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Abstract—Recently, graph-embedding framework has been de-
veloped for dimensionality reduction (DR) and classification of hy-
perspectral images (HSI). However, it suffers from intraclass differ-
ence and interclass similarity in complex scenarios. In this article,
an unsupervised DR method called superpixelwise collaborative-
representation graph embedding (SPCRGE) is proposed for the
HSI classification. In SPCRGE, homogeneous regions called su-
perpixels are generated by grouping spectral-similar and spatially
adjacent pixels. Pixels in one homogeneous region come from one
class with high probability. Then, Laplacian regularized superpix-
elwise collaborative representation (SPCR) of a query pixel, i.e.,
using all pixels in its superpixel to represent the pixel, is obtained
by solving a generalized Sylvester equation to extract commonality
and maintain individuality of the pixel to some extent. Finally, a
global projection matrix to a low-dimensional space is calculated
by reducing the discrepancy between SPCRs and the original
spectral features, and reducing the differences between pixels from
one superpixel and increasing the differences between pixels from
different superpixels simultaneously. Superior classification per-
formances on several HSI datasets demonstrate the effectiveness of
the proposed SPCRGE.

Index Terms—Collaborative representation, graph embedding,
hyperspectral image, Laplacian matrix, spectral-spatial
dimensionality reduction.

I. INTRODUCTION

S PECTRAL information is important for discriminating dif-
ferent materials, since different materials possess different

spectral properties. Compared with traditional and multispectral
images, hyperspectral imagery (HSI) with hundreds of contigu-
ous narrow bands, possesses more abundant spectral informa-
tion, which has been extensively exploited in image processing
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field, such as HSI classification [1]–[5], clustering [6], unmix-
ing [7], [8], target detection [9], [10], anomaly detection [11],
[12], and change detection [13]. However, in HSI classifica-
tion, contiguous bands of hyperspectral image are often highly
correlated, which may degrade its classification performance.
Furthermore, high dimensionality of hyperspectral image may
cause Hughes phenomenon [14], which further deteriorates the
classification performance.

To alleviate the difficulty of HSI classification from redun-
dant spectral information and the curse of high dimensionality,
dimensionality reduction (DR) has been widely used. In DR,
a mapping that transforms the original high-dimensional spec-
tral features into new low-dimensional features is needed. The
mapping could be nonlinear or linear, unsupervised, supervised,
or semisupervised [15], [16]. Some traditional DR methods,
such as principal component analysis (PCA) [17], linear dis-
criminative analysis (LDA) [18], and nonparametric weighted
feature extraction (NWFE) [19], construct the mappings from
the statistical perspective. Manifold learning as one big family
of DR methods tries to find the mapping by preserving local
geometric structure. The relatively early methods of manifold
learning include isometric mapping (Isomap) [20], locally linear
embedding (LLE) [21], Laplacian eigenmaps (LE) [22], and the
linear extensions of LLE and LE, i.e., neighborhood preserving
embedding (NPE) [23], and locality preserving projection [24],
respectively.

A general framework called graph embedding has been pro-
posed [25], which unifies many DR methods and can be used
as a general platform for developing new DR algorithms. In this
framework, an intrinsic undirected weighted graph and a penalty
undirected weighted graph are constructed to embed the statistic
or geometrical information and low-dimensional features can
be obtained by solving an optimization problem. After that,
many new DR methods have been proposed. Unsupervised
noise-robust sparsity preserving graph embedding (SPGE) [26]
and its supervised version, i.e., sparsity graph-based discrimi-
native analysis (SGDA) [27] learn the low-dimensional features
by preserving sparse representation (SR) relationships. In [28],
the performance of collaborative representation (CR) has been
proved as good as that of SR while CR is superior to SR in
terms of computational complexity. Subsequently, collaborative
graph-based discriminative analysis (CGDA) and block collabo-
rative graph-based discriminative analysis (BCGDA) have been
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proposed [29] and experiments have shown that the classification
performances of CGDA and BCGDA with lower computational
complexity are even better than SGDA. Most recently, an un-
supervised collaboration-competition graph preserving embed-
ding (CCPGE) was proposed by combining global and local
graphs [30].

All the abovementioned DR methods utilize only spectral
information. The classification performance is generally not sat-
isfying because of intraclass difference and interclass similarity
in complex scenarios. To obtain better performance, abundant
spatial information should be utilized as well. Neighboring
relations in spatial space can provide extra information since
neighboring pixels have great chances to be from one class.
To embed spatial information in DR, many spectral-spatial DR
methods have been proposed. One strategy is to incorporate spa-
tial information into distance calculation or selecting neighbor-
ing pixels. Three methods called spatial coherence distance [31],
image patches distance [32], and spatial-spectral (SSCD) [33],
design distance formulas between different patches, incorpo-
rate the spatial information into traditional DR methods and
perform well as compared to traditional DR methods. Another
strategy is to perform DR algorithm on a tensor patch of speci-
fied size. Tensor sparse and low-rank graph-based discriminant
analysis (TSLGDA) [34] treats every tensor patch as features
of center pixel and performs the DR algorithm on tensors.
Other strategy like orthogonal total variation component anal-
ysis (OTVCA) [35] learns low-dimensional features with total
variation regularization based on that the learned features should
be smooth in spatial space.

