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SEMSDNet: A Multiscale Dense Network With
Attention for Remote Sensing Scene Classification

Tian Tian , Lingling Li, Weitao Chen , and Huabing Zhou

Abstract—Remote sensing image scene classification plays an im-
portant role in remote sensing image interpretation. Deep learning
brings prosperity to the research in this field, and numerous deep
learning models are proposed in order to improve the performance
of scene classification. However, images of different remote sensing
scenes vary a lot, showing similar or diverse textures and simple
or complex contents. Using a fixed convolutional neural network
framework to classify scene images is performance-limited and not
practice-flexible. To address this issue, in this article, we propose the
SEMSDNet (multiscale dense networks with squeeze and excitation
attention). The framework multiscale dense convolutional network
(MSDNet) with multiple classifiers and dense connections can auto-
matically transform between a small network and a deep network
according to the complexity of test samples and the limitation
of computational resources. Moreover, in order to extract more
effective features, the squeeze-and-excitation (SE) attention mech-
anism is introduced into the framework to process the features of
various scenes self-adaptively. In addition, considering the limited
computing resources, we impose two settings with computational
constraints at the test time: budgeted batch classification, which is
a fixed computational budget setting for sample classification, and
anytime prediction, which forces the network to output a prediction
at any given point-in-time. Experimental results on several public
datasets show that the proposed SEMSDNet method is superior to
the state-of-the-art methods on both performance and efficiency.
Experiments also reveal its capability to treat samples of differ-
ent classification difficulties with uneven resource allocation and
flexible network architecture, showing its potentials in practical
applications.

Index Terms—Attention mechanism, dense connection,
multiscale, remote sensing scene classification.

I. INTRODUCTION

W ITH the rapid development of space remote sensing
technology, a large number of high-quality remote sens-

ing scene images are easy to obtain [1]. Remote sensing scene
classification is an important method for remote sensing im-
age interpretation, which has a significant application value

Manuscript received November 27, 2020; revised February 25, 2021 and April
11, 2021; accepted April 17, 2021. Date of publication April 22, 2021; date of
current version June 8, 2021. This work was supported in part by the National
Natural Science Foundation of China under Grant 42071339, Grant U1711266,
Gtart 41925007, Grant U1803117, and Grant 42071430. (Corresponding author:
Weitao Chen.)

Tian Tian is with the School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology, Wuhan 430074, China (e-mail:
tiantian_hust@foxmail.com).

Lingling Li and Weitao Chen are with the School of Computer Sci-
ence, China University of Geosciences, Wuhan 430074, China (e-mail:
2986614532@qq.com; wtchen@cug.edu.cn).

Huabing Zhou is with the School of Wuhan Institute of Technology, Wuhan
430205, China (e-mail: zhouhuabing@gmail.com).

Digital Object Identifier 10.1109/JSTARS.2021.3074508

Fig. 1. Left image depicts the desert with simple textures, which is easy
to classify, whereas the right image shows the industrial scene with complex
contents, which is difficult to classify.

in urban planning, geographic image retrieval, and land-use
classification [2].

Remote sensing scene classification automatically assigns
a specific label to each remote sensing image based on the
content of scene [3], and the results of remote sensing scene
classification usually depend on the features extracted from the
images [4]. In recent decades, many scholars have done a great
deal of research works on the classification of remote sensing
scenes, and a review of them can be found in literature [5], [6].
There are three mainstream methods for remote sensing scene
classification according to the level of features, which will be
detailed in Section II. Deep convolutional neural network (CNN)
has achieved great success in many visual applications due to
its good biological basis and hierarchically abstract expression
ability [7], which has been widely concerned by academia and
industry. In recent years, CNN has also been widely used in
remote sensing scene classification [8]–[10]. Without manu-
ally designed features, more complex and higher level abstract
semantic features can be automatically extracted directly by
superimposing a series of convolutional and pooling layers.

Although previous CNN models have remarkably improved
performances on remote sensing scene classification, they also
have some limitations. These CNN models generally use a
uniform pipeline to extract image features, namely, they treat
different scene categories equally. However, the classification
difficulty of remote sensing images varies greatly among dif-
ferent scene categories. To illustrate this point, different scene
images in Aerial Image Dataset (AID) [5] are taken as an exam-
ple. As shown in Fig. 1, the left image depicts the desert with
simple textures and the single content is obviously much easier
to identify, whereas the right one shows the industrial scene with
more complex objects and contents is more difficult to recognize.
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Computationally intensive models are necessary to process more
complex samples, but they may be wasteful and even overfitting
when applied to simple samples such as the desert image on
the left. In other words, it is a waste of computational resources
for no gains to employ a complex network on the classification
of simple scenes, whereas the effect of a simple and shallow
network structure may be not good enough for complex scenes.
Therefore, using a fixed framework to classify remote sensing
images is not flexible enough. Moreover, the computational
resources are not always rich in practical applications, which
require different processing schemes for different images: less
processing for simple samples, and more allocation of resources
for complex samples as far as possible. This may be a good idea
to achieve a comprehensive optimal classification performance
under the condition of limited computational resources.

