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Abstract—With the increase in the availability of multitemporal
hyperspectral images (HSIs), HSIs change detection (CD) meth-
ods, including pixel-level and subpixel-level based methods, have
attracted great attention in recent years. However, the widespread
presence of mixed pixels in HSIs may make it difficult for pixel-
level methods to detect subtle changes; meanwhile, the less utiliza-
tion of spatial information may also lead to limitations in some
subpixel-level methods. Therefore, a joint framework, which aims
to combine the advantages of pixel-level in spatial utilization and
subpixel-level in temporal and spectral exploration, is proposed to
enhance the performance of HSIs CD. Two models, convolutional
sparse analysis and temporal spectral unmixing, are introduced
and presented to characterize different spatial structures and
overcome the effects of spectral variability under this framework,
respectively. In addition, a multiple CD-based on subpixel analysis
is discussed as well. Experiments conducted on three bitemporal
HSIs datasets indicate that the proposed framework is robust
in capturing effective features and has achieved great detection
accuracy.

Index Terms—Convolutional sparse analysis, multitemporal
hyperspectral images (HSIs) change detection (CD), pixel-level and
subpixel-level combination, temporal spectral unmixing.

I. INTRODUCTION

COMPARED to multispectral images, hyperspectral images
(HSIs) contain a higher number of spectral channels, with

the ability to detect both subtle and multiple changes, which
can be applied to many fields [1]–[3]. However, the high data
dimension and the widespread presence of mixed pixels make
it difficult to obtain real changes in HSIs. Therefore, the search
of more effective methods to address the above problems still
remains a key concern.

Currently, the methods of HSIs change detection (CD) can be
divided into two main categories: pixel-level and subpixel-level
methods. Pixel-level methods are extended from multispectral
images to obtain the changes by directly comparing the numeri-
cal relationships between each pixel; subpixel-level approaches
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consider the internal components of each pixel, starting from
the characteristics of the HSIs, to detect more detailed changes
[4]. Based on the above two ideas, various CD methods have
been proposed. Multivariate alteration detection (MAD) adopts
canonical correlation analysis to obtain detection result [5]. In
addition, iterative reweighted MAD extends the applicability of
MAD and improves detection performance by adding weights
to unchanged regions [6]. Change vector analysis (CVA) is first
applied to multispectral images as a traditional CD method
[7], and is later extended to HSIs [8]. It is mainly used to
obtain the magnitude and direction of changes by calculating the
distance between multitemporal spectral vectors. However, the
existence of spectral variability may affect the detection result
by using CVA alone. Therefore, many researchers have provided
improvement strategies for CVA. In [9], an enhanced principal
component analysis CVA (PCA-CVA) is proposed to reconstruct
HSIs to obtain more accurate changes by combining PCA trans-
formation and inverse triangular function. Polar CVA (PCVA)
projects the images to the polarization domain and acquires the
changes using CVA [10]. An enhanced version, in [11], presents
a compressed CVA (CCVA) method to alleviate the problem of
PCVA when the number of spectral bands is too high. Addi-
tionally, a sequential spectral CVA is proposed to continuously
analyze the change vector in an iterative manner to obtain fine
changes [12]. To obtain a more accurate number of change
classes, a hierarchical clustering-based CVA is also proposed
[13]. However, although the above methods make full use of
spectral information, their spatial utilization is relatively limited
and the ambiguity may be increased due to abnormal spectral
variations in isolated pixels and registration errors, leading to the
increase of errors. Therefore, some spatial information injected
methods are proposed. In addition to spectral information, the
core step of these methods is spatial information extraction. The
utilization of spatial information improving the performance of
the methods has been validated in many fields, such as image
classification [14] and object detection [15]. Likewise, the spatial
information utilization has a significant impact on CD as well.
In [16], a multiscale morphological CCVA method is proposed
to describe the multiscale changes by the spectral and spatial
combination. A maximum-likelihood correlation coefficient is
presented to fuse spectral and spatial information [17]. In ad-
dition, a stacked autoencoders and segmentation-based strategy
introduces block feature into CD to obtain subtle changes [18].
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However, the obtained spatial features of these methods usually
tend to be blurry that obscure some important structural infor-
mation of the input image. This severely limits the effectiveness
of joint analysis strategy on HSIs CD [19].