However, these methods consider only specified neighbor-
hood around a query pixel and cannot fully reflect local man-
ifold in spectral-spatial feature space. Therefore, an adaptive
neighborhood system is required. This system can be realized
by generating nonoverlapping homogeneous regions. One of the
most powerful tools to create homogeneous regions is superpixel
segmentation. Based on superpixel segmentation, many classi-
fication methods have been proposed, such as Hidden Markov
Random Fields-SVM (HMRFSVM) [36], set-to-set distance-
based spectral-spatial classification (SD-SSC) [37], superpixel-
based extended random walker (SPERW) [38], and superpixel
contracted graph-based learning (SGL) [39]. All these methods
assume that pixels within a superpixel are from one class and
have achieved good classification performances. There are some
spectral-spatial DR methods based on superpixel segmentation.
One method is called superpixel-based linear discriminative
analysis (SPLDA) [40], where superpixelwise geometric struc-
ture is preserved. In [41], SuperPCA performs superpixelwise
PCA to extract local principal components. However, there are
some problems. First, local principal components lack global
perspective. Since different superpixels may have different prin-
cipal projections, projection values in different superpixels have
different meanings. Second, after the number of principal com-
ponents is specified, the number of pixels in a superpixel may
be less than the number of principal components. Subsequently,
the number of principal components of this superpixel has to
be less than the specified number, which may deteriorate the

classification performance. This situation may exist in a complex
urban scenario.

Based on the above observations, superpixelwise
collaborative-representation graph embedding (SPCRGE)
is proposed in this article. SPCRGE first performs PCA on the
original HSI and utilizes the first three principal components to
generate superpixels via a superpixel segmentation algorithm.
Then, Laplacian regularized superpixelwise collaborative
representation (SPCR) of a query pixel, i.e., using all pixels
in its superpixel to represent the pixel, is obtained by solving
a generalized Sylvester equation to extract commonality and
maintain individuality of the pixel to some extent. Finally, a
global projection matrix to a low-dimensional space is obtained
under two principles. One principle is to reduce the discrepancy
between SPCRs and the original spectral features. The other
is to reduce the differences between SPCRs of pixels from
one superpixel and increase the differences between SPCRs of
pixels from different superpixels simultaneously. In this way,
redundant spectral information is reduced and abundant spatial
information is utilized as well.

The main contributions of this article are listed as follows.
1) From our best knowledge, this is the first time that intrinsic

graph of graph-embedding DR method is based on the newly
defined within-superpixel representation error matrix by com-
bining superpixel segmentation and CR, saying, SPCR. SPCR
helps to preserve the main spectral properties so as to alleviate
environment-induced difference to some extent. As is known,
spectral features can be influenced by local environment and
two pixels from one class may have different spectral signatures
in far-away space, but their main properties are believed to be
similar. As we will see later, there are principal directions in
a superpixel, which correspond to the main properties of the
superpixel, and the directions of SPCRs transformed from the
original features are closer to these principal directions. This
means that the main properties of the pixels can be embodied
with their SPCRs.

2) Between-superpxiel scatter matrix of SPCR is defined in
the first time for penalty graph in analogy with between-class
scatter matrix. This helps to reduce the differences between
SPCRs of pixels from one superpixel and increase the dif-
ferences between SPCRs of pixels from different superpixels
simultaneously. Someone may concern that it may enlarge the
distance between the pixels that belong to one class but belong
to different superpixels. However, if most of pixels in two
superpixels belong to one class, SPCRs in two superpixels will
be similar to each other, and thus the scatter matrix between
them is small and has little contribution to the calculation of
global low-dimensional projections.

3) The proposed two stages of feature extraction are novel.
The first stage is to replace the original features with their
SPCRs. SPCRs can keep the main properties of spectral features
and discard unimportant information. This effect is similar to
weighted mean filter, as it is used as a preprocessing tool in some
DR methods [42]. In the second stage, a global linear projection
matrix is obtained by reducing the discrepancy between the
original features and their SPCRs and the distance between
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pixels from one superpixel, and enlarging the distance between
pixels from different superpixels that are not close in terms of
SPCRs. In this way, the problem of spectral redundancy and
Hughes phenomenon, and the problem of intraclass difference
and interclass similarity can be alleviated simultaneously.

The remainder of this article is organized as follows. Sec-
tion II briefly reviews some related works including superpixel
segmentation and BCGDA. Section III explicitly explains the
proposed SPCRGE method. Experimental results are displayed
in Section IV to demonstrate the superior performance of
SPCRGE. In Section V, we conclude the article.

II. RELATED WORKS

A. Superpixel Segmentation

Superpixel segmentation divides an image as perceptually
disconnected homogeneous regions, each one of which is called
a superpixel within which pixels share similar properties. Taking
account of the merit of superpixel segmentation, it has been
used widely in the prepossessing stage of HSI classification.
Two popular superpixel segmentation algorithms are simple
linear iterative clustering (SLIC) [39], [40], [43] and entropy
rate superpixel (ERS) [37], [41], [44], [45], because of their
low computational complexity and satisfactory performance.
In this article, since ERS is empirically better than SLIC in
terms of classification performance, we use ERS as superpixel
segmentation algorithm, which is briefly reviewed here. In fact,
the superpixeled segmentation algorithm in the first step of our
proposed DR method is not limited to ERS, and other alternative
superpixel segmentation algorithms can be also considered [46].