In view of the above characteristics of remote sensing scene
images, we propose to use a new framework, MSDNet [11],
on remote sensing scene image classification, which facilitates
early prediction outputs with multiple classifiers. MSDNet is
a CNN with multiscale features and dense connections. The
multiscale feature extraction is used to maintain both coarse
and fine feature representation within the network structure and
benefit the prediction on early layers, and the dense connection
is adopted to alleviate the impact of early classifiers on later
ones. In our scheme and application, simple scene images can
output classification results directly from the shallow classifier,
while complex scenes can be further processed at a deeper
classifier in the network. In other words, when the test image is
simple or the computational resources are limited, the model can
automatically form a small and simple network; when the sample
is difficult or resources are abundant, the model can be used
as a deeper and more complex network structure. Considering
practical conditions, we impose two settings with computational
constraints at the test time: budgeted batch classification, where
a fixed computational budget is shared across a large set of
examples, which can be spent unevenly across “easy” and “hard”
image samples; anytime prediction, where the network can be
forced to output a prediction at any given point-in-time. The
budgeted batch classification setting is ubiquitous in large-scale
machine learning applications, so it is in the remote sensing field.
In the budgeted batch classification setting, a model can improve
the average accuracy by reducing the amount of computation
spent on easy samples to save up computation for hard sam-
ples. Anytime prediction is also necessary in real applications,
because an output must be obtained before the computational
resources run out.

In addition, the remote sensing image scene is rich in spatial
information and complex background, where a lot of redundant
features exist, which will interfere with the effective feature ex-
traction for scene classification. In the feature extraction process,
if the network treats each feature equally, the feature discrimi-
nation ability of the model is obviously insufficient. Therefore,
it is necessary to effectively extract a variety of features and
establish the relationship between features, and finally extract
the key features that are most important to the classification task.
Without introducing a new spatial dimension to fuse the feature
channels, we use the SE attention mechanism [12] to establish

the relationship between feature channels, which can explicitly
model the interdependence between channels and automatically
obtain the importance of each feature channel. This attention
mechanism allows the model to enhance the feature channels
with useful information, while suppresses those channels that are
not useful for classification tasks. The essence of this attention
module is to learn the weights of feature maps, and we think this
attention mechanism will be highly beneficial for MSDNet on
remote sensing scene classification. Our experimental results in
Section IV also show that the SE attention mechanism has indeed
improved the classification effects. To sum up, the contributions
of our work include the following three aspects.

1) We adopt the multiscale dense framework with multiple
classifiers and propose SEMSDNet for remote sensing
scene classification. The proposed method has achieved
state-of-the-art performances with better efficiency on
three public datasets. As far as we know, this is the first
time to employ this framework on remote sensing scene
classification.

2) Considering the complexity of remote sensing scenes,
different processing and different allocation of computing
resources can be used for simple or difficult samples
to achieve the optimal comprehensive performance. The
proposed approach uses attention mechanism enhanced
MSDNet with multiple classifiers to implement different
processing pipelines under a unified framework.

3) We research two common settings under limited com-
puting resources. No matter budgeted batch classification
or anytime prediction, the proposed method is able to
achieve better classification accuracies and require less
computation consumption, showing the ability to make a
good balance and a flexible processing on various samples.

The rest of this article is organized as follows. Section II
reviews the related literature work of this study. Section III
introduces the proposed SEMSDNet for remote sensing scene
classification. Section IV shows the experimental results of the
proposed SEMSDNet on several public benchmark datasets.
Section V summarizes the full article, and puts forward some
opinions and suggestions for the future research.

II. RELATED WORK

In this section, we first review the traditional methods of
remote sensing scene classification. Then, we also discuss the
attention mechanism and implementation methods.

A. Methods for Remote Sensing Scene Classification

In recent years, with the rapid development of image pro-
cessing and pattern recognition, many scholars have done a
lot of work on remote sensing scene classification. The major
research works of remote sensing image scene classification
focus on feature extraction and semantic classification. To obtain
high-accuracy classification results, effective and discriminative
feature representation plays a very important role [13]. Accord-
ing to the level of feature, the remote sensing image classification
methods can be divided into three categories: 1) low-level fea-
tures; 2) mid-level features; and 3) high-level semantic features.



TIAN et al.: SEMSDNET: A MULTI-SCALE DENSE NETWORK WITH ATTENTION FOR REMOTE SENSING SCENE CLASSIFICATION 5503

The original classification methods mainly depend on the ex-
traction of manually designed low-level features. These methods
first describe low-level features such as the texture, shape, space,
color, and spectral information. Then, the whole scene image
through the feature description route of local feature extraction,
middle-level coding, and global expression is described, and
finally, classification results through the feature classifier are
obtained. Specifically, Li et al. [14] proposed morphological
texture descriptors to extract useful contents from remote sens-
ing images. Aptoula et al. [15] utilized a color code method to
accelerate scene classification performance. However, methods
based on low-level feature extraction depend on the features of
manual design, which cannot capture the rich semantic informa-
tion of remote sensing images; therefore, their performances on
scene classification tasks are unsatisfactory. Methods based on
mid-level feature extraction use handcrafted feature descriptors
of low level to extract local image features and use high-order
statistical patterns to encode these features [16], [17]. The bag-
of-visual word is the pioneer of this kind of methods, and then,
it is enhanced by spatial pyramid matching [18], [19] and sparse
coding [20], [21] to increase the constraint of feature distribution
and reduce the complexity of models. Although they have made
progress on this research, these methods can still not extract
high-level semantic features, resulting in inaccurate classifica-
tion performances. In recent years, deep learning technology
has been successfully applied to remote sensing image scene
classification. The most popular deep learning models are the
autoencoder (AE) [22] and the CNN [23]. Zhang et al. [22]
utilized the AE to train a feature extraction model for scene
classification, although methods based on AE need a pretraining
layer and are time-consuming to train. CNNs can directly train
a deep network without pretraining, meanwhile achieve better
classification accuracy of remote sensing scenes, so they have
attracted more and more attention from the researchers.