Whether analyzing spectral information alone or jointly an-
alyzing spatial and spectral information, the above-mentioned
methods start from the assumption of pure pixels. Mixed pixels
are one of the typical characteristics in HSIs, which makes
CD particularly complex due to their widespread presence [20].
Spectral unmixing, as a method to solve mixed pixels problem,
determines the reference spectral features composing HSIs and
the corresponding abundance fractions in each pixel, which
can be used to obtain the subtle changes within a pixel. As a
result, many subpixel-level methods based on spectral unmixing
have been proposed, such as block-based unmixing [21], [22],
multispectral joint unmixing [23], superpixels unmixing [24],
sparse unmixing (SU) [25]–[27], and comprehensive unmix-
ing [28]. The blocked-based unmixing method first stacks the
images and divides images into blocks; then, the endmembers
of each block can be extracted. Finally, the unmixing process
is carried out based on this endmember set. The SU approach
begins with the ideas of sparse analysis and matrix factorization
to detect subpixel-level information through spectral libraries.
In these methods, the spectral library is necessary, thus limiting
the ranges of its application. Although subpixel-level methods
can detect subtle changes, these methods are limited in spatial
utilization and inevitably lead to fragmented detection results.

To cope with some issues of the aforementioned techniques,
an effective CD framework that jointly analyzes temporal, spa-
tial, and spectral features at the pixel-level and subpixel-level
is designed. Two models, convolutional sparse analysis and
temporal spectral unmixing, are proposed as the key techniques.
The former can achieve the effective spatial utilization at the
pixel-level; the later enables the combination of spectral and
temporal information. The main contributions of this article can
be summarized as follows.

1) A combination framework based on pixel-level and
subpixel-level analysis is designed to address the
shortcomings of existing CD methods in information
exploitation.

2) A spectral unmixing method that considers temporal infor-
mation, namely temporal spectral unmixing, is proposed
to CD to alleviate the influence of spectral variability
while obtaining robust subpixel information. During the
processing, the perturbation endmembers and spatial con-
straint are adopted and their update rules are analyzed by
iterative methods.

3) A convolution sparse analysis method is introduced to
effectively extract multiscale spatial information, in which
the analysis and synthesis sparse priors are cooperated in
a convolution manner. The convolutional operation can
exploit the intrinsic spatial characteristic of the spectral
change difference (SCD) image and a global optimal
solution.

The rest part of this article is organized as follows. In Section
II, the framework of the proposed CD method is illustrated
in detail. Section III reports experimental results using some

datasets. The detail discussions are also presented in this section.
Finally, conclusions are given in Section IV.

II. PROPOSED FRAMEWORK

The proposed method aims to investigate an effective frame-
work for integrating the advantages of detecting the abrupt
changes at the pixel level and subtle changes at the subpixel
level to improve change representation and discrimination. It
first generates SCD by subtracting operation. Based on SCD,
PCA transformation is conducted on SCD and the first three prin-
cipal component maps can be obtained. Then, a convolutional
sparse analysis method is introduced to obtain different spatial
structures of these principal component maps. This strategy will
integrate multiscale changes to improve the CD performance at
pixel level. Due to the unavoidable spectral variability deriving
from different acquisition times of multitemporal images, a
novel temporal spectral unmixing method is proposed to obtain
more robust subpixel abundance. Combining the advantages of
the pixel-level and subpixel-level analyses, the binary changes
can be extracted by Support Vector Machine (SVM); the mul-
tiple changes may be obtained by abundance combination. The
flowchart of the proposed framework is illustrated in Fig. 1.
Details of each step are introduced in the following sections.

A. Spectral Analysis at the Pixel-Level via PCA

Assuming that D1 and D2 are two temporal HSIs that are
acquired at the same regions and have been preprocessed by
radiometric correction and image registration. The SCD can be
computed by

D = D2 −D1 (1)

where D has the same dimension as those of D1 and D2. PCA, a
widely used HSIs processing method, can be used to reconstruct
the spectral features of D at the pixel level. The reason for
reconstructing D is because PCA can achieve concentration
of energy, reduce the dimensionality of the data, and decrease
the computational effort of subsequent convolutional sparse
analysis. PCA uses a projection matrix to transform D into a
new image (principal component maps) in a linear way. The
dimensionality of the new image remains the same as that of D;
where the projection matrix consists of a feature vector of the
covariance matrix of D. The variance between the bands in the
principal component maps will gradually decrease. For specific
implementation principles of PCA, the readers can refer to [29]
and [30].

