-up, grassland, rivers), the discrimination of
similar crop types is not trivial and requires the exploitation
of temporal information. To create labeled data the know-how
of expert annotators that analyze by photo-interpretation the
whole TS of images is required. The alternative collection of
in situ measurement is unfeasible at large scale. Hence, the
scarcity of large-scale labeled multitemporal datasets for crop
type mapping is due to the complexity of the considered task.
In [7], a benchmark dataset for the supervised classification of
field crops is proposed. The dataset, which is made up of 610 000
labeled instances, is located in the Brittany region, France. To
generate the dataset, the publicly available crop type map of the
considered region has been used. The map, based on the farmer’s
declarations, is released by the National Institute of Forest and
Geography Information (IGN) in the context of Agricultural
Land Parcel Information System (LIPS)—Registre Parcellaire
Graphique (RPG). For each crop the average value of all the
pixels associated to a given field parcel is computed per spectral
band. The dataset, composed of Sentinel 2 images acquired
between January 1, 2017 and December 31, 2017, provides the
data in two processing levels: the raw reflectances at the top-of-
atmosphere (level 1 C) and the atmospherically corrected sur-
face reflectances at the bottom-of-atmosphere (level 2 A). The
classification scheme is made up of nine crop types: “barley,”
“wheat,” “rapeseed,” “corn,” “sunflower,” “orchards,” “nuts,”
“permanent meadows,” and “temporary meadows.” Although
this crop-type benchmark is the very first that allows testing
deep learning models for crop type mapping, the training set is
made up of ∼ 319.000 labeled units, which are still a relatively
small number for training deep learning architectures made up
of several hidden layers and a large number of parameters.
Moreover, the considered region is quite small compared to a
standard country scale, i.e., 27.208 km2. Finally, the extraction
of the crop type labels directly from the map may lead to
noisy labeled units, which are not correctly associated to their
labels.

In this article, with the aim of advancing the capacity of
exploiting Sentinel 2 TS for agricultural monitoring, we present
a large-scale dataset called TimeSen2Crop that is made up of
about 1 million of labeled samples belonging to 16 crop types.
The dataset includes atmospherically corrected TSs of Sentinel
2 images collected in the agronomic year (i.e., period from one
year’s harvest to the next one for agricultural commodity) rang-
ing between September 2017 and August 2018. The labeled units
were collected in the full Austria, which extends for 83.879 km2.
The shadow, cloud, and snow pixels masks are provided for each

labeled pixel. To generate the dataset, we considered the publicly
available Austrian crop type map, which is based on farmer’s
declarations collected by surveys within the subsidy application
process in the context of the common agricultural policy (CAP).
Although the reliability of such product is very high, the direct
extraction of labeled units from the map may lead to the selection
of pixels:

1) located on the crop boundary (i.e., mixed spectral signa-
ture);

2) associated to crop type labels that are not correct for the
whole year (rotation practice);

3) associated to the wrong crop type due to the spatial aggre-
gation (polygon label represents the dominant class but is
not correctly associated to all the pixels).

To solve this problem, the map-labeled units are selected
according to an automatic training set extraction procedure
based on a deep learning long short-term memory (LSTM)
model. This multitemporal deep learning architecture is able
to properly capture the phenological trend of the different cul-
tivation. Therefore, it is reasonable to assume that the labeled
units classified with the highest confidence are the pure pixels
having high probability to be correctly associated to their labels.

To assess the quality of the resulting dataset and highlight its
classification difficulties, a benchmarking experimental analysis
has been carried out by comparing deep learning models em-
ployed in the literature for crop type mapping. Moreover, this
article proposes a domain adaptation challenge, by providing the
TS of Sentinel 2 images acquired in the agronomic year right
after the one considered in the dataset (i.e., between September
2018 and August 2019). The goal of the challenge, which is
related to the solution of a domain adaptation problem, is to
direct more attention to one of the main critical issue of the crop
classification task, which is the need of regularly updating the
crop type maps, which strongly vary in the years due to the crop
rotation practices.