Most of the early CNN-based methods train the networks with
a fixed scale. However, for the classification of remote sensing
scenes with complex surface coverage and various scales of de-
tail textures, it is not appropriate to use a deep abstract feature of a
single scale. Convolutional kernels of fixed size are insufficient
to extract scene features of different scales, inevitably losing
effectively discriminative information. Moreover, features of
different scales in deep learning provide descriptions of different
levels, and making full use of scale information is beneficial to
the remote sensing image classification.

To solve the above problem, some multiscale classification
methods have been proposed successively. Liu et al. [24] in-
tegrated CNN and the kernel method to fuse the multiscale
features extracted from images. Suhui et al. [25] used CNN
to extract the multiscale features of images, and used multicore
support vector machine to improve the scene classification. Liu
et al. [26] proposed a multiscale CNN (MCNN) framework
for remote sensing classification. Different from the previous
methods of training networks on fixed scale images, MCNN con-
structs a new network structure including two network branches
(fixed-scale branch and varied-scale branch), which can train
network models with multiscale images simultaneously. In the
above scene classification methods, only the local multiscale

is used, but the multiscale features of images and the depth
of networks are not fully utilized. Therefore, Yang et al. [27]
proposed a new remote sensing scene classification method
based on multiscale feature fusion (MSFF). MSFF combines
multiscale features and multiscale input images for the first time,
and the hierarchical features extracted from different levels are
fused for classification. Wang et al. [28] proposed an enhanced
feature pyramid network to extract multiscale and multilevel
features, and a feature fusion module called two-branch deep
feature fusion is introduced to aggregate the features at different
levels in an effective way.

However, the abovementioned methods treat remote sensing
scene categories equally. In fact, similar to natural image classi-
fication, some input images are easy to classify by the networks,
while some are difficult. Taking the classification difference of
natural images and the budget balance under limited resources
into account, MSDNet uses a cascade of intermediate classifiers
throughout the network. For simple images, the results can be
obtained in advance from a previous classifier, while complex
images can be transmitted to deeper classifiers. Although the
early exit idea has been presented in some literatures [29], [30],
the performance degradation of predictions are observed with
the insertion of early classifiers. Huang et al. [11] implemented
comprehensive experiments of early exits and concluded the two
problems that the direct design idea of multiple classification
layers brings. 1) The traditional neural networks learn fine
features at the front layers and coarse features at the back layers.
The abstract semantic features of the last layers are important
to classify the content of an image into a given class, so the
classification accuracy is highly dependent on the position of
the classifier. Due to the lack of coarse scales, classifiers at
shallow layers may produce poor classification results. 2) The
addition of early classifiers will interfere with later classifiers.
Intermediate classifiers in the early layers intend to optimize
the short term rather than the last layer. This optimization
improves the accuracy of the intermediate classifiers, but harms
the information needed to generate high-quality features in the
later layers. This effect becomes more apparent when the first
classifier is connected to an earlier layer [11].

For the first problem, MSDNet proposes to employ multiscale
feature maps, and all classifiers only use coarse-level features.
A feature map at a particular layer and scale is obtained by
combining the following one or two convolutions: 1) apply
regular convolution to the same scale features of the previous
layers (horizontal connection); 2) apply strided convolution to
the fine-scale feature map from the previous layers (vertical con-
nections). The horizontal connections preserve high-resolution
information, which helps to build high-quality coarse features in
subsequent layers. And the vertical connections produce coarse
features that are conducive to classify throughout the process.
For the second problem, MSDNet proposes to adopt dense
connection. Dense connections [31] connect each layer to all
subsequent layers and allow subsequent layers to bypass the
feature of short-term optimization to keep the final classifier
high precision. If an earlier layer collapses information to gen-
erate short-term features, the lost information can be recovered
through the direct connection to its previous layers. Performance
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Fig. 2. Multiscale architecture for remote sensing scene classification.

of the final classifiers will become more independent of the
location of the intermediate classifiers. MSDNet has validated
the importance of dense connectivity for early-exit classifiers in
deep networks on natural images.

B. Attention Mechanism and Methods

The attention mechanism stems from the study of human vi-
sion. In cognitive science, because of the bottleneck of informa-
tion processing, human beings selectively focus on some of the
information and ignore other visible information. CNNs use the
attention mechanism to focus on a certain part of the given infor-
mation, and each pixel has an independent weight, highlighting
the distinguishing features that are effective and weakening the
information that is not conducive to classification [32]. Attention
can be seen as a way to allocate available computing resources
to the most informative signal components [33], [34].