B. Spatial Structure Analysis at the Pixel-Level by
Convolutional Sparse Analysis

The dimensionality of the principal component maps re-
mains consistent with that of D, but the variance between the
bands gradually decreases. It means that the first three bands
of principal component maps may contain most of the image
information. Therefore, in this section, we use the first three
principal component maps as inputs for spatial feature analysis.
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Fig. 1. Flowchart of the proposed method.

Assuming that an input image can be separated into two main
components: a spatial structure component that is directly related
to the spatial semantic of grounds and a corresponding texture
component. It means that each principal component map P can
be represented as the summation of these components [19], [31]

P = S + T (2)

where S is the spatial structure component and T denotes the
corresponding texture component. Therefore, the problem of
spatial feature analysis is transformed into a problem of solving
the variable S. Since the number of unknown variables in (2)
is larger than the input, the solution processing is ill-posed. To
solve this problem and successfully obtain the spatial structure,
the analysis sparse prior [31] and synthesis sparse prior [32]
can be jointly adopted as priori terms. While the former one
is superior in extracting the spatial structure information, the
later can effectively characterize the high-frequency texture
components. In addition, considering the traditional approaches
that partitioning the image into several independent block re-
gions can only lead to local optimum solution, the convolution
operation is introduced to further enhance the performance of
sparse representation. Therefore, the convolution operation can
be introduced to further enhance the image representation. The
final spatial structure components can be obtained by solving

the following objective function:

f =

∥∥∥∥∥P − S −
M∑

m=1

dA,m ⊗Am

∥∥∥∥∥
2

F

+ λ

Q∑
q=1

‖dB,q ⊗ S‖1 + β

M∑
m=1

‖Am‖1 (3)

where λ and βrepresent the regularization parameters of two
sparse priors, respectively, dA,m is the mth atom of the convolu-
tional synthesis dictionary, Am denotes the coefficient matrix,
dB,q represents the qth atom of the analysis dictionary, and
⊗indicates a convolution operation. It can be seen that the
operation of multiplying the coefficients with the dictionary is
replaced by the convolution operation, and two sparse priors are
adopted to constrain the structure and texture components, re-
spectively. To achieve the minimization of the objective function
to solve for S, the alternating direction method of multipliers
(ADMM) can be used [19]. During the optimization process,
the regularization parameters as key parameters have an impact
on the results. As λ decreases, the finer the obtained structure
component is. Thus, the adjustment of λ will obtain S in different
scales. These different S can accurately depict the multiscale
changes at the pixel level. In the specific experiments, we
recommend the adjustment range of λ to (0, 0.5].
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C. Abundance Analysis at the Subpixel-Level Via Temporal
Spectral Unmixing

Due to the presence of the mixed pixels, the subtle changes
can be usually ignored when only the pixel-level features are
considered. Thus, spectral unmixing can be used to CD for
subpixel analysis. However, some traditional separate unmixing
models for multitemporal images treat a pixel as a summation
of the multiplication of endmembers and abundances and do not
consider the impact of spectral variability in the whole process,
resulting in a poor performance. The spectral unmixing with
temporal information, called temporal spectral unmixing, may
provide a solution to the above problem. Temporal spectral un-
mixing consists of two inputs: the current temporal image and the
endmembers of the previous temporal image. The endmembers
of the current temporal image are obtained by optimizing and
updating the previous temporal endmembers with the current
temporal image information. The initial endmembers can be
obtained by vertex component analysis. With such strategy,
intertemporal correlation can be achieved and the abundance
maps of each temporal images can be obtained. It is worth
noting that only one temporal image and the endmembers of
the previous temporal image need to be loaded into memory
in the unmixing process, which greatly reduces the memory
consumption. Moreover, a spectral perturbation term and spatial
constraint term can be added into the unmixing process to
overcome the influence of spectral variability.