The main contributions of this article can be summarized as
follows. First, a novel labeled large-scale (about 1 million of
samples) dataset based on multitemporal Sentinel 2 images for
crop type mapping is proposed. The dataset has been gener-
ated by using an automatic system architecture, which extracts
annotated samples having high reliability from the considered
thematic product. Second, the practicality and the quality of
the dataset are verified by testing and comparing several deep
learning models employed for crop type mapping. Third, a
challenge covering a typical domain adaptation problem related
to crop type mapping is identified and the related dataset is
released to allow the RS community to effectively address it
in future studies.

The remainder of this article is organized as follows. The
procedures employed to design the benchmark dataset are de-
scribed in Section II. Section III gives an overview on the
peculiar properties of the generated benchmark dataset, while
Section IV introduces some deep learning models, used in the
literature for crop type mapping, which are tested and compared
on the proposed dataset. Section V illustrates the three proposed
challenges related to the presented dataset. Finally, Section VI
concludes this article.
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Fig. 1. Architecture of the automatic method for extracting reliable crop type labels from the public available agricultural Austrian thematic product.

II. DESIGN OF THE TIMESEN2CROP

In this section, we present the procedures employed to gen-
erate the TimeSen2Crop dataset by describing in detail the
properties of the considered RS data and the thematic products
used to generate the benchmark.

A. Sentinel 2 Data Collection

The considered agricultural study area is located in Aus-
tria, which is characterized by a complex landscape typical
of the Alpine region. The topography of this country, which
ranges from high mountain to lowlands areas, together with its
peculiar climate (climatic gradient from west to east) lead to
high biodiversity [8]. This results in a large variety of different
agricultural landscape types, which occupies one fifth of the
Austrian territory (i.e., 83.879 km2).

Sentinel 2 data acquired between September 1, 2017 and
September 1, 2018 were collected by discarding only the data
having cloud coverage lower than 80%. The data were down-
loaded from the Food Security Thematic Exploitation Plat-
form [9], where Sentinel 2 images made up of nine spectral bands
are provided at 10 m spatial resolution, each having a size of
10980×10980 pixels. In particular, the blue (B2–490 nm), green
(B3–560 nm), red (B4–665 nm), the four vegetation red edge
(B5–705 nm, B6–740 nm, B7–0.783 nm, and B8A–865 nm)
and the two short wave infrared (SWIR) (B11–1610 nm and
B12–2190 nm) channels were considered. Band 8 was discarded
because of its coarser spectral resolution compared to band
8 A. The data are atmospherically corrected using the radiative
transfer model MODTRAN [10] and the spectral bands are
provided with a spatial resolution of 10 m [11].

B. Sample Labeling

To provide a reliable benchmark dataset, an automatic
machine-learning-based procedure has been considered to ex-
tract labeled units with high reliability from the considered
publicly available Austrian crop type map [12]. This thematic
product has been produced in the context of the CAP of the
European Union, in order to verify eligibility for area-based
subsidies. Hence, the crop types are based on farmer declara-
tions, while the polygon field boundaries are the ones provided
by the Land Parcel Identification System (LIPS) [13]. Although

the reliability of such product is very high, the random selection
of labeled units extracted directly from the map may lead to the
following:

1) outdated labeled samples;
2) crop types labels not valid for the whole agronomic year

due to the rotation practice;
3) samples associated to the wrong labels due to the polygon

spatial aggregation.
Hence, even though the map represents a rich information

source, it is necessary to accurately select the labeled units to
detect spectral pixels correctly associated to their labels [14].
Fig. 1 shows the automatic approach employed to address this
issue, which is made up on the following two main phases: 1)
preprocessing, and 2) map-labeled unit selection.