ERS segmentation is one of graph-based superpixel segmen-
tation algorithms. First, a graph is constructed by building edges
between a pixel and its four or eight spatially neighboring pixels
and calculating the pairwise similarities. Then, ERS segmenta-
tion is to choose a subset of the edges so that many disconnected
regions are generated. To generate K nonoverlapping homo-
geneous regions, the objective function of ERS segmentation
combines an entropy rate term H(Es) with a balancing term
B(Es) with respect to the subset Es of edge set E

max
Es

H(Es) + γB(Es)

s.t. NEs
≥ K and Es ⊆ E

(1)

where γ is the weight that balances the entropy rate term and the
balancing term, and NEs

is the number of nonoverlapping ho-
mogeneous regions. The entropy rate term is to obtain compact
and homogeneous regions. The balancing term favors fewer and
similar-size homogeneous regions. To solve the optimization
problem (1), a greedy algorithm is adopted. In each iteration of
the algorithm, one edge is added, yielding the largest gain of the
objective function. The iterations are stopped when the number
of homogeneous regions is equal to K. As described in [44],
this method has achieved good performance and is also highly
efficient as it only takes about 2.5 s on average to segment an
image of size 481 × 321.

B. BCGDA for HSI Dimensionality Reduction

HSI is a 3-D tensor H ∈ Rm×n×d, where m and n are the
height and width, respectively, and d is the number of spectral
bands. For pixelwise hyperspectral classification, we transform
the 3-D image into pixelwise 2-D matrix X = [xi] ∈ Rd×mn

with xi ∈ Rd×1. In the framework of graph-embedding DR,
two graphs are constructed: an intrinsic graph G = {X,W}
and a penalty graph Gp = {X,Wp}, where W and Wp are the
corresponding weight matrices. To obtain a linear projection
matrix P ∈ Rd×k(k � d) that transforms the original high-
dimensional features X into a low-dimensional subspace PTX,
an objective function is mathematically formed as

P = argmin
P

Tr(PTXLXTP)

Tr(PTXLpXTP)
(2)

where L = D−W and Lp = Dp −Wp are the Laplacian ma-
trices of graphsG andGp, respectively, withD andDp being di-
agonal matrices subject toDii =

∑
j Wij andDp

ii =
∑

j W
p
ij ,

and Tr(·) is the trace operator. This optimization problem can
be solved as a generalized eigenvalue decomposition

XLXTpi = λiXLpXpi (3)

where λi is the ith smallest nonzero eigenvalue and pi is the
corresponding eigenvector. The d× k projection matrix P is
obtained just by grouping [pi](1 ≤ i ≤ k).

BCGDA is established under the above graph-embedding
framework. The main work of BCGDA is to construct its intrin-
sic graph. Let C be the number of classes, the training number
be NL, and the number of training samples in the ith class be ni

satisfying
∑C

i=1 ni = NL. First, training samples are grouped
as matrices Xi where every column vector xi in Xi belongs to
the ith class. Then, CR, i.e., using all training samples in the
ith class to represent a query training sample xi is obtained by
solving the optimization problem

argmin
αi

||xi −Xiαi||22 + λ||αi||22 (4)

where Xiαi is the CR of xi, αi is the corresponding CR
coefficient, and λ is the weight balancing two terms. It is noted
that xi is excluded in Xi in (4). The solution to (4) is

αi = (XT
i Xi + λIi)

−1XT
i xi. (5)

After αi is determined for all the training samples, the CR
coefficient matrix A can be constructed by zero-padding αi in
the corresponding positions and then grouping them together

A =

⎡
⎢⎣
A1 0

. . .
0 AC

⎤
⎥⎦ (6)

where Ai is the CR coefficient matrix of size ni in the ith class.
Laplacian matrix of the intrinsic graph is L = (I−A)(I−
A)T ; thus, within-class representation error matrix is

Sw = XLXT =
C∑
i

Xi(Ii −Ai)(Ii −Ai)
TXT

i (7)
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Fig. 1. Flowchart of the proposed SPCRGE for unsupervised dimensionality reduction on HSI.

where Ii is an identity matrix of size ni. The Laplacian matrix
of penalty graph Lp is set as I, which is an identity matrix of
size n. Then, projection matrix P can be obtained by solving
the eigenvalue decomposition problem (3). As described in [29],
BCGDA has achieved better HSI classification performance than
most of state-of-the-art methods.

III. PROPOSED UNSUPERVISED SPCRGE FRAMEWORK

In this section, the flowchart of SPCRGE is shown in Fig. 1,
including superpixel segmentation and superpixelwise CR graph
embedding.

A. Superpixel Segmentation for HSI

HSI classification is based on discriminative spectral infor-
mation. However, spatial information that neighboring pixels
bear great chances to be from one class should be utilized as
well. Many works incorporate spatial information by a specified
neighborhood system. This may not be appropriate since pixels
within one class distribute around spatial space in a more adap-
tive way and constitute homogeneous regions. Therefore, it is
better to form an adaptive neighborhood system via generating
nonoverlapping homogeneous regions. ERS segmentation is one
excellent method for doing so.