Assuming that the number of endmembers is K, the number of
images contained in the multitemporal image sequence is T, and
the number of pixels of each temporal image is N. The unmixing
model can be represented as

xit =

K∑
k=1

akit (ekt + dekt) + bit+
∑

j∈N(i)

�jitxit (4)

wherexit represents the ith pixel in the tth image and i= 1, …,N,
t = 1, …,T, k = 1, …, K. akit is the abundance value of the kth
endmember in the ith pixel of the tth image. ekt denotes the kth
endmember of the tth image. dekt is the spectral perturbation
caused by spectral variability of the tth temporal image kth
endmember. bit represents the noise of the ith pixel in the tth
image, due to data acquisition or model bias. N(i) denotes the
neighborhood set of four pixels centered on pixel i. �jit is the
jth weight in the four-pixel neighborhood of the tth temporal
image. Specially, a positive value of �jit indicates that i and j
are neighbors. The matrix form is

Xt = (Et + dEt)At +Bt +WtXt (5)

where Xt = [x1t, . . . , xNt] is a matrix that contains all the
pixels of the tth temporal image. At is the abundance matrix.
Et is endmembers matrix where each column represents an
endmember. dEt represents the spectral perturbation matrix
where each column represents a perturbation vector. Bt denotes
the noise matrix. Wtrepresents the spatial weight matrix. In the
temporal spectral unmixing, both abundance and endmembers
have their own numerical limits that are mentioned in many
unmixing methods [21]. Therefore, a similar idea is proposed to

limit the perturbations. The constraints are formed as

‖dEt‖2F ≤ σ2,where t = 1, . . . , T (6)
∥∥∥∥∥

T∑
t=1

dEt

∥∥∥∥∥
2

F

≤ κ2 (7)

where σ and κ are constant parameters that control the energy
value and instantaneous energy variation of the spectral vari-
ability, respectively. The values of these two parameters are
closely related to the spectral variability between multitemporal
images. When the spectral variability is severe, the two parame-
ters should be increased properly. With the above-mentioned
modeling form, the unmixing problem is transformed into a
problem of solving endmembers space M, abundances space
℘A, and perturbation space Pt, which can be regarded as an em-
pirically minimized two-stage stochastic optimization problem.
The objective functions to be optimized is expressed as

min
E∈M

1

T

T∑
t=1

H (Xt, Et) (8)

H (Xt, Et) = min
(A,dE)∈℘A×pt

F (Xt, Et, At, dEt) (9)

F (Xt, Et, At, dEt) =
1

2
‖Xt − (Et + dEt)At −WtXt‖2F

+ αφ (At) + γϕ (Et) + μθ (dEt) (10)

where F (·) is the normalized difference measure function. H(·)
is the loss function. α, γ , and μ are parameters that ensure the
tradeoff between data fitting term and penalties. Different from
the traditional unmixing methods, the perturbation endmembers
are used as a penalty term to constrain the final solution. This
processing way ensures that robust endmembers for spectral
variability can be obtained. Additionally, the introduction of
spatial weights will improve the performance of unmixing.
Minimizing the function F and the loss H, the optimal solutions
of the current temporal image can be obtained. Furthermore, the
penalty terms can be represented as follows:

φ (At) =
1

2
‖At −At−1‖2F (11)

ϕ(Et) =
1

2

K∑
i=1

⎛
⎜⎝

K∑
j=1
j �=i

‖ei − ej‖2F

⎞
⎟⎠ (12)

θ(dEt) =
1

2
‖dEt − dEt−1‖2F (13)

where φ(·) is to promote temporally smooth abundances in the
l2-norm sense between two temporal images.ϕ(·) represents the
mutual distance between each endmember. θ(·) denotes a prior
spectral smooth between two temporal images. In this optimiza-
tion process, proximal alternating linearized minimization and
ADMM method can be adopted to obtain the final At, Et, and
dEt [33]–[35].

Through the above-mentioned temporal spectral unmixing,
the abundance maps for each temporal image can be obtained.
Meanwhile, the abundance difference maps can be calculated
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by subtracting the abundance maps corresponding to the same
endmembers of different temporal image. Furthermore, a new
feature cube can be cascaded by the pixel-level and subpixel-
level features in the third dimension.

D. Binary Changes Extraction and Multiple Changes
Discussion Via Abundance Combination

This step is to visualize and discriminate binary changes and
multiple changes present in the feature cube. To achieve the
purpose, clustering and supervised classifiers can be employed.
In this article, the most widely used SVM classifier [36] is used
to obtain the binary change map.

