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Point-Based Weakly Supervised Learning for Object
Detection in High Spatial Resolution Remote

Sensing Images
Youyou Li, Binbin He , Member, IEEE, Farid Melgani , Fellow, IEEE, and Teng Long

Abstract—Object detection is challenging in high spatial resolu-
tion (HSR) remote sensing images that have a complex background
and irregular object locations. To minimize manual annotation cost
in supervised learning methods and achieve advanced detection
performance, we proposed a point-based weakly supervised learn-
ing method to address the object detection challenge in HSR remote
sensing images. In the study, point labels are introduced to guide
candidate bounding box mining and generate pseudobounding
boxes for objects. Then, pseudobounding boxes are applied to train
the detection model. A progressive candidate bounding box mining
strategy is proposed to refine object detection. Experiments are
conducted on a comprehensive HSR dataset which contains four
categories. Results indicate the proposed method achieves competi-
tive performance compared to YOLOv5 which is trained on manual
bounding box annotations. In comparison to the state-of-the-art
weakly supervised learning method, our method outperforms WS-
DDN method with 0.62 mean average precision score.

Index Terms—High spatial resolution (HSR), object detection,
point-based supervision, remote sensing, weakly supervised
learning.

I. INTRODUCTION

OWING to the rapid development of remote sensing plat-
forms and the reduction of data collection costs, a growing

number of high spatial resolution (HSR) remote sensing images
are publicly available [1], [2]. Interpreting HSR remote sensing
images is crucial since much more detailed information can
be obtained from HSR remote sensing images compared to
that with relatively lower spatial resolution. Object detection
is a part of the most useful techniques for understanding HSR
remote sensing images. In the last decades, due to the rarity
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of HSR remote sensing images, researches mainly focused on
detecting big categories such as crops, forests, and urban land-
scapes, etc. [3]–[5]. More recently, since access to HSR remote
sensing image is easier, and detecting objects is meaningful
for practical applications such as urban planning, transportation
management, energy assessment, etc., detecting objects such as
vehicles, ships, and storage tanks has aroused great interest in
the field of remote sensing [6], [7].

Though HSR remote sensing images offer possibilities for de-
tecting objects, the characteristic of HSR brings new challenges
to identify and localize objects. With the increase in spatial
resolution, remote sensing images can present more details of
the land surface, so the scenes of HSR remote sensing images
become complex and heterogeneous [8]. Heterogeneity of pixels
adds difficulties to identify the edges of objects and increases
intraclass variety within homogeneous classes. As HSR remote
sensing images may be obtained under different acquisition
conditions, the size, color, and view of an object are easily
influenced and vary. Another significant influence is rotation
variations, which are notoriously difficult to efficiently deal
with using existing techniques [9]. Moreover, shadows from
trees and buildings in HSR remote sensing images often cover
lots of objects and make their appearance blur and vague. This
makes the covered object difficult to locate and detect [10]. In
order to address the above problems, researchers have proposed
fully supervised learning algorithms for object detection in HSR
remote sensing images.

Fully supervised learning methods are widely implemented
to detect objects in HSR remote sensing images. By leveraging
the development of graphic process units and the availability
of massive data, deep convolutional neural network (DCNN)
experimentally turned out to be effective in dealing with recog-
nition challenges. A large number of methods based on DCNN
are proposed to carry out object detection in HSR remote
sensing images. For example, taking full advantage from fully
convolutional network, Zhong et al. addressed the dilemma
between translation-invariance in the classification stage and
translation-variance in the object detection stage in HSR im-
ages [11]. Gong et al. proposed a context-aware convolutional
neural network model to enhance the representativeness of fea-
tures for object detection in very high resolution remote sensing
images [12]. Though fully supervised DCNN achieved satisfy-
ing performance on object detection task, the limitation of fully
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Fig. 1. Illustration of bounding box annotation, image-level label, and point
annotation.

supervised DCNNs is also evident that fully supervised DCNNs
need lots of richly annotated labels which require intensive
and time-consuming manual annotation. Especially, drawing
bounding boxes for object detection training data is both subjec-
tive and expensive. Therefore, an alternative training pattern is
therefore suggested sidestepping the limitation posed by human
labeling.