1) Preprocessing: In this step, we apply a preprocessing to
both the optical data and the thematic product. The optical pre-
processing step aims to the following: 1) spatially and temporally
harmonize the irregular TSs of cloudy images, and 2) mitigate
the cloud coverage problems. For each pixel associated to a
labeled unit, we extract the multitemporal spectral feature vector.
Such vector, which represents the whole TS of images, is con-
verted into a TS of 12 monthly composites using a pixel-based
statistic-based approach.

Let us focus the attention on the set of Q Sentinel 2 im-
ages acquired within the ith month, with i ∈ [1, 2, . . . , 12].
Let Xi

j = [xi,1
j ;xi,2

j ; · · · ;xi,Q
j ]T be the multitemporal spectral

matrix associated to the jth labeled pixel of the dataset, where
xi,1
j = [xi,1

j,1, x
i,1
j,2, . . . , x

i,1
j,N ] is the spectral vector of the first

Sentinel 2 image of the considered ith month made up of N = 9
spectral channels, i.e., Xi

j ∈ RN×Q. For each spectral band, the
Q reflectance values are collapsed into a single one (representing
the month) by computing their median. Let M{•} be the median
operator, the computation of the ith monthly composite is as
follows:

x̂i
j,1 = M{xi,1

j,1, x
i,2
j,1, . . . , x

i,Q
j,1 }

x̂i
j,2 = M{xi,1

j,2, x
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j,2, . . . , x
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j,2 }

...

x̂i
j,N = M{xi,1
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j,B , . . . , x

i,Q
j,N} (1)
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Fig. 2. Qualitative examples of map labeled units associated to the wrong crop category: (a) original crop type map, (b) high resolution aerial image, and (c)
preliminary predicted map. The administrative boundary of the crop field do not match perfectly the real cultivation present in the scene. Applying the proposed
automatic procedure, this problem is highly mitigated.

where x̂i
j = [x̂i

j,1, x̂
i
j,2, . . . , x̂

i
j,N ] is the spectral vector of the

ith monthly composite. At the end of this step, the obtained
multitemporal spectral vector [x̂1

j , x̂
2
j , . . . , x̂

12
j ] is made up of

108 features, i.e., 9 reflectance values × 12 months. The median
computation is performed by discarding the cloudy, snowy, and
shadowy samples. If no cloud-free images are available for a
considered pixel within the month, the harmonization process
set all the reflectance values of the month to zero.

The thematic product is preprocessed in order to 1) convert the
map legend into the desired classification scheme, and 2) remove
the pixels close to the boundary of the crop fields, which may be
related to spectrally mixed pixels due to the spatial resolution of
Sentinel 2. The map legend has been carefully revised by RS and
agricultural experts to define a set of crop categories interesting
from the agricultural view point and discriminable according
to the spectral and temporal information provided by Sentinel
2. Details are provided in Section III-A. To remove the pixel
close to the field boundary, the standard erosion morphological
operator having disk element of radius equal to 3 is applied to
the thematic map [15]. This step highly increases the probability
of selecting samples having almost pure spectral signature, i.e.,
representative of the phenological properties of a single crop
type.

2) Selection of Map-Labeled Units: To generate a crop type
mapping dataset, the prior probabilities of the crop categories
are extracted from the thematic product using a stratified random
sampling approach. This sampling strategy extracts a number of
samples per crop type proportional to the number of crops asso-
ciated with that type in the considered study area. This procedure
allows us to generate a preliminary “weak” training set where
misclassified samples may be present (i.e., samples associated to
wrong labels) [14]. Then, we run the classifier to generate a pre-
liminary predicted map by using a multitemporal deep learning
LSTM network, a special kind of RNN widely used for crop type
mapping [16]. This network has been extensively employed to
elicit temporal patterns due to its long-term memory capabilities.
By storing a huge amount of evidence to make decisions in that
actual temporal context, it provides better solutions compared

to other recurrent deep learning models. The predicted map is
compared to the original one for selecting only the samples
located in the areas where the two maps agree. Moreover, the
pixel wise posterior probabilities provided by the network are
used as a confidence measure of the classification result. Only
the pixels having high probability to be correctly classified are
selected. In particular, the samples having pixelwise posterior
probabilities higher than the 75th percentile of all posteriors of
that class are selected as possible candidates. This rule allows us
to select the samples classified with high-confidence, adaptively
computing a different threshold value per class. To capture the
spatial variability of the crop classes all over the study area and
reducing correlation, we impose the constrain that the Sentinel
2 pixel labeled units included in the benchmark dataset must
have a distance of at least 12 pixels (i.e., 120 m) each others.