Before performing ERS segmentation algorithm, PCA is ex-
ecuted on HSI to extract the main spatial structure information.
ERS segmentation algorithm is then executed on the first three
principal components to generate nonoverlapping homogeneous
regions—superpixels. Let the number of superpixels be S, the
total number of pixels be N , and the number of pixels in the ith
superpixel be Ni satisfying

∑S
i=1 Ni = N . The pixels in the ith

superpixel are grouped as Xi.

B. Superpixelwise CR Graph Embedding for HSI
Dimensionality Reduction

After superpixels are generated via ERS segmentation algo-
rithm, SPCR coefficient matrix Ai in the ith superpixel are
obtained by solving the optimization problem:

argmin
Ai

||Xi −XiAi||2F + λ||Ai||2F + βTr(XiAiMiA
T
i X

T
i )

(8)
where Mi is the symmetrical Laplacian matrix of graph matrix
Wi in the ith superpixel whose mnth element is Wi(m,n) =
exp(−||xm − xn||22/γmγn), where γm = ||xm − xNN

m ||2 and
xNN
m is the nearest neighbor of xm in the ith superpixel. Similar

to LapCGDA [47], Laplacian regularization, i.e., the last term
in (8) is to preserve the local manifold. However, LapCGDA
preserves the local manifold by conforming CR coefficients of
each pixel to the local manifold while our method by conforming
SPCR per se to the local manifold.

From the minimization problem (8), we can obtain the corre-
sponding analytical solution by solving a generalized Sylvester
equation. By setting the derivative of objective function (8) with
respect to Xi to zero, we can obtain

(XT
i Xi + λIi)Ai + βXT

i XiAiMi = XT
i Xi. (9)

Substituting XT
i Xi with its eigenvalue decomposition

Q1Λ1Q
T
1 andMi with its eigenvalue decompositionQ2Λ2Q

T
2 ,

(9) becomes

(Λ1 + λIi)Q
T
1 AiQ2 + βΛ1Q

T
1 AiQ2Λ2 = Λ1Q

T
1 Q2 (10)

which is a generalized Sylvester equation. From (10), we can
obtain

vec(QT
1 AiQ2) = vec(Λ2Q

T
1 Q2)/[1⊗ diag(Λ1

+ λIi) + βdiag(Λ2)⊗ diag(Λ1)]
(11)
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where vec(·), diag(·) are the vectorization operator and the
operator of vectorizing the diagonal elements of a matrix, re-
spectively, ⊗ is Kronecker product operator, and 1 is a vector
of all ones with the same dimension as diag(Λ1). Then, Ai can
be obtained after QT

1 AiQ2 is retrieved from its vector form.
After all Ai are obtained, like (6), SPCR coefficient matrix

A can be written as

A =

⎡
⎢⎣
A1 0

. . .
0 AS

⎤
⎥⎦ (12)

where Ai is the SPCR coefficient matrix of size Ni in the ith
superpixel. Then, within-superpixel representation error matrix
of SPCRGE is defined as

Sw =

S∑
i=1

Xi(Ii −Ai)(Ii −Ai)
TXT

i

=
S∑

i=1

(Xi −Yi)(Xi −Yi)
T

(13)

where Ii is an identity matrix of sizeNi, andYi = XiAi. Seem-
ingly, representation error matrix of SPCRGE is similar to that
of BCGDA, and except for Laplacian regularization, the only
difference is that the former is superpixel-dependent while the
latter is class-dependent. However, to obtain low-dimensional
features, a projection matrix in BCGDA is ultimately performed
on the original spectral features X while that in SPCRGE is
ultimately performed on SPCR Y = XA. Therefore, physical
meanings of representation error matrices of SPCRGE and
BCGDA are different. In BCGDA, a projection matrix is found
to preserve CR relationships. However, in SPCRGE, a projection
matrix is found to reduce the discrepancy between SPCR and the
original spectral features. In analogy with between-class scatter
matrix, between-superpixel scatter matrix of SPCRGE is defined
as

Sb =

S∑
i=1

Ni(Yi −Y)(Yi −Y)T (14)

where Y and Yi are the mean of all SPCRs and SPCRs in the
ith superpixel, respectively, and S is the number of superpixels.
Then, projection matrix is obtained by solving the optimization
problem:

P = argmin
P

Tr(PTSwP)

Tr(PTSbP)
(15)

and its corresponding generalization eigenvalue problem is

Swpi = λiSbpi. (16)

Similar to (3), P is obtained by grouping [pi](1 ≤ i ≤ k) cor-
responding to the k smallest nonzero eigenvalues. The overall
description of the proposed SPCRGE is given as Algorithm 1.

C. Analysis of Proposed SPCRGE

In this section, some physical explanations are given to illus-
trate the rationality behind the proposed SPCRGE.

Algorithm 1: Proposed SPCRGE Algorithm.