Attention mechanism has been used successfully in many
tasks including localization and understanding in images [35],
sequence learning [36], [37], lip reading [38], and image cap-
tioning [39]. In these applications, it can be merged into a single
operator, following one or more layers that represent higher
levels of semantic abstraction. Attention mechanism has also
been successfully applied to remote sensing scene classifica-
tion and significantly improved the classification effect. For
example, Tang et al. [40] proposed a parallel-attention model
to capture the local information from the spatial and spectral
aspects. Some researches focus on the combined use of spatial
attention and channel attention [41], [42]. Different from the
previous studies that pay attention to the spatial attention with
a large number of weight parameters [43], the squeeze-and-
excitation (SE) block contains a lightweight gating mechanism
that enhances the representational power of the network by
modeling channel relationships in a computationally efficient
manner [12]. In addition, SE blocks can be integrated into tradi-
tional network architectures such as VGGNet [44] by inserting
the nonlinearity operation after each convolution. Moreover, the
number of parameters of SE module is very small, which will
not cause network overfitting. These advantages make the SE
block become a very popular attention processing component

in current network frameworks. In this article, we utilize the SE
attention mechanism to learn the relationship between channels
and improve the classification performance.

III. METHOD

This section first introduces the structure of MSDNet in
terms of scale and depth, and then introduces the SE attention
module and the new network SEMSDNet that integrates the
two components. Budgeted batch classification and anytime
prediction methods are introduced as well to illustrate the modes
of application under limited resource condition.

A. Scale Structure of the MSDNet

Different scale information has different levels of feature
representation. It is of great significance to make full use of scale
information in remote sensing scene classification. Fig. 2 shows
the three scales of MSDNet’s framework. The horizontal direc-
tion corresponds to the layer direction of the network, and deep
learning model is performed continuously on the same scale to
extract the depth features. The vertical direction corresponds to
the scale of the feature maps. Each column represents a layer of
the network. Horizontal arrows indicate a regular convolution
operation. The diagonal and vertical arrows represent down-
sample performed by the stride convolution to make the feature
from fine to coarse with different scales. As shown in Fig. 2, the
low-scale feature mapx1

1 is down sampled to obtain middle-scale
feature map x2

1. The middle-scale feature map x2
2 summarizes

the middle-scale map x2
1 and low-scale feature map x1

1. Feature
maps of different scales can be aggregated by this way. In the
horizontal direction, feature map x1

2 is directly generated by x1
1

with the same scale.
Table I shows the details of feature fusion in Fig. 2. Symbol

xs
n corresponds to feature map at the layer n and scale sth.

hs
n is a regular convolution operator, and h̃s

n(.) represents the
down-sampling operation with stride convolution. The symbol
[...] refers to the concatenation aggregation operation. Each
feature map in the subsequent layers is a cascade of different
scales. In the direction of scale and depth, the feature informa-
tion of the network flows diagonally from the previous layer.
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TABLE I
FEATURE AGGREGATION TABLE CORRESPONDING TO MULTISCALE STRUCTURE

Fig. 3. Illustration of the dense structure with one block in the depth direction. The dense block includes five composite functions and two transition layers. The
light blue module is the composite function with the bottleneck layer, and the deep blue module is the transition layer.

The horizontal connection saves and processes high-resolution
information of remote sensing scene images, which is conducive
to establish high-quality coarse features in subsequent layers.
The vertical connection produces rough features throughout the
stride convolution, which is convenient for remote sensing scene
classification.

B. Depth Structure of the MSDNet

Traditional CNN produces fine features in early layers and
coarse features in later layers [45]. Since the learning process
is progressive, fine features tend to be lost in the process of
convolution even if the skip connection is used. In addition,
with the increase of network depth, the network complexity
and training parameters also increase greatly. Therefore, for
the classification of remote sensing scenes, the training time
is often long and the convergence speed is slow. Moreover, the
input information and the gradient tend to disappear when the
multilayer transmission reaches the network terminal if the hori-
zontal network structure is too deep. Therefore, when designing
horizontal network, we must pay attention to the appropriate
feature aggregation methods.

DenseNet uses dense connection to solve this problem [31].
By connecting all layers directly, it ensures maximum informa-
tion flow between layers. Each layer receives information from
the earlier layer as the input, and then transmits its own feature
maps to the subsequent layers. In the depth direction, MSDNet
utilizes dense connectivity to build the network framework (see
Fig. 3). A dense block consists of composite functions with a

bottleneck layer and a transition layer. The composite function
with bottleneck layer includes BN, ReLU and convolutional
layers with 1 × 1 and 3 × 3 convolution kernel, which defines
the connection between input and output. The transition layer
includes BN, ReLU, and 1 × 1 convolution kernel, which con-
trols the number of channels and unifies the size of feature maps
in each dense block. Therefore, there will be no problem of
size inconsistency in concatenation. The model training process
can be accelerated and the accuracy of remote sensing scene
classification can be increased.

C. SE Block

MSDNet can be simply seen as a network framework based
on multiscale DenseNet. Since DenseNet has strong feature
representation in spatial domain, we introduce SE attention
mechanism in the channel domain into the network model to
learn the relationship between channels. With the help of channel
attention mechanism, the network can automatically obtain the
importance of each feature channel by learning, and then will
improve or suppress the features according to their importance
for the current task. A diagram illustrating the structure of an SE
block is shown in Fig. 4. The SE attention mechanism includes
two stages: “squeeze” and “excitation.”