Fig. 2 shows a qualitative example of map labeled units asso-
ciated to the wrong crop category. The administrative boundaries
of the crop field do no match perfectly the real cultivations
present in the scene as visible in Fig. 2(a) and (b), where the
original crop type map and the high-resolution aerial image
are reported. Applying the proposed procedure, this problem is
mitigated [see Fig. 2(c)], thus highly increasing the probability
of associating the map label to pure spectral samples in the TSs
of Sentinel 2 images.

III. TIMESEN2CROP PROPERTIES

The Austrian country is covered by the 15 Sentinel 2 tiles
shown in Fig. 3. Samples extracted from spatially disjoint tiles
were included into the training set (13 tiles), the test set (1 tile),
and the validation set (1 tile) to generate three statistically inde-
pendent sets, each with 822 843 (76.71%), 133 419 (12.43%),
and 116 369 (10.84%) labeled pixels, respectively. Please note
that this condition allows us to have a test area, which extends for
12056.4 km2 and is statistically independent from the training
ones since no spatial overlapping is considered between the
training and the test samples. Fig. 3 shows the division into
training, test, and validation of the Sentinel 2 tiles.
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Fig. 3. Spatial division of the Sentinel 2 tiles into training, test and validation
is reported in blue, yellow, and green, respectively.

TABLE I
CLASS DISTRIBUTIONS IN THE TIMESEN2CROP DATASET

A. Classification Scheme

The definition of the classification scheme is a fundamen-
tal step for the proper generation of a reliable and consistent
benchmark dataset. In particular, the classification scheme must
include only classes that can be discriminated by using the
multitemporal multispectral information provided by the TSs of
Sentinel-2 images. To this end, the map legend of the considered
thematic product [12] was carefully revised by RS and agricul-
tural expert to fill the semantic gap between the crop categories
present in the map and the RS data. In greater detail, the proposed
classification scheme includes the 16 crop categories reported in
Table I. Fig. 4 presented the distribution of the crop categories

per tile, while Table I reports the pixel count (i.e., number of
labeled units) and the proportion per crop category.

The “grassland,” “spring cereals,” “legumes,” and “perma-
nent plantations” crop categories semantically aggregate minor
classes, which cannot be distinguished from the phenological
view point using multispectral optical images. The “grassland”
is made up of “clover” (52.59%), “green pruning rye” (0.15%),
and “alpine meadow” (47.24%), while the “spring cereals”
includes “spring oat” (30.94%), “spring wheat” (14.52%), and
“spring barley” (54.52%). The “legumes” includes horsebeans
(97.80%) and a small presence of sweet lupines (2.19%). The
“permanent plantations” crop type includes all the following
fruit trees: Vineyards (83.29%), Cherry Plantation (0.47%),
Apricots (1.48%), Nectarines (0.02%), Peach (0.44%), Apples
(0.94%), Pears (12.89%), and Plums (0.44%). Finally, “other
crops” includes all the remaining minor classes present in the
map to have an exhaustive classifications scheme. Due to their
scarcity, these crops are not enough to represent a singular crop
type. However, the presence of such a class is fundamental to
consider that not all the crops can be modeled and represented
in the training set but an exhaustive classification scheme is
required in real-world crop type mapping problems.

Differently from the RS dataset publicly available, the pro-
posed benchmark dataset is characterized by a detailed classi-
fication scheme that leads to a challenging crop type mapping
problem.