However, SVM cannot obtain the multiple changes in the
absence of the multiple change truth map. Hence, obtaining
relatively accurate multiple changes should be discussed in this
case. One solution is to use unsupervised clustering methods;
however, the individual clustering is difficult to obtain good
result due to the issue of feature distance between change
classes; another solution is abundance combination. In fact,
in the temporal spectral unmixing process, the endmembers
satisfy linear independence and the spectrum of different end-
member corresponds to that of different change classes [21].
This means that the number of endmembers is the same as
the number of change classes. Additionally, according to the
correspondence between abundance and endmembers in the
linear unmixing process, the number of abundance features is
equal and the same as the number of change classes as well.
Therefore, multiple changes can be obtained by combining abun-
dance difference maps. For changes, assume that each change
pixel has the same label on the same abundance difference map,
and has different labels on different maps. We can determine the
final label of each change pixel by comparing the pixel value
at the same coordinates on all abundance difference maps. The
determination criterion is that the label of each change pixel is
the same as the label of the abundance difference map where the
largest pixel value is located, which can be expressed as follows:

MC (i, j) = argmax
cK∈C

(DAcK (i, j)) (14)

where k = 1, . . . ,K is the index and C = (c1, . . . , cK) repre-
sents the set of change types, cK is the kth class. i and j are
indexes of the abundance difference maps DAcK with different
labels.

III. EXPERIMENTS AND ANALYSIS

A. Experimental Dataset Descriptions

To evaluate the performance of the proposed method, several
experiments are conducted on three real bitemporal datasets.
Details of these three datasets are described as follows.

The first farmland dataset was taken by Earth Observing-1
(EO-1) Hyperion from Jiangsu, China, with a size of 450 × 140
pixels and 155 bands, which were obtained on May 3, 2006,
and April 23, 2007. The images are characterized by a spectral
resolution of 10 nm and a spatial resolution of 30 m. The main
changes relate to crop types and areas and the number of change
pixels is 18 277. Fig. 2(a)–(c) provides the color image that is

Fig. 2. Coregistered real HSIs datasets. (a) T1 color image of the farmland
dataset acquired on May 3, 2006. (b) T2 color image of the farmland dataset
acquired on April 23, 2007. (c) Ground truth of farmland dataset. (d) River
dataset T1 acquired on May 1, 2004. (e) River dataset T2 acquired on December
3, 2013. (f) Ground truth of river dataset. (g) Agricultural dataset T1 acquired on
April 10, 2014. (h) Agricultural dataset T2 acquired on May 8, 2007. (i) Ground
truth of agricultural dataset.

composed by band 32, band 25, and band 12. The corresponding
reference binary change map is labeled by visual interpretation.

The second bitemporal river dataset was acquired on May 3,
2013, and December 31, 2013 by EO-1 Hyperion from Jiangsu,
China, with a size of 463 × 241 pixels and 198 bands. The
number of change pixels is 12 570 and the main changes appear
in a river. It contains many complicated situations, such as
illumination and seasonal differences [28]. Fig. 2(d)–(f) displays
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the color image and binary ground truth map annotated by visual
interpretation of river dataset.

The third bitemporal dataset was obtained by Hyperion sensor
mounted onboard the EO-1 satellite on May 1, 2004, and May 8,
2007 as well. The study area is an agricultural land of Hermiston
city in Umatilla County, United States. The selected area, which
has a size of 390× 200 pixels and 242 bands, has the wavelength
range from 350 to 2580 nm. Fig. 2(g)–(i) shows the color
composite image and the binary ground truth annotated by visual
interpretation. The number of change pixels is 9986 and the
changes occurred in this dataset include land-cover transitions
between crops, soil, water, and vegetation.