1) Squeeze: Global Information Embedding: In order to
learn the dependencies between channels, the global average
pooling method is used to compress the feature channels on the
spatial dimension, and then, each feature channel is compressed
into a real number with a global receptive field. Finally, all
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Fig. 4. SE block.

feature channels are compressed into a 1-D real number set.
Each real number on the real number set represents a global
feature channel, and the length of the real number set is the
same as the number of feature channels. As shown in Fig. 4,
Ftr is a normal convolution operation, mapping input X to
feature maps U with the size of H ×W × C. Equation (1) is
the squeeze operation, where uc is the cth 2-D matrix in feature
maps U , and the subscript c indicates the serial number of the
channel. Fsq represents the squeeze operation, which converts
the input feature maps U to the output with size of 1 × 1 × C.
C represents the number of feature channels, H and W are the
height and width of the feature maps, and i and j are the elements
of the feature maps, respectively.

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (1)

2) Excitation—Adaptive Recalibration: The compression
operation is equivalent to the analysis of the numerical distribu-
tion of feature maps, or global information. Then, the excitation
operation is implemented, which is designed to fully capture the
channel dependencies. As shown in (2), the excitation module
exploits a gating mechanism with a sigmoid activation:

sc = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)) (2)

where Fex is the fully connected layer and z is the output of the
squeeze operation. W1 represents the full connection layer. The
dimension ofW1 is C

r × C and r is the scaling parameter, whose
function is to reduce the number of channels so as to reduce
the amount of computation. Then, the activation function δ is
used to activate the output with dimension unchanged, and then
multiply the output with W2. W2 is also a fully connected layer,
whose dimension is C × C

r . As a result, the output dimension
is 1 × 1 × C. σ is the sigmoid function. Finally, as shown in
(3), uc is the original 2-D feature map. sc is the output of the
excitation operation, which also can be seen as the weight vec-
tor. Fscale(uc, sc) refers to channel-wise multiplication between
weight vector sc and feature map uc ∈ RH×W . It is equivalent
to assigning different weights to different feature channels.

x̃c = Fscale(uc, sc) = scuc (3)

The parameters of the SE attention mechanism model are
very small, only 0.22 M. It can be used as a pluggable tool
in the mainstream network frameworks. Moreover, it can help

the network to learn discriminant features meanwhile alleviate
overfitting.

D. Framework of the SEMSDNet for Remote Sensing Scene
Classification

Fig. 5 shows the overall framework of the proposed SEMS-
DNet with the scale structure and deep structure, where the
first four layers are depicted in details. The horizontal direction
corresponds to the depth (layer) direction of network, and the
vertical direction corresponds to the scale of the feature maps.
The horizontal arrows represent a regular convolution opera-
tion, whereas diagonal and vertical arrows represent a strided
convolution operation. Classifiers operate on the second, third,
and fourth layers. Fig. 6 shows the details of the horizontal
structure of the SEMSDNet, which explains where the atten-
tion mechanism functions. The SE module is inserted after the
transition layer of each dense block (depicted in Fig. 3) in the
depth (horizontal) direction. Through this fusion mechanism,
the network can not only realize the lossless transmission of
the original input information, but also automatically learn the
importance of each feature channel, which enables the feature
channel adaptive calibration by enhancements and suppressions
of the beneficial features and the useless features.

The structures and parameter settings of key layers of the
network are described as follows.

1) First layer. The first layer (n = 1) is unique as it includes
vertical connections. Its main purpose is to produce rep-
resentations on all S scales. We can see the first layer’s
vertical layout as a miniature “S-layers” convolutional
network. We denote the output feature maps at the layer
n and scale s as xs

n and the original input image as
x1
0. Feature maps with coarse scales are obtained by

down-sampling. The first layer consists of the convolution
operation with 3 × 3 convolution kernels, BN, and ReLU.

2) Subsequent layers. Subsequent layers produced the output
feature maps xs

n with scales s at subsequent layers n,
which are a concatenation of feature maps from previous
features maps with s and s− 1. The nth layer of network
outputs as a set of features at S scales {x1

n, x
2
n, . . ., x

S
n}.

3) Classifiers. The classifier at layer n with the coarsest scale
utilizes all the features [xS

1 , x
S
2 , . . ., x

S
n ]. Each classifier

consists of two convolutional layers, followed by one
average pooling layer and one linear layer. Classifiers
are only attached to some of the intermediate layers,
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Fig. 5. Framework of the proposed SEMSDNet with the scale and deep structure.

Fig. 6. Illustration of the horizontal structure of the proposed SEMSDNet. The SE layer is added after each transition layer in the depth direction.

and let fk(.) denote the kth classifier. The function of
the classifier depends on the network settings. In the
anytime setting at test time, we propagate an image
through the network until we run out of budget and output
the latest predictions. During testing in the batch bud-
get setting, a probability threshold θk is set in advance.
When the example traverses the network, if the predic-
tion confidence of a certain classifier exceeds this thresh-
old, the classification result can be directly output. Due
to the limited experimental conditions, our main concern
is the batch budget setting to save computing resources.