B. Temporal Properties

The proposed benchmark is made up of TSs of images ac-
quired in the agronomic year ranging between September 2017
and August 2018. Differently from the standard yearly-based
TSs, the provided temporal information allows the accurate char-
acterization of the phenological trend of the cultivations [17].
Only Sentinel 2 images having cloud coverage < 80% are
included in the dataset. Although such threshold is quite con-
servative, many images acquired in winter have been discarded
from the TSs since the considered study area is affected by heavy
cloud coverage.

Table II reports the acquisition dates of the images included in
the TSs for each Sentinel 2 tile. One can notice that TSs acquired
over different tiles present 1) unequal lengths, and 2) variations
in the temporal sampling rate. Indeed, due to the heavy cloud and
snow coverage, for some tiles no images are available for some
months, thus affecting their temporal sampling. Moreover, even
though Sentinel 2 satellites are characterized by a large swath
(i.e., 290 km width), different along-track strips are required to
cover large study areas. This leads to TSs:

1) having variations between the acquisition time of the first
and the last image of the TSs;

2) made up of images acquired in different time stamps
(different temporal sampling);

3) having sequences with variable lengths.
These issues are well known at operational level when work-

ing at country or continental scale. Therefore, the temporal prop-
erties of the proposed challenging benchmark dataset accurately
depict real-world scenarios.
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Fig. 4. Distributions of the crop categories of the TimeSen2Crop dataset per tile.

C. Structure of the Dataset

TimeSen2Crop aims to contribute to the worldwide research
related to the classification of TSs of Sentinel 2 images for
crop type mapping. Thus, it is publicly available at the website
TimeSen2Crop1. The structure of the dataset is hierarchical.
The data are first organized per Sentinel 2 tile, in 15 folders.
Each Sentinel 2 folder includes 16 subfolders, i.e., the crop
categories and the acquisition dates of the specific tile (see
Table II) reported in a CSV file. The dates are time-ordered
from the oldest acquisition to the newest.

Inside the crop type subfolders, each labeled sample has
associated a CSV file, which stores the multitemporal spectral
signature of the corresponding Sentinel 2 pixel. The number of
files depends on the number of pixels extracted for the consid-
ered crop category for the specific Sentinel 2 tile. The spectral
values of the pixels are stored in a matrix, which indicates the
reflectance values for each spectral channel within the different
acquisition dates. In particular, each row reports the different
acquisition time, while each column constrains the different
spectral bands, namely, the blue (B2), green (B3), red (B4), the
four vegetation red edge (B5, B6, B7, and B8A), and the two
SWIR (B11 and B12). The last column contains the information
regarding the condition of the pixel, which can be clear (value
0), cloud (value 1), shadow (value 2), or snow (value 3). Note
that as the considered study area is heavily affected by snow
coverage during the winter season, it is important to have precise
information on the snow presence in the scene.

D. Data Imbalance

Real-world crops classification tasks are usually character-
ized by classes having severely imbalanced prior probabilities.

1[Online]. Available: https://rslab.disi.unitn.it/timesen2crop/

Agricultural areas are usually dominated by few common crops,
which correspond to the crops cultivated extensively (e.g., corn,
wheat). This leads to very different prior probabilities of the
various classes present in the scene. When dealing with such
high imbalanced datasets, the classification model may fail to
accurately recognize the minority classes. However, the accurate
classification of minority crop types is still important. Due to the
use of a stratified random sampling strategy and the possibility
of having available the thematic product for the whole Austrian
country, the proposed benchmark dataset is a valid example of
challenging crop type mapping datasets since it is affected by a
real and strong class imbalance. Thus, it can be used to assess
the capability of different techniques to address this common
problem in agriculture applications.