Input: HSI data X = {xj}Nj=1 ∈ Rd, number of
superpixels S, and the regularization parameters λ and β

Obtain first three principal components by PCA on X
and segment on the three principal components via ERS
segmentation algorithm to obtain superpixels;

for i = 1 to S
Grouping pixels of the ith superpixel as
Xi = [xi] ∈ Rd×Ni ;

Obtain its Laplacian Matrix Mi via pairwise distance
calculation;

Eigenvalue decompositions: XT
i Xi = Qi1Λi1Q

T
i1,

Mi = Qi2Λi2Q
T
i2;

Obtain vec(QT
i1AiQi2), i.e., the vector form of

QT
i1AiQi2 via solving (11) in a closed form;

Retrieve SPCR coefficient matrix Ai from QT
i1AiQi2,

i.e., the matrix form of vec(QT
i1AiQi2) and obtain

Yi = XiAi;
endfor;
Obtain within-superpixel representation error matrix Sw

via (13) and between-superpixel scatter matrix Sb via
(14);

Obtain projection matrix P via solving (16) and group all
Yi as Y;

Output: A projection matrix P and low-dimensional
features PTY.

1) Remark 1: Performing singular value decomposition
(SVD) on Xi = UΣVT , where Σ is a diagonal matrix whose
diagonal elements are the singular values σi > 0 in descent
order. Then, according to (5), expression of SPCR, yi of xi

in the ith superpixel can be written as [48]

yi = Xiαi = UΣ̂UTxi (17)

where Σ̂ is a diagonal matrix whose diagonal elements are
σ̂j = σ2

j /(σ
2
j + λ). From (17), some points with respect to yi

can be obtained. a) The original spectral feature xi is first pro-
jected into the space U spanned by Xi with the projection value
reduced by the ratio of 1− σ̂j in the jth projection direction,
and then yi is obtained by multiplying U with a vector whose
elements are the corresponding reduced projection values. b)
The reduction ratio in every direction is proportional to λ and
the projection values in the perpendicular direction toU are lost.
The reduction ratio is zero when λ = 0 and 1− σ2

i /λ when λ

is large. c) The reduction ratio decreases with the increase of
the singular value in that projection direction, so the projection
values in the principal directions corresponding to the larger
singular values are relatively larger than that in other directions.

From the above three points, we can conclude that the di-
rection of SPCR yi in one superpixel transformed from the
original feature xi is closer to the principal directions of the
space spanned by all pixels in the same superpixel irrespective
of shorter length of yi compared to xi. In addition, the larger the
regularization parameter λ, the closer the direction of yi is to the
principal directions. The principal directions corresponding to
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Fig. 2. Illustration of the effect of SPCR for reducing intraclass difference and suppressing interclass similarity.

Fig. 3. Effect of SPCR of enhancing intralass similarity and suppressing interclass similarity on the three simulated Gaussian distributions. (a) Original points.
(b) SPCRs of the original points. (c) The points in the low-dimensional space.

the larger singular values can be seen as commonality of pixels
in a superpixel, and the other directions corresponding to the
smaller singular values as individuality. By SPCR, commonality
of pixels in the superpixel is enhanced. This is similar to PCA as
it also keeps the main properties of the original features, but the
difference lies in that individuality is also kept in SPCR, though
with less ratio.

This property can be utilized to alleviate the problem of
intraclass difference and interclass similarity in HSI classifi-
cation, which can be illustrated in Fig. 2. The superpixels #1,
#2, and #3 represented by circles are obtained by grouping
spectral-similar and spatially adjacent pixels represented by red
arrows, based on the assumption that spatial-spectral similar
pixels are highly likely to be one class. By the original features,
large difference exists between pixels from one superpixel and
large similarity also exists between pixels from different super-
pixels, which correspond to intraclass difference and interclass
similarity, respectively. By SPCR, commonality of pixels from
one superpixel is enhanced and their directions are more closer to
the principal directions. As a result, similarity of pixels from one
superpixel are enhanced while similarity of pixels from different
superpixels are suppressed.

However, discrepancy exists between the original spectral
features and SPCRs. In (8), Laplacian regularization is added to
conform SPCRs to the local manifold, so discrepancy is allevi-
ated to some extent. Furthermore, the purpose in the intrinsic
graph of SPCRGE is also to find a projection space where
discrepancy can be highly reduced.

2) Remark 2: For penalty graph, between-superpixel scatter
matrix is utilized. This is enlightened by between-class scat-
ter matrix. As demonstrated in [25], benefits of between-class
scatter matrix are twofolded: enlarging the distances of pixels
between different classes and reducing the distances of pixels
from one class. Similarly, utilization of between-superpixel
scatter matrix is to further enhance the similarity between pixels
from one superpixel and suppress the similarity between pixels
from different superpixels.

It is noted that the spectral features of two pixels from one
class but from different superpixels are similar irrespective of
intraclass difference. By SPCR, their features are more simi-
lar to each other as compared to their original features since
SPCR extracts the principal properties of two superpixels and
the principal properties of two pixels from one class should
be the same. This is illustrated in Fig. 3, where the pixels of
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TABLE I
CLASS LABELS AND TRAIN-TEST DISTRIBUTION OF SAMPLES FOR PAVIAU

TABLE II
CLASS LABELS AND TRAIN-TEST DISTRIBUTION OF SAMPLES FOR MUFFL

TABLE III
CLASS LABELS AND TRAIN-TEST DISTRIBUTION OF SAMPLES FOR

HOUSTON2013

Fig. 4. OA [%] versus S, i.e., the number of superpixels, using the proposed
SPCRGE on the HSI datasets. (a) PaviaU and MUFFL. (b) Houston2013 and
Houston2018.