In order to decrease the amount of human intervention needed
for training models, weakly supervised learning (WSL) is intro-
duced to computer vision systems [13]. WSL means the method
is trained using examples that are only partially annotated or
labeled [14]. One main type of partial labels used to annotate
instances is image-level label which means that only the image as
a whole is annotated with meaning. An example of image-level
labels is presented in Fig. 1. The image-level label of an image
can only tell us the image contains specific objects, while the
locations of these objects, the number of these objects contained
in the image, and the size and boundary of each object are
unknown. Though it is challenging to supervise DCNNs using
only image-level labels, many researchers actively explored the
possibility using image-level labels for training detection mod-
els. Since one image may contain many instances of a specific
object but the image is only labeled positive, retrieving the
location, size, and boundary of individual instances in the image
is necessary for object detection. Multiple instance learning
(MIL) is a dominant method to predict whether each instance
proposal of an image contains the instance or not [15]. Andrews
et al. have proposed an SVM-based approach for MIL, which is
regarded as a standard MIL form in the following studies [16].
To detect objects, many studies follow the standard MIL in their
WSL systems [17]–[20], which usually iteratively implement
two-steps operations. The first stage is to generate bounding box
proposals from unsupervised learning methods such as selective

search [21] and to learn the top-scoring proposals for each image
under MIL constraints; the second stage is to train detection
models and update proposals taking advantage from detection
results.

Although encouraging results are reported, there are two main
problems in image-level label-based WSL methods for object
detection in remote sensing images. First, in the aforementioned
methods, most of the WSL methods tend to select one proposal
for the corresponding object category for each image. Distinct
from natural images, one remote sensing image often contains
multiple same-class instances [22]. Only choosing one proposal
of each class within an image is insufficient to train detection
models. Moreover, WSL methods can hardly mine high-quality
proposals with image-level labels. However, top-scoring in-
stance proposals generated from the aforementioned methods
only cover a part of objects or even cannot locate objects.
Thus, image-level labels are deficient for training WSL detection
models. Second, the aforementioned methods do not constitute
an alternative to fully supervised learning methods, since the
performance that WSL methods based on image-level labels can
achieve is much lower than fully supervised learning methods.
Also, accuracy that WSL methods with image-level labels can
obtain may not be sufficient for practical applications.

In order to prevent cumbersome bounding box annotation
process and to overcome the challenges raised by the afore-
mentioned WSL methods, we propose a point-based weakly
supervised learning method for detecting objects in HSR remote
sensing images. The concept of point annotation (showed in
Fig. 1)-based WSL methods are first introduced by Pascal et
al. who proposed a pointly supervised method for localizing
actions in videos, which obtained similar action localization
performance to bounding box-based supervised learning meth-
ods [23]. There are several essential differences between ac-
tion localization in videos and object detection in HSR remote
sensing images. First, usually a video only contains one action,
while an HSR remote sensing image often contains multiple
instances related to one or more classes. For example, a video
is about skateboarding; an HSR remote sensing image contains
numerous cars and storage tanks. Second, temporal information
is important for action localization in videos, while object de-
tection in HSR remote sensing images needs to focus on spatial
information. Therefore, it is necessary to specifically design
a point-based weakly supervised learning method for object
detection in HSR remote sensing images.

In this study, the proposed point-based weakly supervised
learning method aims to solve multiclass object detection tasks
in HSR remote sensing images. The method mainly includes
two steps: Progressively proposal mining and training detection
models. In proposal mining step, three normalized measurement
scores are proposed to specifically measure proposals generated
from HSR remote sensing images. Pseudobounding box labels
are then generated from sorting proposals. In the training step,
a modified CIoU loss is introduced to balance the side effect
brought by pseudolabels, and detection models are trained on the
YOLOv5 network [24], [25]. We compare the proposed point-
based weakly supervised learning method to two state-of-the-art
methods which are a fully supervised learning method and an
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image-level label-based WSL method [26] to demonstrate the
effectiveness of the proposed method.