IV. BENCHMARKING ALGORITHM COMPARISON

To assess the complexity of the proposed TimeSen2Crop
dataset, we have evaluated and compared existing deep learning
methods typically employed for crop type mapping training
them from scratch. We focus the attention on deep learning mod-
els since they outperformed shallows models such as random
forest or support vector machine [18]. Moreover, the proposed
large-scale dataset is meant to be used for deep architectures
that require a large number of samples to successfully train
the model [19]. This peculiar classification task has been ad-
dressed considering two main categories of multitemporal deep
learning architectures, i.e., recurrent deep learning models and
time-convolution deep learning models. While recurrent models
are suited for crop type mapping due to their capability of
capturing temporal dynamics, time-convolution models directly
focus on the temporal profiles to accurately classify sequential
data.

https://rslab.disi.unitn.it/timesen2crop/
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TABLE II
IMAGE ACQUISITION DATES (I.E., MONTH/DAY) OF THE TSS ACQUIRED OVER THE DIFFERENT TILES ARE REPORTED

Only Sentinel 2 images having cloud coverage < 80% are included in the dataset.

The benchmark time-convolution deep learning models con-
sidered are InceptionTime [20], Multiscale ResNet (MSRes-
Net) [21] and temporal convolutional neural network (Tem-
pCNN) [22], while the recurrent deep learning models selected
are the LSTM network [16], the STAR recurrent neural network
(StarRNN) [24], and a weighted LSTM suited for imbalanced
data problems. In particular, the weighted LSTM has been
trained by the two-step procedure proposed in [25], which
mitigates the problem of having imbalanced training data. In the
first step, the weights of the LSTM cost function per crop type are
set according to the number of samples of each class under the
assumption that the number of samples are in proportion to the
a priori probability of the different crops. This procedure avoids
that the gradient calculated with respect to the network weights is
dominated by the contributions of the dominant classes. Then,
the network weights obtained at the end of the first phase are
used as the initial ones of the second training phase, which

is performed using the standard cost function. This operation
allows the output to be restored as an approximation of the a pos-
teriori probabilities. Finally, a self-attention transformer model,
originally developed as sequence-to-sequence encoder–decoder
models for language translation [26], was tested on the proposed
dataset. This attention-based method has been selected since it
proved to be effective for crop type mapping problems [18], [23].

The experimental analysis has been carried out consider-
ing the trainSet, testSet, and validationSet of the proposed
dataset. Since all the considered deep learning models as-
sume to deal with homogeneous TSs characterized by uniform
length, the optical preprocessing step presented in Section II-B1
is first applied to harmonize the TSs acquired over different
tiles. To compare the performance obtained by the different
deep learning models, the Fscore (F1%) and the overall ac-
curacy (OA%) metrics are evaluated on the test set. The stan-
dard grid search approach was used to train the models. The
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TABLE III
OA% AND THE F1% OBTAINED ON THE TEST SET

The scores are reported for the following benchmark methods: InceptionTime [20], MSResNet [21], TempCNN [22], attention-based Transformer [23], StarRNN [24], LSTM [16],
and weighted LSTM.

optimal setup is identified according to the accuracy achieved
on the validationSet. The model specific parameters tested var-
ied per method according to what suggested by the authors.
The learning rate and the weight decay were sampled from
log-uniform distributions, respectively Ulog([10

−2, 10−4]) and
Ulog([10

−2, 10−8]). The weighted LSTM, the LSTM and the
StarRNN have been analyzed with different cascaded layers
L ∈ {2, 3, 4} and hidden representation H ∈ {25, 26, 27}. The
Inception model has been evaluated with different stacks of
Inception modules L ∈ {1, 2, 3, 4} and hidden representations
H ∈ {25, 26, 27}. The MSResNet model hidden representations
were selected within H ∈ {25, 26, 27, 28, 29}. The kernel size
and the hidden representations for the TempCNN were searched
over K ∈ {3, 5, 7} and H ∈ {25, 26, 27}, respectively. Lastly,
the Attention model was validated with Nhead ∈ {1, 2, . . ., 8}
by using L ∈ {1, 2, . . ., 8} stacked layers and H ∈ {25, 26, 27}
hidden representations. Please note that no extensive tuning of
the hyperparameters has been performed, since the goal of the
proposed benchmark comparison is to assess the quality of the
proposed dataset.