TABLE IV
CLASS LABELS AND TRAIN-TEST DISTRIBUTION OF SAMPLES FOR

HOUSTON2018

Fig. 5. OA [%] versus parameters λ and β by several DR methods on the HSI
datasets. (a) PaviaU. (b) MUFFL. (c) Houston2013. (d) Houston2018.

yellow diamond, blue circle, and purple triangle are generated
by different Gaussian distributions and the pixels of blue circle
and red plus sign are from the same Gaussian distributions. Let
the four types of signed pixels be from different superpixels. By
the original features, Gaussian #1 in superpixels #1 and #2
cannot be distinguished well from Gaussian#2 in superpixel#3
and Gaussian #3 in superpixel #4. By SPCR, they can be well
distinguished as shown in Fig 3(b). As SPCRs are used to gen-
erate between-superpixel scatter matrix, the distances between
pixels from one class but different superpixels are small. As
a result, the between-superpixel scatter matrices corresponding
to these distances are small as well. Therefore, enlarging the
distance between superpixels from one class is limited and can
be neglected, as can be seen from Fig. 3(c) where Gaussian #1
in superpixels #1 and #2 are clustered together well.
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TABLE V
CLASSIFICATION ACCURACIES [%] OF DIFFERENT DR METHODS ON PAVIAU WITH 30 RANDOMLY CHOSEN TRAINING SAMPLES PER CLASS

Results are averaged by 20 trials with standard deviations listed as well.

TABLE VI
CLASSIFICATION ACCURACIES [%] OF DIFFERENT DR METHODS ON MUFFL WITH 150 RANDOMLY CHOSEN SAMPLES PER CLASS

Results are averaged by 20 trials with standard deviations listed as well.

TABLE VII
CLASSIFICATION ACCURACIES [%] OF DIFFERENT DR METHODS ON HOUSTON2013 WITH SPECIFIED TRAINING SAMPLES

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the proposed SPCRGE is utilized to validate
the performance. First, four urban HSI datasets are introduced,
including PaviaU, MUFFL, Houston2013, and Houston2018.
Second, the impact of the number of superpixels, two tunable
parameters λ and β, and reduced dimension of SPCRGE on
the four datasets is quantified by the classical SVM classifier.

Finally, based on the SVM classifier, experiments of SPCRGE
on the four HSI datasets are carried out in comparison with
the traditional methods, PCA [17], LDA [18], and other state-
of-the-art methods, CCPGE [30], BCGDA [29], OTVCA [35],
SPLDA [40], SuperPCA [41], and TSLGDA [34]. Among these
DR methods, PCA, CCPGE, OTVCA, SPLDA, SuperPCA, and
the proposed SPCRGE are unsupervised without using any label
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TABLE VIII
CLASSIFICATION ACCURACIES [%] OF DIFFERENT DR METHODS ON HOUSTON2018 WITH 300 RANDOMLY CHOSEN SAMPLES PER CLASS

Results are averaged by 20 trials with standard deviations listed as well.

Fig. 6. OA [%] versus reduced dimension by several DR methods on the HSI
datasets. (a) PaviaU. (b) MUFFL. (c) Houston2013. (d) Houston2018.

information while LDA, BCGDA, and TSLGDA are supervised
with label information of training samples. In addition, PCA,
LDA, CCPGE, BCGDA do not use any spatial information
while TSLGDA utilizes spatial information via tensor, OTVCA
via total variation minimization, and SPLDA, SuperPCA, and
SPCRGE via superpixel segmentation.

A. Datasets

1) Paviau: The first experimental urban HSI dataset is called
PaviaU, which was acquired by the ROSIS sensor over the
University of Pavia in 2002. It consists of 610× 340 pixels
with spatial resolution of 1.3m after some meaningless pixels
are discarded and 103 spectral bands covering the wavelength

range 0.43− 0.86μm. It contains nine classes and the numbers
of training and testing samples of each class are listed in Table I.

2) Muffl: The second urban HSI dataset is called MUFFL,
which was generated by the CASI-1500 sensor over the Uni-
versity of Southern Mississippi in November 2010. It consists
of 325 × 220 pixels with spatial resolution of 0.54 × 1 m and
64 spectral bands in the wavelength range 0.38 − 1.05 μm. It
contains 11 classes and the numbers of training and testing
samples of each class are listed in Table II.

3) Houston2013: The third urban HSI dataset is called Hous-
ton2013, which was gathered by the CASI-1500 senor over
the University of Houston campus and neighboring areas in
June 2012. It consists of 349 × 1905 pixels with spatial res-
olution of 2.5 m and 144 spectral bands in the wavelength
range 0.38 − 1.05 μm. It contains 15 classes and the numbers of
training and testing samples of each class are listed in Table III.

4) Houston2018: The fourth urban HST dataset is called
Houston2018, which was captured by the ITRES CASI-1500
senor over the University of Houston campus in the February
of 2017. It consists of 601 × 2384 pixels with spatial reso-
lution of 1 m and 48 spectral bands in the wavelength range
0.38 − 1.05 μm. It contains 20 classes and the numbers of
training and testing samples of each class are listed in Table IV.

