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Abstract—Object detection is a focal point in remote sensing ap-
plications. Remote sensing images typically contain a large number
of small objects and a wide range of orientations across objects.
This results in great challenges to small object detection approaches
based on remote sensing images. Methods directly employ channel
relations with equal weights to construct information features leads
to inadequate feature representation in complex image small object
detection tasks. Multiscale detection methods improve the speed
and accuracy of detection, while small objects themselves contain
limited information, and the features are easily lost following down-
sampling. During the detection, the feature images are independent
across scales, resulting in a discontinuity at the detection scale.
In this article, we propose the multiscale context and enhanced
channel attention (MSCCA) model. MSCCA employs PeleeNet as
the backbone network. In particular, the feature image channel
attention is enhanced and the multiscale context information is
fused with multiscale detection methods to improve the character-
ization ability of the convolutional neural network. The proposed
MSCCA method is evaluated on two real datasets. Results show that
for 512 × 512 input images, MSCCA was able to achieve 80.4%
and 94.4% mAP on the DOTA and NWPU VHR-10, respectively.
Meanwhile, the model size of MSCCA is 21% smaller than that of its
predecessor. MSCCA can be considered as a practical lightweight
oriented object detection model in remote sensing images.

Index Terms—Channel attention, lightweight convolutional
neural network (CNN), multiscale context, object detection, remote
sensing.

I. INTRODUCTION

THE object detection plays a key role in remote sensing
algorithms and applications. They can be roughly divided

into traditional and deep learning object detection approaches.
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Traditional object detection methods (HOG [1], SVM [2], DPM
[3], etc.) generally include a region proposal, feature extraction,
and classification, resulting in a low detection efficiency and
poor accuracy due to complex procedures, a large number of
redundant windows and the poor robustness of manual feature
extraction methods. Thus, traditional detection methods are
hardly meeting the object detection performance demands. The
emergence of deep learning-based methods has achieved signif-
icant breakthroughs in object detection [4]–[6]. Deep learning-
based object detection methods mainly can be divided into two
types: 1) two-stage detection models, which define detection as
a “coarse-to-fine” process; and 2) one-stage detection models,
which define detection as a “one-step” process [7].

Two-stage detection approaches are generally region-based
and extract a set of object proposals that potentially contain
the objects using methods such as selective searching or region
proposals. These sets are subsequently fed into a convolutional
neural network (CNN) for feature extraction. The classifiers
then predict the presence of an object within each region and
recognize the object categories. R-CNN [8] is a typical two-stage
detector that generates proposals by selective searching and
normalizes their size and inputs them to the CNN to extract
the features. SVM is then applied to recognize object categories
within each region. Fast R-CNN [9] improves R-CNN by using
a multitask loss to increase the detection quality. Faster R-CNN
[10] introduces the region proposal network, whereby the ma-
jority of the individual blocks in the object detection framework
(region proposal, feature extraction, bounding box regression,
etc.) are gradually integrated into an end-to-end learning frame-
work. Mask R-CNN [11] includes a branch to segment an
object based on faster R-CNN and simultaneously performs
instance segmentation and object detection. Libra R-CNN [12]
integrates IoU-balanced sampling, a balanced feature pyramid
and a balanced L1 loss to reduce the imbalance at the sam-
pling, feature extraction, and training procedures, respectively.
Although two-stage object detection methods have made a great
progress in detection tasks, they are limited by large amounts of
parameters and slow detection speeds. HSP [13] considers the
utilization and propagation of hierarchical semantic information
in the optimized process of the detection network to improve
object detection performance in remote sensing imagery.

One-stage detection methods apply a single CNN to divide
the image into multiple regions and simultaneously predict
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the bounding boxes and category of each region. This process
greatly improves the detection speed, yet reduces the detection
accuracy compared to two-stage detectors. YOLO [14] is a typi-
cal one-stage object detection method that treats object detection
as the solution of a regression problem, applying a single CNN
to the full image. This network simultaneously predicts the
bounding boxes and category for each region. SSD [15] is an
additional one-stage detection method that sets default boxes
with different aspect ratios in each feature map to perform mul-
tiscale detection, significantly improving the one-stage detector
detection accuracy. FMSSD [16] leverages the atrous spatial
feature pyramid module to integrate the context information into
the framework, improving the robustness of features. RetinaNet
[17] proposes the focal loss, whereby the detector pays more
attention to samples that are difficult to classify during the
training process. This maintains a high detection speed while
matching the accuracy of two-stage detection methods. Re-
fineDet [18] proposes the anchor refinement module and object
detection module (ODM) to improve the detection efficiency
without reducing the detection speed. M2Det [19] proposes the
multilevel feature pyramid network and constructs more object
feature pyramids to detect objects at different scales. Based on
FCN, FCOS [20] is an anchor-free detector that abandons the
anchor generation process, reducing memory footprints and im-
proving the detection accuracy. MS-VANs [21] proposed a visual
attention-based network and simultaneously predict object class
at each pixel of the feature maps, and use a visual attention
network to highlight the features from the object region and
decrease the influence of cluttered backgrounds. S2A-Net [44]
implemented full feature alignment and alleviates the incon-
sistency between regression and classification by using feature
alignment module and oriented detection module (ODM).