We summarize the main contributions of this article as fol-
lows.

1) Propose a new point-based supervised learning method to
detect multiclass objects in HSR remote sensing images.

2) Propose three measurement methods, respectively, to as-
sess the distance between the center of proposals to point
labels, the side length of proposals, and the comprehensive
performance of proposals for HSR remote sensing images.

3) Propose a weighted CIoU loss to neutralize the side effect
introduced by pseudolabels.

The remainder of this article is organized as follows. Sec-
tion II presents the principles of proposed point-based weakly
supervised learning method. Section III describes datasets used
in this study, the experiment configuration and the experimental
results achieved on four categories. Section IV concludes this
article.

II. PROPOSED METHOD

A. Proposal Measurement

Before depicting our method, following notations used in
the article are introduced first. For an image I , I(w) and I(h),
respectively, represents the width and height of I . P = {BB}n
represents proposals of I , where 1 ≤ n, n is the number of
proposals of the image. (c(x)i , c

(y)
i ) denotes the point annotation

related to the ith instance in I . Pi = {BBi}m represents pro-
posals of I containing ith point label, where 1 ≤ m ≤ n,m is the
number of proposals which contain the ith point annotation. Ci

denotes the category of the ith point label. (BBij
(x), BBij

(y))
represents the left-top point of the jth bounding box of Pi.
(BBij

(cx), BBij
(cy)) represents the center point of the jth

bounding box of Pi. (BBij
(w), BBij

(h)) represents the width
and height of the jth bounding box of Pi. Dij denotes the
distance measure of the jth bounding box of Pi. Sij denotes
the size measure of the jth bounding box of Pi. Oij represents

the overall measure of the jth bounding box of Pi. P
(i)
gt denotes

the pseudobounding box corresponding to the ith point labeled
with Ci category.

The proposal measurement is comprised of a normalized
overall measure (NOM), a normalized distance measure, and
a normalized size measure. The distance measure describes
how near the center point of proposals to point annotations. It
is clear the smaller the distance the better the proposals. The
size measure describes the ratio between the width and height
of proposals and the width and height of HSR remote sensing
images. Since proposals with larger size have a high possibility
of containing multiple objects, the size measure follows the
hypothesis that the shorter the width and height of the bounding
box, the more homogeneous pixels it contains. By combining
distance and size measure, NOM is designed to comprehensively
estimate the quality of proposals.

1) Normalized Distance Measure: For the jth proposal of
Pi, the distance term Dij is defined as the ratio of the distance

Fig. 2. Example of candidate bounding boxes and its corresponding imagery.

between the center point of a bounding box and the correspond-
ing point label. To normalize it, in (1), the distance is divided
by half the diagonal length of the bounding box, because the
distance between points inside a rectangle and the center point
of the rectangle ranges from 0 to half the diagonal length of the
rectangle. Therefore, the normalized distance ratio ranges 0 to
1. The smaller the ratio, the closer the distance between the two
points

Dij =

∥∥∥(c(x)i , c
(y)
i )− (BBij

(cx), BBij
(cy))

∥∥∥
2∥∥∥(BBij

(x), BBij
(y))− (BBij

(cx), BBij
(cy))

∥∥∥
2

. (1)

2) Normalized Size Measure: As mentioned above, propos-
als with large size tend to contain multiple instances and objects
instead of a single instance or object. Pascal et al. proposed
an area ratio to measure the relative area of candidate boxes
to that of images in natural images [23]. As shown in Fig. 2,
1, c1, c2, . . . , cn represent candidate bounding boxes of the im-
agery I . lwi denotes the length of the width of the ith candidate
bounding box, and lwi denotes the length of the height of the ith
candidate bounding box. lwI and lhI , respectively, represents the
length of the width and height of the imagery I . The equation
of area ratio of candidate bounding boxes and the imagery is
shown in (2)

lwi × lhi
lwI × lhI

. (2)