B. Comparative Methods and Evaluation Rules

Several representative and feature combination meth-
ods related to the proposed framework are selected to
validate the performance of the proposed framework in
the experiments, which include improved SU [25], GET-
NET [28], SCD_SVM (SCDS), Spectral_Spatial_SVM (SPS),
Spectral_Abundance_SVM (SAS) and Spectral_Traditional
sparse_Abundance_SVM (STAS). SU is a subpixel-level
method to detect the subtle changes based on spectral libraries
[25], which uses variable splitting augmented Lagrangian and
total variation (SUnSAL-TV) method to acquire endmembers
and abundances. In our experiments, the abundance features
obtained by SU will replace the abundance features obtained
by temporal spectral unmixing in the proposed framework. This
improved way can be used to verify the validity of the adopted
unmixing model; GETNET is an outstanding CD method based
on an end-to-end deep learning network, which combines deep
learning with spectral unmixing by designing a new form of data
input to obtain binary changes. SCDS is a traditional pixel-level
method that uses SVM to directly detect changes in SCD images.
SPS is a spatial-spectral ensemble method that combines the first
three principal components with the spatial features obtained
by convolutional sparse analysis to form a feature cube, and
then uses SVM to detect the changes. SAS is a pixel-level and
subpixel-level joint method that directly exploits spectral infor-
mation by combining the first three principal component maps
and the abundance features after temporal spectral unmixing
into a new feature cube, which then uses SVM to detect the
changes. STAS is the method that adopts the traditional sparse
representation to obtain the spatial features. Among these feature
combination methods, SCDS is used to validate the improved
performance of spatial feature and abundance feature analysis
for CD. SPS is used to further validate the effectiveness of
convolutional sparse analysis based on the advantages of spatial
and spectral ensemble. SAS is used to confirm the effectiveness
of temporal spectral unmixing. STAS is to prove the effective-
ness of the adopted convolutional operation in spatial feature
extraction.

To evaluate the performance of the competing methods com-
prehensively, commonly used precision, recall, and F-score are
applied to record and evaluate the performance of different
CD methods. Higher precision and recall values indicate that

TABLE I
QUANTITATIVE COMPARISON OF FARMLAND DATASET CD RESULTS BY

DIFFERENT METHODS

Bold is the maximum value of the current column.

small number of false alarms and missed detections, respec-
tively. Meanwhile, F-score is evenly balanced between false
alarms and missed detections, revealing the overall detection
performance [37], [38]. All experiments are implemented on a
desktop computer with 2.90-GHz CPU and 32 GB of RAM.

C. Results and Discussions of Farmland Datasets

The first experiment is conducted on a farmland dataset.
During the experiment, the optimal parameters of SU and
GETNET are selected based on the references. Moreover, the
related parameters of improved SU, SPS, SAS, STAS, and the
proposed framework are set as follows: λ = {0.01, 0.02, 0.03},
K = 3, β = 0.02, σ2 = 1, κ2 = 0.1, α = 10−4, γ = 10−3 ,
and μ = 10−5. According to our iterative experiments, the key
core parameters on the adopted dataset are K and λ. There-
fore, we give default values for the other parameters, which
remain unchanged in the subsequent experiments. By setting
the above-mentioned parameters, we can obtain the number
of channels of the new feature cube as 15, where the number
of spectral features, abundance features, and spatial features
are 3, 3, and 9, respectively. For the process of SVM, 0.1%
samples are randomly chosen from the reference map to obtain
the final changes. The obtained detection results of the proposed
framework and the comparative methods are tabulated in Table
I, and the corresponding change maps are shown in Fig. 3.

Some interesting findings are presented in Fig. 3. Comparing
Fig. 3(a) and (g), it can be seen that although the improved
SU and the proposed method adopt the same spatial feature
constraints, however, the false alarm in (a) is more than that
in (g). This point can be obtained in the quantitative accuracy
as well (precision is equal to 95.75% and 96.92%, respectively.)
The reason may be that the SU does not consider the effects
of spectral variability in multitemporal images. In contrast,
the introduced temporal spectral unmixing is more suitable for
multitemporal image analysis. In addition, SCDS that directly
detects changes in SCD cannot obtain satisfactory results be-
cause it does not take account of the constraints on spatial
information. It can be verified by the F-score of SCDS and SPS.
SAS, which introduces abundance features obtained by temporal
spectral unmixing, can obtain a significant improvement (the
F-score is reached to 96.75%). The possible reason is that
the spectral utilization of SAS is higher than that of SPS and
SCDS. This result indicates that subpixel analysis has good
applicability for HSIs CD. However, SAS detects some false
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Fig. 3. Detection results of different methods on farmland dataset. (a) Improved SU. (b) SCDS. (c) SPS. (d) SAS. (e) STAS. (f) GETNET. (g) The proposed
method. (h) Binary ground truth map.