4) Loss functions. During the training, cross entropy loss
functions L(fk) (fk denotes the kth classifier) are used
for all classifiers to minimize a weighted cumulative loss:
1
|D|

∑
(x,y)∈D

∑
k wkL(fk). D denotes the training set

and wk is the weight of the kth classifier. We use the same
weight for all loss functions.

E. Budgeted Batch Classification

In the budgeted batch classification setting, the model needs
to classify a batch of image samples Dtest = {X1, . . ., XM}
within a finite computational budget B > 0 that is known in
advance. We aim to minimize the loss across all image samples
in Dtest within the computational budget B, which we denote
by L(f(Dtest), B) for the loss function L(.). SEMSDNet will

probably spend less than B/M computation on classifying an
“easy” image sample while use more thanB/M computation on
classifying a “difficult” one. Therefore, the budgetB considered
here is a soft constraint when we have a batch of testing image
samples.

F. Anytime Prediction

In the anytime prediction setting, there is a finite computa-
tional budget B > 0 for each test image sample x. The com-
putational budget is nondeterministic and varies according to
each test sample. It is determined by whether the model needs
to output a prediction immediately. We assume that the budget
subject to some joint distributionP (x,B). In some applications,
P (B) may be independent of P (x) and can be estimated. We
denote the loss of a model f(x) that has to output a prediction
for image sample s within budget B by L(f(x), B). The goal
of the anytime setting is to minimize the expected loss under the
budget distribution: L(f) = E[L(f(x), B)]P (x,B). Here, L(.)
represents the loss function. The expectation under P (x,B) can
be estimated by an average over image samples from P (x,B).

IV. EXPERIMENTS

To verify the effectiveness of SEMSDNet model, we have
performed a set of comprehensive experiments on three public
benchmark datasets of remote sensing scenes, and the dataset
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Fig. 7. Class samples of the UC Merced Land-Use dataset.

descriptions, experimental settings and results are presented in
the following sections.

A. Dataset Descriptions

1) UC Merced Land-Use Data Set: The UC Merced Land-
Use dataset [46] consists of 2100 images divided into 21 land-
use classes, including 1) agricultural, 2) intersection, 3) mobile
home park, 4) dense residential, 5) baseball diamond, 6) forest,
7) medium residential, 8) sparse residential, 9) chaparral, 10)
overpass, 11) harbor, 12) buildings, 13) freeway, 14) parking
lot, 15) storage tanks, 16) beach, 17) airplane, 18) runway, 19)
golf course, 20) tennis courts, and 21) river. Each scene category
contains 100 images with 256 × 256 pixels. Fig. 7 shows some
examples of scenes in the UC Merced Land-Use dataset.

2) Aerial Image Dataset: The AID [5] is a big remote sens-
ing image dataset with an image pixel size of 600 × 600. It
contains 30 scene categories, each of which has about 220–420
aerial images, for a total of 10 000 aerial images, including 1)
railway station, 2) school, 3) square, 4) storage tanks, 5) dense
residential, 6) meadow, 7) forest, 8) park, 9) playground, 10) in-
dustrial, 11) baseball field, 12) center, 13) church, 14) farmland,
15) mountain, 16) port, 17) resort, 18) sparse residential, 19)
beach, 20) parking, 21) commercial, 22) airport, 23) medium
residential, 24) pond, 25) bridge, 26) river, 27) desert, 28) bare
land, 29) stadium, and 30) viaduct. The dataset was published by
the Huazhong University of Science and Technology and Wuhan
University in 2017. Some examples of the AID are shown in
Fig. 8.

3) NWPU-RESISC45 Dataset: The NWPU-RESISC45
dataset [6] contains 31 500 images, which are divided into
45 scene categories, including 1) basketball court, 2) baseball
diamond, 3) beach, 4) church, 5) bridge, 6) chaparral, 7) harbor,
8) thermal power station, 9) sparse residential, 10) stadium, 11)
medium residential, 12) railway, 13) parking lot, 14) desert,
15) railway station, 16) forest, 17) runway, 18) rectangular
farmland, 19) ship, 20) freeway, 21) industrial area, 22) river,
23) cloud, 24) snow berg, 25) terrace, 26) golf course, 27)
commercial area, 28) tennis court, 29) dense residential, 30)
mobile home park, 31) meadow, 32) overpass, 33) storage tank,
34) roundabout, 35) circular farmland, 36) intersection, 37)
island, 38) mountain, 39) sea ice, 40) ground track field, 41)
airport, 42) lake, 43) palace, 44) airplane, and 45) wetland.

Fig. 8. Class samples of the AID dataset.

Fig. 9. Class samples of the NWPU-RESISC45 dataset.

The spatial resolution ranges from about 30 to 0.2 m/pixel.
Each scene category contains 700 images with the size of
256 × 256 pixels. This dataset includes more than 100 urban
areas worldwide. It is one of the largest remote sensing scene
datasets in terms of the number and category of images with
greater intraclass differences and interclass similarities than
the former two datasets. Therefore, the classification of this
dataset is the most difficult. Fig. 9 shows some examples of the
NWPU-RESISC45 dataset.