Since in remote sensing images, the area of an object could
be much smaller than that of the image, the area ratio of the
bounding box c1 and the image I can be similar to that of the
bounding box c2 and the image I . This means the area ratios can
hardly differentiate the size of bounding box c1 from bounding
box c2. Moreover, area ratio tends to yield unbalanced area score
distribution since many area scores of objects of interest are very
small in HSR remote sensing images. So the area ratio would
be insensitive to differentiate candidate box size. Therefore,
we proposed the side length ratio of bounding boxes and their
corresponding imagery to better distinguish candidate bounding
boxes by their side lengths. From the (3), the longest side of the
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width and height of the candidate bounding box divided by half
of the side length of the corresponding remote sensing image is
used as the size score. Since the denominator of the side length
ratio is lw or h

I which is much smaller than the denominator of the
area ratio which is lwI × lhI , the lengths of box sides of candidate
bounding boxes would have a bigger influence on the side ratio
than on the area ratio. Thus, the side ratio is much more sensitive
to the difference of size of candidate bounding boxes. Therefore,
the side ratio is considered as the size measure for candidate
bounding boxes

Sij = Max

(
2BBij

(w)

I(w)
,
2BBij

(h)

I(h)

)
. (3)

The normalized size term Sij for the jth bounding box of Pi

is evaluated by the maximum value of the ratio of the width of
candidate box to half of the image width and the ratio of the
height of the candidate box to half of the image height, and it
ranges from 0 to 1. The closer the normalized size value is to
zero, the more homogeneous the pixels in the candidate box.

3) Normalized Overall Measure: For comprehensively as-
sessing candidate boxes, the normalized distance and size term
are fused as NOM score. As (4) shows, the NOM score is repre-
sented by the geometric mean of 1−Dij and 1− Sij because
the geometric mean can effectively eliminate the influence of
extreme values. As the distance between proposal center and
point label decreases, 1−Dij increases. As the value of side
length ratio decrease, 1− Sij increases. Theoretically, when
NOM value is bigger, the distance between the proposal center
and the point label is closer and the value of the side length ratio
is smaller

Oij =
√

(1−Dij)× (1− Sij). (4)

B. Self-Supervised Learning

1) Pseudobounding Box Generation: Regarding proposals
sorted by NOM, candidate boxes with the highest score have
two properties. First, the center point of the candidate box
is relatively closer to the label point; second, the size of the
candidate box is small, which ensures that the pixels inside the
candidate box are homogeneous. However, the candidate box
with the highest score cannot be guaranteed to have the width
and height which are closest to the real object. Therefore, the
width and height of the pseudolabel are temporarily represented
by the average of the width and height of top r proposals, and the
width and height of the subsequent pseudolabel will be updated
through continuous progressive mining. The hyperparameter
of ranking ratio r of candidate boxes is proposed, which is
the boundary of the selection of candidate boxes. The initial
hyperparameter r is randomly set between (0,1), that is, the
candidate box with the first r score is adopted to generate the
initial pseudoground truth box. The subsequent hyperparameter
r will be updated according to later iterations. In (5), the ith
pseudobounding box is generated from top r candidate boxes.

P
(i)
gt (x, y, w, h) =

1

rm
×

rm∑
j=1

BB
(i)
j (x, y, w, h). (5)

2) Weighted Loss: In YOLO, the overall loss consists of a
regression and two classification loss terms, in this study, we
mainly focus on the regression loss since the width and height
of pseudoboxes are inaccurate. The original CIoU regression
loss is shown in (6)

LCIOU = 1− IoU +
ρ2(b, bgt)

c2
+ α× v (6)

where IoU denotes the intersection over union of predicted box
and ground truth box. ρ2(b,bgt)

c2 represents the center distance
evaluation term, where ρ2(b, bgt) denotes the distance between
the center of predicted box and the ground truth box, and c
represents the diagonal distance of the smallest closed area that
can contain both the prediction box and the ground truth box.
The last term α× v is used to measure the similarity of the
aspect ratio, and α is a weight value.