Fig. 4. Detection results of different methods on river dataset. (a) Improved SU. (b) SCDS. (c) SPS (d) SAS. (e) STAS. (f) GETNET. (g) Proposed method. (h)
Binary ground truth map.

alarms as well [as shown in red box of Fig. 3(d)], which are
mainly due to the excessive focus on spectral features. Therefore,
further improvements in detection performance can be achieved
through appropriate spatial information injection [see Fig. 3(e)].
GETNET uses abundance features to construct a new input form,
which essentially takes advantage of the spectral information
of HSIs and also yields relatively good detection results [see
Fig. 3(f)]. Overall analysis, the F-score of the proposed method
is highest (reached to 97.10%), which confirms the validity of the
adopted spatial feature analysis method and the reliability and
superiority of the proposed combination framework. Comparing
Fig. 3(e) and (g) also demonstrates that the convolutional sparse
form used is more efficient than the traditional one.

D. Results and Discussions of River Datasets

The second experiment is conducted on a river dataset. Differ-
ent temporal images often exhibit spectral variability due to dif-
ferences in acquisition time, season, and other factors, which can
seriously affect the applicability of many algorithms, and makes
it difficult to obtain satisfactory detection results. Therefore, this
dataset can well validate the advantages of our proposed method
in overcoming the spectral variability. During the experiment,

TABLE II
QUANTITATIVE COMPARISON OF RIVER DATASET CD RESULTS BY DIFFERENT

METHODS

Bold is the maximum value of the current column.

the optimal parameters of SU and GETNET are selected. Mean-
while, the parameters of the related and the proposed method
are set as follows: K = 4 and λ = {0.007, 0.008, 0.009, 0.01},
the rest of the parameters remain the same as the farmland
dataset. The dimension of the new feature cube is 19, where
the number of spectral, abundance, and spatial features are 3, 4,
and 12, respectively. For changes extraction, 0.1% of samples
are randomly chosen. The corresponding results of all mentioned
methods are given in Fig. 4, meanwhile, the quantitative results
are tabulated in Table II.
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Fig. 5. Detection results of different methods on agricultural dataset. (a) Improved SU. (b) SCDS. (c) SPS. (d) SAS. (e) STAS. (f) GETNET. (g) Proposed method.
(h) Binary ground truth map.

Some conclusions similar to those of the farmland dataset
can be obtained. It can be observed that the results obtained by
the proposed framework are better than the others. Specifically,
the proposed framework gets the highest accuracy in all three
indexes (reached to 86.71%, 83.26%, and 84.95, respectively).
Compared to the SU and the proposed approach, the advantage of
the temporal spectral unmixing strategy is even more significant,
with a 6% increase in F-score. Additionally, the fact that spatial
information injection can improve the detection accuracy is
confirmed again in this dataset, comparing SCDS and SPS.
The SPS is approximately 20 percentage points higher than
the SCDS in terms of F-score, which is sufficient to justify
the effectiveness of the adopted convolutional sparse analysis.
Similarly, the result of SAS also confirms the advantages of
subpixel features. It is worth noting the GETNET, which uses
excellent ways to combine subpixel and pixel-level information.
But it still does not yield good results, with an F-score only
reaching to 70.39%. There are two possible reasons for this
phenomenon. On the one hand, it uses the pseudotraining sets
to train a deep network, and these samples may not be effective
in training deep network without parameter adjustment; on the
other hand, the input of GETNET is the feature combination
of bitemporal stacking unmixing, not the original HSIs. Such
stacking unmixing shows poor robustness in the presence of
spectral variability, and feeding the convolutional neural net-
work with such a nonrobust result may introduce unavoidable
errors, resulting in a relatively low accuracy. On the contrary,
the proposed temporal spectral unmixing obtains more robust
abundance features and thus leading to a better detection result.