B. Experimental Settings

1) Dataset Setting and Parameter Settings: We randomly di-
vide the training set and the test set by conventional proportions.
For the UC Merced Land-Use dataset, the training ratio is 80%
and 50%, respectively. For the AID dataset, the training ratio is
50% and 20%, respectively. For the NWPU-RESISC45 dataset,
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TABLE II
CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT METHOD ON UC

MERCED LAND-USE DATASET

the training ratio is 20% and 10%, respectively. These ratios have
been selected based on previous studies in the literature so that
we can compare with the latest methods. The training images
are enhanced by horizontal flip and vertical flip.

In terms of network implementation, we use the PyTorch
framework to implement our method. The network parameters
and settings are as follows We use stochastic gradient descent
and Nesterov momentum with a momentum weight of 0.9 to train
all models. The training epochs are 150 and the batch size is 256.
The initial learning rate is 0.1, which is divided by a factor of 10
after 40, 80, and 120 epochs. To facilitate the training, we resize
all images to 256 × 256. In order to obtain reliable results on
all datasets, we repeat the experiment 10 times for each training
ratio, and calculate the average and standard deviation of the
results. In addition, all experiments are implemented on a PC
with CPU i7-10875H, 32 GB of RAM, 1 T SSD, and two GPUs
(GTX 1080 Ti).

2) Evaluation Metrics: We use the overall accuracy and con-
fusion matrix as the evaluation metric, which are also the two
most common quantitative evaluation metrics of remote sensing
scene classification. Overall accuracy is defined as the total
number of correctly classified images divided by the number
of images, which reflects the overall classification performance
of the network. A confusion matrix is an information table used
to analyze errors and confusions between different categories. It
is obtained by counting the correct and incorrect classifications
of each type of test images, and accumulating the results in the
table. The confusion matrix can show the detail classification
results. It focuses on the wrong classification, and it is a sup-
plementary evaluation tool for overall accuracy. In addition, in
order to evaluate the performance of the model, we choose the
computation amount as the evaluation metric. The computation
amount refers to the number of floating point operations for
a complete forward propagation of the network model, which
cannot fully represent the length of the prediction time of the
model.

C. Experiment Results

1) Experiment Results of UC Merced Land-Use Dataset:
As shown in Table II, after adding the attention module, the
proposed SEMSDNet achieves the highest classification perfor-
mance with 99.41% and 98.80% for the 80% and 20% training
ratios, respectively. Furthermore, as shown in Fig. 10, 19 scene

Fig. 10. Confusion matrix of the UC Merced Land-Use dataset under the
training ratio of 80% using SEMSDNet.

TABLE III
CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT METHOD ON

AERIAL DATA SET

categories are classified correctly in the test set. There are only
two scene categories misclassified (harbor is misclassified as
agricultural; tennis court is misclassified as runway). Most scene
categories can be classified correctly.

2) Experiment Results of AID dataset: Table III shows the
overall accuracy obtained by several different models. The
SEMSDNet obtains the best performance with overall accuracy
of 97.64% and 94.23% for the 50% and 20% training ratios,
respectively. From the confusion matrix in Fig. 11, the five
categories, which are school, center, park, resort, and square,
are easily misclassified. This is due to the high similarity among
these categories, which is difficult to distinguish even for human
beings.

3) Experiment Results of NWPU-RESISC45 Dataset: As
shown in Table IV, the proposed SEMSDNet method achieves
the best classification performance of 93.89% and 91.68% for the
20% and 10% training ratios, respectively, which shows that the
network architecture is very effective in extracting the category
features of remote sensing scene images compared with the
contrast algorithms. The confusion matrix in Fig. 12 shows that
some pairs of categories (such as wetlands and lakes, terraces
and rectangular farmland, palaces, and churches, etc.) are easily
confused due to their high interclass similarity. In addition, some
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Fig. 11. Confusion matrix of the AID under the training ratio of 50% using
SEMSDNet.

TABLE IV
CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT METHOD ON

NWPU-RESISC45 DATASET

categories (such as thermal power station, palace, and freeway)
are still hard to classify due to the high intraclass diversity.

4) Per-Class Comparisons: We draw a per-class histogram
to better analyze the performance of our proposed network
SEMSDNet on different scene categories. We take the AID
dataset for example and employ two benchmark models for
comparisons. From the per-class results on the AID dataset
(Fig. 13), we can see that our method (SEMSDNet) outperforms
other methods on distinguishing difficult scene categories. With
the SE attention mechanism, our method can learn discrim-
inative features and obtain better classification results. Some
difficult scenes such as church, industrial, park, and river can be
well distinguished. Particularly, tremendous improvements can
be observed on some classes such as center, dense residential,
resort, and square.

5) Ablation Studies for SEMSDNet: In order to verify the
effect of the SE attention mechanism, we perform ablation
experiments on the AID dataset and NWPU-RESISC dataset.
Table V shows the classification results. For both datasets, ob-
vious enhancement of classification accuracies can be observed
under different training ratios. For example, the classification

TABLE V
ABLATION STUDY OF SEMSDNET ON THE AID AND NWPU-RESISC45

DATASET

TABLE VI
COMPARISON OF MODEL PARAMETERS, COMPUTATIONAL COMPLEXITY AND

PREDICTION TIME OF DIFFERENT MODELS ON AID TEST SET

accuracies of SEMSDNet are about 2% higher than MSDNet
for AID dataset, and 4% for NWPU-RESISC dataset. This
improvement is due to the fact that the SE attention mechanism
enhances the representation of important features and suppresses
the representation of less useful features.