To balance the effect brought by the pseudobox labels, we
proposed the weighted CIoU loss as is shown in (7), where Okij

denotes the NOM score, Dkij denotes the normalized distance
score, and Skij denotes the normalized size score of the jth pro-
posed box of the ith point label of the kth image. By multiplying
the NOM, normalized distance and normalized size score of all
pseudolabels, respectively, to the IoU, distance, and aspect ratio
term of CIoU loss, our weighted loss neutralizes the side effect
introduced by pseudocenter point and side length. In addition,
a hyperparameter λ is introduced to multiply the distance and
aspect loss for adjusting the significance of these two losses as
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Fig. 3. Overview of the proposed method.

pseudobox labels are biased

WLCIOU = 1− IoU

N × n×m

N∑
k=1

n∑
i=1

m∑
j=1

Okij

+
ρ2(b, bgt)

c2
× λ

N × n×m

N∑
k=1

n∑
i=1

m∑
j=1

Dkij

+
λ × α× v

N × n×m

N∑
k=1

n∑
i=1

m∑
j=1

Skij. (7)

3) Progressive Proposal Mining: In order to optimize the
value of the hyperparameter r, we propose a progressive refine-
ment strategy for proposal mining. The first step is to randomly
initialize the hyperparameter r between 0 and 1, and to initialize
the hyperparameter step which should be greater than 0 and less
than the value of r. Then, the initial pseudoground truth label
is generated from the top r proposals by (5). After training, the
mean average precision (mAP) of predicted bounding box of
validation data is evaluated, and update r by step. Repeat these
two steps until the mAP of predicted bounding box of validation
data stops increasing. The process of the progressive refinement
strategy is shown in Algorithm 1. The overview structure of the
proposed method is shown in Fig. 3.

III. EXPERIMENTS

A. Dataset Description

We implemented our point-based WSL method to detect
objects: Airplanes, ships, storage tanks, and cars in HSR remote

Fig. 4. Examples of images and point labels of the dataset. The first, second,
third, and fourth columns represent airplane, ship, storage tank, and vehicle
images and their corresponding point labels, respectively.

sensing imagery. HSR remote sensing images of all classes
are collected from a public dataset named NWPU VHR-10
dataset [27]–[29] that were cropped from Google Earth and Vai-
hingen dataset. The spatial resolution of images ranges from 0.08
to 2 m. Point annotations of images were manually annotated
by experts. Samples of the dataset are shown in Fig. 4. There
are overall 233 images. We divide them into a training dataset
which consists of 163 images and corresponding point labels, a
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validation data which consists of 23 images and corresponding
point and box labels, and a test data which consists of 47 images
and corresponding box labels. It is noteworthy here that the
box labels of validation and test data are only used for model
evaluation.

B. Experimental Setup

We first generated around 10 000 proposals for each image
from SS algorithm. Then, we conducted our proposal mining
method on proposals, and generated initial pseudolabels. We
utilized YOLOv5 as our backbone network, and pretrained the
backbone network on the COCO dataset [30]. The convolution
layers of the pretrained network were freezed, and the yolo
layers were trained using our training data and related initial
pseudolabels. In test and detection processes, NMS [31] is
implemented to reduce duplicated bounding boxes with 0.2 IoU
threshold. We evaluate our model by measuring the average
precision (AP) and mAP. Note when the IoU between the ground
truth and inference boxes is greater than 0.5 the inference boxes
are treated as positive detection, which is consistent with the
PASCAL VOC criteria [32].