B. Parameters Tuning

Classification performance based on the proposed SPCRGE
is related to four parameters, i.e., the number of superpixels, reg-
ularization parameters λ and β of each superpixel, and reduced
dimension. Before performing parameter-tuning experiments,
some intuitive guidelines are listed as follows:
a) The best number of superpixels has relation to scenario

complexity, and more complex the scene, the greater the number
of superpixels.
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Fig. 7. Classification maps by different DR methods on PaviaU. (a) Pseudocolor map. (b) Groundtruth. (c) Raw (72.56%). (d) PCA (74.35%). (e) LDA (68.22%).
(f ) CCPGE (81.07%). (g) BCGDA (74.60%). (h) OTVCA (91.25%). (i) SPLDA (81.25%). (j) SuperPCA (90.84%). (k) TSLGDA (85.27%). (l) SPCRGE
(97.64%).

b) Regularization parameter λ controls the degree of closeness
to principal directions and β controls the degree of closeness of
pixels in one superpixel. Therefore, they are related to scenario
complexity as well. The regularization parameters decrease with
the increase of the complexity to extract commonality and
maintain individuality to some extent.

Based on guideline a), the number of superpixels is set in the
range 50–1000 at every step of 50 for PaviaU and MUFFLE
and set in the range 1000–10 000 at every step of 1000 for
Houston2013 and Houston2018. Fig. 4 illustrates the overall
accuracy (OA [%]) of the proposed SPCPGE as a function of
the number of superpixels. The results in PaviaU, MUFFLE,
and Houston2018 are averaged by 20 trials of randomly chosen
training examples. It can be seen that the OA first increases
and then decreases with the increase of superpixel number
for MUFFL and Houston2013, but the OAs for PaviaU and
Houston2018 oscillate with the increase of superpixel number
and are acceptable in a wide range of superpixel number. The
best superpixel numbers for PaviaU, MUFFL, Houston2013, and
Houston2018 are 400, 400, 6000, and 3000, respectively. This
is not surprising as Houston2013 and Houston2018 consist of
more pixels and are more complex.

For simplicity, the regularization parameters λ and β take the
same values for all superpixels in a dataset. For all datasets,
regularization parameter λ is chosen from set {0.1, 0.5, 1, 2, 5,

10, 50} and the other parameter β is chosen from set {0, 0.1, 0.5,
1, 5, 10, 50}. Fig. 5 illustrates the OA as a function of λ and β for
the four datasets. For PaviaU, the best classification results are
in a range λ > 5 or β > 5. For MUFFL, the best classification
results are in a range λ > 5 and seemingly have less relation
to parameter β. However, for Houston2013 and Houston2018,
acceptable classification results are in a wide range of λ and β
and the best classification results are around λ = 2 and β = 0,
and λ = 10 andβ = 0.5, respectively. After the fine tuning of the
best parameters λ andβ, the best combinations of the parameters
{λ, β} are chosen as {5, 10}, {10, 10}, {1.9, 0}, and {50, 0.5}
for the four datasets in subsequent experiments, respectively.
It conforms to guideline (b) that the best parameters λ and β
of Houston2013 and Houston2018 are less than that of PaviaU
and MUFFL, since Houston2013 and Houston2018 are more
complex.

Fig. 6 depicts the OA as a function of reduced dimension
for different DR methods on the four HSI datasets. With the
increase of reduced dimension, the OAs for all DR methods
first increase and then plateau except for LDA. Particularly, the
proposed SPCRGE starts to plateau at a low reduced dimension
for all datasets and is always better than the other DR methods in
terms of OA. This means that SPCRGE can obtain sufficiently
discriminative features in a extremely low-dimensional space.
In addition, the classification results for all DR methods achieve
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Fig. 8. Classification maps by different DR methods on MUFFL. (a) Pseudocolor map. (b) Groundtruth. (c) Raw (81.74%). (d) PCA (81.46%). (e) LDA
(80.02%). (f ) CCPGE (83.26%). (g) BCGDA (82.42%). (h) OTVCA (86.58%). (i) SPLDA (83.55%). (j) SuperPCA (83.97%). (k) TSLGDA (85.19%). (l)
SPCRGE (91.66%).

acceptable results at reduced dimension 30 on PaviaU and
Houston2013, 15 on MUFFL, and 10 on Houston2018 so in the
following experiments, reduced dimensions for all DR methods
are set as these numbers.

C. Classification Performance

To validate the effectiveness of the proposed SPCRGE, four
experiments are conducted in comparison with the aforemen-
tioned DR methods. Classification performances of different DR
methods on PaviaU, MUFFL, Houston2013, and Houston2018
are listed in the Tables V, VI, VII, and VIII, respectively, and
classification results without DR are also listed as baselines.
In the experiments on PaviaU, MUFFL, and Houston2018, the
training examples are randomly chosen and results are aver-
aged by 20 trials with standard deviations listed as well. For
Houston2013, training examples are specified, so no standard
deviation is listed. The reduced dimensions are fixed as 30 on
PaviaU and Houston2013, 15 on MUFFL, and 10 on Hous-
ton2018 except for LDA whose reduced dimension is equal to
the number of class minus one, i.e., 8 on PaviaU, 10 on MUFFL,
14 on Houston2013, and 19 on Houston2018.