6) Model Complexity and Lightweight Analysis: Theoreti-
cally and empirically, the deeper the network layer is, the deeper
the semantic features can be extracted, which will be more
helpful for the classification task. However, as the network
layer deepens, the number of model parameters will continue
to increase, and the computational complexity will also in-
crease. Therefore, when we design the network structure, a
tradeoff should be made between the classification ability of
the model and the computational complexity. Table VI shows
the parameter indexes of different network models on the AID
dataset, including the number of parameters, the amount of
computation, and the prediction time. The computation amount
refers to the number of floating point operations for a complete
forward propagation of the network model, which cannot fully
represent the length of the prediction time of the model. The
prediction time refers to the test time when an image is input
under the condition that the computing platform is consistent,
which depends on the computing power and the upper limit
of bandwidth of the platform. In this article, RTX2080TI is
selected as the computation platform for the experiments. The
number of model parameters and the computational complexity
are calculated through the OpCounter module of the open source
code. As shown in Table VI, the SEMSDNET model has the
lowest number of parameters, while other involved baseline
models has much more parameters and higher computational
complexity. The three models are basically on the same level in
terms of the prediction time.

7) Analysis Under Budgeted Batch Classification Setting:
In order to evaluate the classification performance of different
networks in the budget batch classification setting, a comparative
experiment including ResNet-18, DenseNet-121, and SEMSD-
Net is conducted on the AID test set, and the results are shown in
Fig. 14. The abscissa represents the total limit B of computing
resources for a batch of test images, and the ordinate represents
the classification results. It can be seen from the figure that the



TIAN et al.: SEMSDNET: A MULTI-SCALE DENSE NETWORK WITH ATTENTION FOR REMOTE SENSING SCENE CLASSIFICATION 5511

Fig. 12. Confusion matrix of the NWPU-RESISC45 dataset under the training ratio of 20% using SEMSDNet.

Fig. 13. Per-class accuracies of the proposed method and two benchmark references on the AID dataset.

classification performance of SEMSDNet with dynamic evalu-
ation is better than that of ResNet and DenseNet with the same
amount of computation. For example, when the average budget is
1.25 × 108 flops, the classification accuracy of the SEMSDNet
reaches about 97%, which is 6% higher than that of the DenseNet
and about 7% higher than ResNet. The DenseNet and ResNet use
two times more computation than the SEMSDNet to achieve the

same classification accuracy. It can be seen that when the average
budget is small, the classification performance of SEMSDNet is
much better than those of ResNet-18 and DenseNet-121.

8) Analysis Under Anytime Prediction Setting: In order to
evaluate the classification performance of different networks
in real-time prediction settings, we also select ResNet-18 and
DenseNet-121 as baseline methods to carry out comparative
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Fig. 14. Results of different networks on AID datasets under budgeted batch
classification setting.

Fig. 15. Results of different networks on AID datasets under anytime predic-
tion setting.

experiments on AID test set. The results are shown in Fig. 15.
It is seen that under the same computation amount, the clas-
sification accuracy of the SEMSDNet model is much higher
than ResNet-18 and DenseNet-121. When the average budget
is 1.0 × 108 flop, the classification accuracy of SEMSDNet
reaches about 90%, which indicates that compared with ResNet-
18 and DenseNet-121, SEMSDNet model can output better
classification results before computing resources are exhausted.

9) Predictive Visualization: To illustrate the ability of our
approach on balancing the computational requirements of classi-
fying examples of different complexities, we show six randomly
sampled test images from AID dataset classes in Fig. 16. The top
row shows “easy” image examples that are correctly classified
and output by the first classifier. The bottom row shows “dif-
ficult” image examples that have been incorrectly classified by
the first classifier but correctly classified by the latter classifiers.
This figure suggests that early classifiers can recognize easy
examples and leave the difficult ones for the deeper classifiers

Fig. 16. Sampled images of different complexities from AID dataset.

in accordance with our cognition. In other words, our proposed
method is able to consider the difficulty and semantic level of
scene images, and realize the automatic adaptation on scene
classification.

V. CONCLUSION

In this article, we propose a new SEMSDNet model for remote
sensing scene classification. With the architecture of multiscale
dense connection and multiple classifiers, the MSDNet frame-
work can automatically use small and simple networks when
test images are easy or computational resources are limited, and
use deep and complex networks when test images are hard or
resources are is abundant. In order to avoid the interference of
redundant features of remote sensing scene images, we introduce
the SE attention mechanism to explicitly model the interde-
pendence between the channels and automatically enhance the
features of vital importance. Considering the limited computing
resources of practical applications, we impose two settings with
computational constraints at test time: budgeted batch classifi-
cation and anytime prediction. Experimental results on multiple
public datasets have validated that the proposed SEMSDNet
model is superior to several baseline and state-of-the-art classi-
fication methods on classification accuracy, model lightweight,
and computation requirement under different conditions. It is
observed that some difficult scene images including complex
semantic information are still misclassified. In future work, we
will focus on extracting better semantic features and designing
more effective networks to improve the performance of remote
sensing scene classification.
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