C. Results

1) Normalized Overall Measure Analysis: Fig. 5 shows ex-
amples of pseudolabels generated from (5) of five categories.
NOM represents the normalized overall measure value of pseu-
dolabels, and r represents the ranking ratio of the NOM values
of all candidate proposals, which means that the proposals of the
highest r ratio are applied to generate pseudolabels. When r is
smaller, the NOM score of pseudolabels is higher. Each column
represents the pseudolabel of different categories corresponding
to the same NOM and r. Each row represents the pseudolabel
of the same categories generated from different NOM and r.
Here, we show pseudolabels corresponding to r from 1 to 0.1
at intervals of 0.1. From Fig. 5, as the value of r decreases, the
NOM increases, and the size of the pseudobounding box also
decreases for all categories, which means the size of pseudola-
bels becomes smaller as the NOM score becomes higher. For
the airplane category, when r is less than 0.3 NOM is greater
than 0.77, the size of various pseudolabels is smaller than that
of the airplane target, and the pseudolabels incline to fail to frame
the wings of airplanes. This means that when the value of r is
small the value of NOM is relatively big. The pseudolabel size
tends to be smaller than the actual object size. We found that
when NOM = 0.77 and r = 0.3, the size of the pseudolabels is
appropriate for the airplane and ship categories in Fig. 5, but the
label size is too large for the storage tank and vehicle categories.

2) Weighted Loss Analysis: Fig. 6 shows detailed detection
performance on validation data implementing weighted loss
with different λ. For all classes, when logλ

2 is greater than 3,
the proposed weighted loss yields better performance than the
baseline. This means when distance and aspect loss has a rela-
tively bigger weight the model can provide a better performance.
When logλ

2 equals to 5, the model obtained the best mAP@0.5.
Thus, in the following experiments, the hyperparameter λ is set
to 32. Regarding airplane class, λ has very limited impact on

it, and its mAP@0.5 is near to 1, which means the generated
pseudolabels of airplane are similar to the ground truth labels.
Regarding ship class, when logλ

2 is less than 4, λ has no clear
impact on ship detection performance, while when logλ

2 is greater
than 4, λ has a negative impact on ship detection performance. In
Fig. 5, the size and shape of ship pseudolabels are better than that
of other classes especially storage tank and vehicle categories.
Thus, if λ increases, the penalty of distance and side length also
increases. This brings a negative impact for ship detection. For
both storage tank and vehicle classes, bigger penalty on distance
and side length can improve the performance of detection, since
the pseudolabels of them are more diverse than those of the ship
class.

To further illustrate the role of the proposed measurements,
we studied the performance of the weighted loss without our
measurements. In Fig. 7, detection models trained from different
λ without scores were evaluated on validation data. Regarding
all classes, the values of mAP@0.5 of all λ are almost equal to
that of the baseline. Though λ is multiplied to loss, the λ constant
does not change the essence of the loss. The performance of the
airplane class is similar to Fig. 6. For the ship class, storage tank,
and vehicle classes, there is a performance tradeoff between
them. This results in the stable performance of all classes.

3) Proposal Mining Analysis: As described above, proposals
are mined by (5). The proposal mining process and the impact of
hyperparameter r were analyzed in this part. From Fig. 5, when
r is lower than 0.5, the size of pseudolabels is much bigger than
objects for all categories. Here, the value of r starts from 0.5, and
setstep = 0.1 if r≥ 0.1, or step = 0.02 if r < 0.1. For each value
of r, the corresponding pseudolabels were generated for train-
ing model. Then, the model was evaluated on validation data.
The mining process stopped when the detection performance
of validation data began to deteriorate. The hyperparameter r
corresponding to the best detection performance of validation
data was utilized to generate the final pseudo label.

Fig. 8 reports mAP@0.5 of all classes and shows precision
recall curve (PRC) of models corresponding to r which is,
respectively, equal to [0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.06, 0.04].
When r = 0.5, the mAP@0.5 of airplane is 0.527 and the
mAP@0.5 of ship is 0.641, while the mAP@0.5 for storage tank
and vehicle classes is near to zero. The precision of storage tanks
and cars are almost zero, which means the model cannot detect
these two classes under r = 0.5. When r = 0.4, the mAPs@0.5
of airplane, ship, and storage tank are 0.772, 0.754, and 0.115,
respectively, while the mAP@0.5 of vehicle class is near to
zero. From the PRC, the curves of the car and storage tank
classes are much lower than that of airplane and ship classes.
When r = 0.3, the mAP@0.5 of storage tank class improved by
0.501, meanwhile the PRC curve of storage tank class rises a lot.
When r = 0.2, the mAP@0.5 of car class improved by 0.158.
The mAP@0.5 of storage tank class improved by 0.183. When
r = 0.1, the mAPs@0.5 of storage tank and car class further
improved, respectively, by 0.183 and 0.195. When r = 0.08, the
mAPs@0.5 of all classes are slightly improved by 0.02. When
r = 0.06, the mAPs@0.5 of car class significantly improved by
0.470. This improvement has a big impact on the mAP@0.5 of
all classes, which also improved by 0.120. When r = 0.04, the
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Fig. 5. Examples of pseudolabels for airplane, storage tank, vehicle, and ship generated from different hyperparameter r and NOM value.