Table III reports the experimental results obtained per method.
As expected the most critical classes are the “permanent planta-
tions” and “other crops” regardless of the deep learning model.
This is due to the semantic aggregation of these classes, which
include several types of cultivations. The results obtained show
that the considered benchmark methods achieve similar perfor-
mances, with the OA% ranging from a minimum of 81.71%
(TempCNN) to a maximum of 85.39% (weighted LSTM). In
general, the time-convolution models performed a little worst
compared to the LSTM and the attention models. Hence, Incep-
tionTime, MSResNet, and TempCNN obtain an OA of 81.90%,
81.80%, 81.71%, respectively, compared to of 85.39%, 83.44%,

and 84.44% of the weighted LSTM, LSTM, and the Transformer
models, respectively. As expected the weighted LSTM obtains
better results with respect to the standard LSTM due to its
capability of better handling the imbalanced problem. Moreover,
this method is the one that achieve the highest median F1% equal
to 84.08%. These results point out the main properties of the
TimeSen2Crop dataset and highlights the related classification
difficulties.

V. PROPOSED TIMESEN2CROP CHALLENGE

In this section, we focus on one of the main challenge of
real-world crop type mapping: exploit trained deep learning
models to classify a TS of Sentinel 2 images acquired in a
different agronomic year. This is a particular problem of domain
adaptation. In particular, we focus the attention on the TSs
acquired in an agronomic year after the one considered in the
dataset, i.e., on images acquired between September 2018 and
August 2019. For making it possible the evaluation of the perfor-
mance of a given method under this critical condition, a testSet
is distributed that has been acquired over the 33UVP Sentinel 2
tile. Similar to the original testSet of the TimeSen2Crop dataset,
the images included in the TS present a cloud coverage smaller
than 80%. Also in this case, information about shadow, clouds,
and snow are reported for each labeled samples. This challenge
opens to the possibility to test the capability of adapting different
multitemporal deep learning models to different year acquisi-
tion (domain adaptation) assuming that no reference data are
available for the new year. Note that one of the most important
problems from the operational view point is the production of
consistent land-cover maps for multiple years. To overcome
this problem, sequential cascade classification methods [27],
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[28] and compounds methods [29] have been proposed in the
literature. They typically rely the temporal correlation between
TSs acquired over the same area in the different years. Moreover,
large effort has been devoted in the literature for adapting
pretrained deep learning models to different datasets sharing
similar properties considering fine-tuning strategies [30], [31].
However, also in this case, crop type mapping represents a
peculiar classification task since most of the crops change from
one year to the other because of the crop rotation practice.
Moreover, no comprehensive analyses have been carried out to
solve the problem of generating multiple years crop type maps.

VI. CONCLUSION

This article presents a multitemporal benchmark dataset based
on TSs of atmospherically corrected Sentinel 2 images for large-
scale crop type mapping called TimeSen2Crop. The dataset
presents a detailed classification scheme made up of 16 crop
categories including ∼1 million of labeled units collected in
the Austrian country, which extends for 83.879 km2. For each
labeled sample, the cloud, shadow, and snow information are
provided. The benchmark is provided divided into three spatially
disjoint sets for training the models (trainSet), optimizing the
parameters (validationSet), and evaluating the performances
(testSet). Several benchmarking algorithms and experimental
results have been evaluated and compared on the proposed
dataset. The experimental results point out the properties of the
dataset and provide an overview of its classification difficul-
ties. Moreover, TimeSen2Crop proposes a domain adaptation
challenge to address one of the main critical issues of crop
type mapping, which is the need of frequently update the maps
due to the crop rotation practice. TimeSen2Crop is publicly
available to allow the community to develop advanced methods
for crop type mapping at large scale. The dataset can be found
at TimeSen2Crop2.
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