In Tables V, VI, VII, and VIII for all experiments on the four
datasets, spectral-spatial DR methods are generally better than
spectral-only DR methods whether they are supervised or unsu-
pervised. This indicates that spatial information is important for
urban HSI classification. For spectral-only DR methods, CCPGE
and BCGDA are better than PCA and LDA, and LDA performs

the worst in all experiments (except in the Houston2018 ex-
periment where its reduced dimension can be 19) because its
reduced dimension is limited to the number of class minus one.
For spectral-spatial DR methods, OTVCA performs better than
SPLDA, TSLGDA, and SuperPCA on PaviaU and MUFFL,
while TSLGDA and SPLDA outperforms the other two on
Houston2013. It is reasonable since TSLGDA is a tensor-based
spectral-spatial with the help of the label information of the
relatively sufficient training samples in Houston2013. However,
for the scenario of limited training examples on PaviaU and
MUFFL, the label information may be not comparable to the
well-utilized spatial information brought by all pixels. This
argument can be also supported by the proposed SPCRGE
as it outperforms all the other aforementioned DR methods
by approximately 6.4% on PaviaU (97.64%), 5% on MUFFL
(91.66%), 7.5% on Houston2013 (92.13%), and 7.2% on Hous-
ton2018 (84.02%) over the second highest methods in terms of
OA.

To visually demonstrate the effectiveness of SPCRGE, clas-
sification maps of all the aforementioned DR methods are illus-
trated in Figs. 7, 8, 9, and 10. Obviously, the proposed SPCRGE
produces the most accurate and spatially smoothest classification
maps with less mislabeled pixels, which are consistent with the
results listed in Tables V–VIII.

Fig. 11 illustrates the classification performances on PaviaU,
MUFFL, and Houston2018 with the increase of training ratio.
The training ratio represents the ratio of selected training sam-
ples to all the labeled samples. As shown in Fig. 11, the training
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Fig. 9. Classification maps by different DR methods on Houston2013. (a) Pseudocolor map. (b) Groundtruth. (c) Raw (81.47%). (d) PCA (80.65%). (e) LDA
(78.79%). (f ) CCPGE (80.94%). (g) BCGDA (83.06%). (h) OTVCA (80.62%). (i) SPLDA (84.68%). (j) SuperPCA (73.17%). (k) TSLGDA (84.40%). (l)
SPCRGE (92.13%).

Fig. 10. Classification maps by different DR methods on Houston2018. (a) Pseudocolor map. (b) Groundtruth. (c) Raw (69.69%). (d) PCA (65.66%). (e) LDA
(63.70%). (f ) CCPGE (62.64%). (g) BCGDA (62.80%). (h) OTVCA (73.16%). (i) SPLDA (68.66%). (j) SuperPCA (76.81%). (k) TSLGDA (69.76%). (l)
SPCRGE (84.02%).

ratio is in the range 0.5%–5% on PaviaU and Houston2018,
and 1%–10% on MUFFL. From the results, the OAs of the
proposed SPCRGE are always higher than the other methods,
plateauing above 99% after 2.5% training ratio on PaviaU,
reaching above 95% after 9% training ratio on MUFFL and
above 93% after 3.5% training ratio on Houston2018. Overall,
SPCRGE outperforms the other methods consistently.

To illustrate the computational complexity of the proposed
SPCRGE compared to other DR methods, Table IX shows
the computing time of several DR methods on PaviaU by us-
ing MATLAB on an Intel(R) Core(TM) i5-7300HQ Central
processing unit with 8 GB of RAM. The methods, SPLDA,
SuperPCA, and the proposed SPCRGE contain computing
time of ERS superpixel segmentation. As shown in Table IX,
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Fig. 11. OA [%] versus training ratio [%] on the HSI datasets. (a) PaviaU. (b)
MUFFL. (c) Houston2018.

although its classification performance is poor, LDA is the fastest
among all the DR methods. The computing time of SPCRGE is
56.75s, which is acceptable considering about its classification
performance. The computing burden of SPCRGE mainly lies
on the calculation of SPCRs. OTVCA and TSLGDA are the
two slowest DR methods. The heaviest computing burden of

TABLE IX
COMPUTATION TIME (IN SECONDS) OBTAINED THROUGH DIFFERENT

METHODS FOR PAVIAU

OTVCA lies on the step of total variation minimization while
that of TSLGDA lies on the calculation of sparse and low-rank
representation.

V. CONCLUSION

In this article, an unsupervised spatial-spectral DR method
called SPCRGE has been proposed for the HSI classification.
In SPCRGE, abundant spatial information is utilized by super-
pixel segmentation. Then, to extract commonality and maintain
individuality of the pixels to some extent in each superpixel,
Laplacian regularized superpixelwise collaborative representa-
tion (SPCR) of each pixel was obtained by solving a generalized
Sylvester equation. By reducing the discrepancy between SPCRs
and the original spectral features, and reducing the differences
between pixels from one superpixel and increasing the differ-
ences between pixels from different superpixels simultaneously,
a global projection matrix to a low-dimensional space is ob-
tained. In this way, the problem of spectral information redun-
dancy and Hughes phenomenon, and the problem of intraclass
difference and interclass similarity in HSI classification can
be alleviated simultaneously. Experiments on four urban HSI
datasets have demonstrated that the proposed SPCRGE outper-
forms the existing state-of-the-art DR methods and confirmed
its effectiveness.
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