mAPs@0.5 of ship, storage tank, and car classes have slightly
dropped. By comparing all PRCs of different r values, the
mAP@0.5 of all classes is gradually increasing until r = 0.04.
The trend of car and ship classes is similar as other classes. The
airplane class got its maximum mAP@0.5 when r = 0.3. When
r further decreases, the mAP@0.5 of airplane class keeps stable.
The storage tank class got its maximum mAP@0.5 when r= 0.1.

When r further decreases, the mAP@0.5 of storage tank class
keeps stable. From the analysis, we found the best r for separate
class is different. However, when a class got its best performance,
the performance can keep stable when r keep decreasing. When
r= 0.06, the model obtained its best performance on all classes.
Therefore, in the following experiments, the hyperparameter
r = 0.06 was implemented to generate pseudolabels.
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Fig. 6. Detection performance on validation data with weighted loss.

Fig. 7. Detection performance on validation data without weighted loss.

TABLE I
PERFORMANCE COMPARISONS (AP AND MAP) AMONG DIFFERENT OBJECT

DETECTION METHODS

4) Comparisons With Reference Methods: We compared our
method with two state-of-the-art object detection algorithms.
Yolov5 is a fully supervised method which is supervised by
bounding boxes generated from experts, and WSDDN is a
weakly supervised method which is supervised by image-level
labels. Table I quantitatively evaluates the performance of
YOLOv5, WSDDN and our method. From Table I, the fully
supervised YOLOv5 obtained the highest AP and mAP among
three methods. Our method achieved second high AP and mAP
score. For the airplane category, our method is 0.027 lower
than YOLOv5 in AP score, but 0.468 higher than WSDDN
method. For the ship category, our method is 0.041 lower than
YOLOv5 in AP score, but 0.432 higher than WSDDN method.
For storage tank category, our method is 0.007 lower than
YOLOv5 in AP score, but 0.556 higher than WSDDN method.
For car category, our method is 0.089 lower than YOLOv5
in AP score, but 0.708 higher than WSDDN method. For all
classes, our method is 0.041 lower than YOLOv5 in AP score,
but 0.541 higher than WSDDN method. By implementing point
supervision, our method has significantly shortened the time
to make labels but achieved almost the same outcome as the
fully supervised method. Compared to image-level supervision
method, our method has achieved a substantial improvement
in performance on the test set. Fig. 9 shows some examples of
inference results on the test set. In general, our method accurately
identified most of the targets, but there are still a small number
of omissions and false positives. It is worth mentioning that
in the third picture of the first row, the airplane with only the

TABLE II
COMPLEXITY COMPARISON BETWEEN METHODS

wings was also detected, indicating that our method is robust
to the shape of the object. In the fifth picture on the first row,
although the background of the image is very complicated,
most of the airplanes are recognized. In the sixth picture of
the first row, many targets are obscured by shadows and trees,
and the locations of the cars are dense and irregular. However,
our method also accurately identifies most cars. Most of the
unidentified cars are obscured by shadows or trees. In the second
line of the picture, almost all dense storage tanks are accurately
identified one by one. In the second line of the figure, almost
all dense storage tanks are accurately identified one by one. It is
worth mentioning that in the second picture in the second row,
some gray circular targets were mistakenly identified as storage
tanks. However, it is difficult for the human eyes to determine
whether these gray targets are storage tanks or not solely based
on image information. In the third row of the figure, almost all
ships have been successfully identified. In the fourth line of the
image, we can find that no matter what color the car is, it can
almost always be recognized. Especially in the last picture in the
fourth row, despite the fact that the shadows obscure many cars,
those cars are still successfully identified. Even a few cars that are
completely obscured by shadows that are not easily recognized
by the human eye are accurately identified by our method. This
once again demonstrates that our algorithm is robust to shapes.