E. Results and Discussions of Agricultural Datasets

To illustrate the suitability of our proposed method further,
we introduce an agricultural dataset. The parameters of SU and
GETNET are optimal as well. For the proposed framework, the
relevant parameters are set to: λ = {0.007, 0.008, 0.009, 0.01},
K = 5. Therefore, the dimension of the feature cube is 20, where
the number of spectral, abundance, and spatial features are 3, 5,
and 12, respectively. In SVM, 0.1% of samples are randomly
selected as well. The corresponding qualitative detection results

TABLE III
QUANTITATIVE COMPARISON OF AGRICULTURAL DATASET CD RESULTS BY

DIFFERENT METHODS

Bold is the maximum value of the current column.

and the quantitative indicators of all methods are displayed in
Fig. 5 and Table III, respectively.

It can be observed that the proposed framework is an effective
idea for CD, after considering precision, recall, and F-score,
comprehensively. The accuracy is reached to 96.75%, 94.72%,
and 95.72%. Temporal spectral unmixing, by adding pertur-
bation endmembers to the unmixing process, is more suitable
for subpixel feature analysis, as the detection accuracy of the
proposed method is higher than the results of SU (only 86.13%).
In addition, the adopted convolutional sparse analysis has shown
to be an effective strategy as well, since the accuracy of SPS
is higher than that of SCDS that uses the spectral information
directly. The SAS method also achieved an F-score of 94.85%,
which demonstrates that the subpixel analysis method is capable
of detecting strong changes as well as obtaining subtle changes.
GETNET comprehensively analyzes pixel and subpixel features
has obtained a great result as well. The framework presented
yields the best results, demonstrating that the new spatial and
abundance feature analysis strategies are effective. Compared to
GETNET, our proposed approach achieves more effective result
with a low framework complexity and a simple and easy-to-use
strategy.

F. Discussions of Multiple Changes

The higher spectral resolution of HSIs makes it possible to
make full use of spectral information to detect multiple changes.
However, when the ground truth map only labels for two classes,
i.e., the changed and unchanged classes, we cannot obtain how
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Fig. 6. Multiple change results of three HSI datasets obtained by abundance
feature combination. (a) Three types of changes of the farmland dataset. (b) Four
types of changes of the river dataset. (c) Five types of changes of agricultural
dataset.

many change types are included in the change class through
SVM. Therefore, in order to obtain relatively accurate infor-
mation on multiple changes in this context, the use of subpixel
abundance features in an unsupervised manner can be consid-
ered. In fact, in the spectral unmixing, the endmembers satisfy
linear independence and the spectrum of different endmembers
corresponds to that of different change classes. This means that
the number of endmembers is the same as the number of change
classes. Hence, according to the principle of linear expression,
the number of abundance features is the same as the number of
change classes. For example, the number of endmembers in the
farmland dataset is 3, so its number of abundance features is 3,
which corresponds to the number of change classes. Therefore,
multiple changes can be detected by combining these abundance
features. The results of the multiple CD of three experimental
datasets are presented in Fig. 6, where the farm dataset contains
three types of changes, the river dataset includes four types of
changes, and the agricultural dataset has five types of changes.

Three, four, and five types of changes are detected for three
datasets, respectively, where different classes are marked by
different colors. The results show that the introduced unmixing
method yields effective abundance features, and the adopted un-
supervised combination way obtains relatively accurate multiple
changes. It is worth noting that there is a certain amount of
misinterpretation on the multiple change results (marked by red
boxes), due to the fact that only subpixel features are considered
in the combination process and pixel-level features are ignored.
However, this is acceptable. On the one hand, subpixel features
can yield a relatively satisfactory result, and on the other hand,
the datasets are lack of pixel-level class labels that naturally
prevent the introduction of such pixel-level information.

IV. CONCLUSION

In this article, based on the spectral, spatial, and temporal
analysis strategy, we proposed a novel comprehensive analysis
framework to obtain binary and multiple changes for HSIs.
Overall, a convolutional sparse analysis, which cooperates two

sparse priors and adopts convolution operation to replace the
traditional method, enables the effective integration of multi-
scale spatial structure while significantly improving the informa-
tion utilization. Furthermore, due to the introduction of spatial
constraint and perturbation endmembers, the proposed temporal
spectral unmixing overcomes the spectral variabilities between
bitemporal images, while achieving the accurate analysis. The
whole framework presents a new solution for CD in a simple but
effective way. Three datasets are adopted to verify the proposed
framework and the F-score is reached to 97.10%, 84.95%,
and 95.72%, respectively. Meanwhile, the proposed strategy is
also clearly superior to some typical and feature combination
methods.
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