5) Complexity Analysis: In this part, annotation, training,
and inference times of each method are compared to compre-
hensively analyze their efficiency. To evaluate annotation time,
we randomly choose 100 images from our dataset. Then, we
separately counted the overall time required to mark the image
category label, bounding box label, and point label. Finally,
we divided the total time by 100 to get the average manual
labeling time required for each image. As shown in Table II,
as WSDDN only needs to point categories of objects within
each image, WSDDN demands the least time to label images;
YOLOv5 needs the longest time to label bounding boxes for
images; the annotation time of the proposed point-based WSL
method is 11.04-s longer than WSDDN, but 40.29-s shorter
than YOLOv5. This shows that compared with the reference
supervision method, the proposed point-based WSL method
greatly reduces the time of manual data labeling.

To evaluate the time complexity of these methods, we tested
them on NVIDIA GeForce RTX 2070. Training time refers to 50
epochs of training for all methods. It is normalized to the total
number of epochs to get the average training time per epoch.
The inference time of all test images is recorded first, and then
divided by the number of test images to get the average inference
time for each image. As shown in Table II, compared to YOLOv5
and the proposed method, WSDDN requires the longest training
and inference times; YOLOv5 and the proposed method require
almost the same training and inference times. This means that the
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Fig. 8. Figure illustrates the precision recall curve of models trained by pseudolabels generated from different hyperparameter r on validation data.

Fig. 9. Example results on the test split for each class. Yellow rectangle indicates airplane class; cyan rectangle indicates storage tank class; blue rectangle
indicates ship class; and green rectangle indicates vehicle class.

proposed method and YOLOv5 are more efficient than WSDDN
during training and inference.

IV. CONCLUSION

In this article, a novel point-based weakly supervised learn-
ing method is proposed to address object detection tasks in

HSR remote sensing images. First, bounding box proposals are
obtained from an unsupervised SS method. Three normalized
measurements are introduced to evaluate the performance of
proposals. Then, proposals are progressively mined to generate
pseudobounding box labels depending on the performance of
validation data. To train detection models, a weighted CIoU loss
is therefore proposed balancing the uncertainty of pseudolabels.
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We assess and analyze the proposed scheme on four classes
which are airplane, ship, storage tank, and car. The results are
compared to two state-of-the-art methods which are a fully
supervised learning method and a WSL method. Our method
achieves competitive performance compared to the fully super-
vised learning method, while our method greatly reduces human
intervention. In addition, the performance of our method largely
outperforms that of the image-level based on WSL method. The
results point out that our method is a useful alternative for object
detection in HSR remote sensing images.

In this research, our point-based weakly supervised method
mainly focuses on identifying objects in HSR remote sensing
images. In future research, we also hope to work on recognizing
objects at other scales. Also, we hope to further improve the
object recognition accuracy of weakly supervised learning based
on point labels and reduce manual intervention and interference
while maintaining state-of-the-art localization and detection
accuracy. The proposed point-based WSL method is not only
applicable for object detection in RGB images but also suitable
for other types of remote sensing data such as multispectral,
hyperspectral, and SAR image data. However, there might be
some difficulties to be solved in the generalization to these
types of data. Especially for SAR data, unsupervised clustering
method can hardly generate meaningful proposals for objects,
since SAR images are inherently affected by speckle noise, and
the visual interpretability of SAR images is not as natural as in
optical images. Since the proposal generation process is usually
an important but time-consuming stage for WSL methods, we
envision to focus on strategies for effectively generating propos-
als in our future research.
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