For small object detection tasks, SNIP [23] and SNIPER
[24] employ scale normalization and only detect objects with
a fixed size for scale-specific feature maps. SNIPER reduces the
computation of the multiscale image pyramid generation and ac-
celerates multiscale training. DEFace [25] proposes the extended
feature pyramid network (FPN) [26] module with a receptive
context module to enhance the distinguishability and robustness
of features. TridentNet [27] constructs a parallel multibranch ar-
chitecture and adopts a scale-aware training scheme to specialize
each branch by sampling the object instances of proper scales for
training. SCRDet++ [28] introduces the denoising process to
object detection, whereby instance-level denoising on the feature
map is performed to enhance the detection of small and cluttered
objects. Stitcher [29] dynamically generates stitched images to
enrich small object samples and adaptively determines whether
the input of the next iteration is the original or the stitched image,
which improves the small object loss contribution.

In the traditional convolutional pooling process, the convolu-
tion operation does not consider the dependence of each feature
channel. In addition, the importance of each channel in the
generated feature image is considered to be the same, yet in
the actual problem, the importance is actually distinct across
channels. One-stage detection methods employ multiscale
detection that extracts multiscale feature maps from different
layers of the network for predictions. Although this does not

increase the number of calculations, the small object itself has
less pixel information and is easily lost during downsampling
[30].

In this article, we propose the multiscale context and enhanced
channel attention (MSCCA) model. MSCCA employs PeleeNet
as the backbone network. In particular, the feature image channel
attention is enhanced and the multiscale context information is
fused with multiscale detection methods to improve the char-
acterization ability of the CNN [31]. The proposed method is
evaluated on two real datasets. Results show that for 512 ×
512 input images, MSCCA was able to achieve 80.4% and
94.4% mAP on the DOTA and NWPU VHR-10, respectively.
Meanwhile, the model size of MSCCA is 21% smaller than that
of its predecessor. MSCCA can be considered as a practical
lightweight oriented object detection model in remote sensing
images.

The rest of this article is structured as follows. In Section II,
the MSCCA model is described. In Section III, two real datasets
DOTA and NWPU VHR-10 are presented. In Section IV, the
datasets are used to evaluate the proposed MSCCA model.
Both the detection accuracy and model size are summarized.
Section V concludes this article with some remarks and hints at
plausible future research lines.

II. METHODS

MSCCA model employs the PeleeNet [32] as the backbone,
while the enhanced channel attention block is added to balance
the channel features that have a positive effect on detection
and weakens the channel features that have no effect. Then,
the multiscale context structure combines high-level and low-
level features within the multiscale detection framework. Fig. 1
presents the whole structure of MSCCA. Objects in remote
sensing images typically exhibit large-scale changes, arbitrary-
orientation, and irregular shapes. Thus, seven different scale
feature maps are employed for multiscale objects. Moreover, the
quadrilateral representation is used in location loss for objects
with arbitrary orientation and irregular shapes.

A. Backbone

PeleeNet improves employs a large number of dense layers
that consist of two branches that extract multiscale features in
the receptive field. ResBlock is added prior to the detection of
each feature map. Moreover, MSCCA includes the ECA Block
following each transition layer of the network structure. Due to
the large size of the remote sensing images, in order to ensure
the detection accuracy of small objects, the image is not resized,
and the input size set to 512 × 512 pixels.

The entire network consists of five stages. Stage0 only con-
tains Stem Block, which is a low-cost and efficient module that
can effectively improve the feature extraction ability with a
minimal increase in computational cost. Stem Block initially
employs a 3 × 3 convolution layer to downsample the image
and subsequently divides it into two branches that use 1) the
max-pooling layer to downsample the image and 2) one 1 × 1
and one 3 × 3 convolution layer. The two branches are merged
to the channel dimension via concat.
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Fig. 1. Structure of MSCCA.

The remaining components consist of dense and transition
layers. The dense layer can acquire receptive fields at multiple
scales and consists of two branches, one of which employs one
1× 1 and one 3× 3 convolution layer, while the other uses one 1
× 1 and two stacked 3 × 3 convolution layers. The two branches
are merged with the previous feature to the channel dimension
via concat. The transition layer includes a 1 × 1 convolution
layer and a 2 × 2 average pooling layer with a stride of 2.

B. Enhanced Channel Attention

The attention mechanism in the CNN draws on the human vi-
sual attention mechanism. Human vision quickly scans a global
image to obtain the required object area, generally referred to
as the focus of attention. Additional attention is then focused
on this area to obtain more detailed information about the target
object, while suppressing other useless information. In general,
some features learned in the CNN will be redundant for the
object detection task [33]. For example, the Relu layer will
generate a large number of parameters with a value of 0, while
visualizing the intermediate feature image can demonstrate the
inability of some channels to detect the object. Thus, during
network training, some channels are more important than other
channels. In order to emphasize these important channels, we
include the channel attention structure ECA Block in the model
(see Fig. 2) based on SE Block [34].

In ECA Block, for any given feature map X ∈ RC×H×W , the
global average pooling layer is implemented to generate features
M ∈ RC×1×1

Mc =
1

H ×W

H∑
i=1

W∑
j=1

Xc (i, j) (1)

Fig. 2. Enhanced channel attention block.

where C is the number of channels; H and W are the height and
width of the image, respectively; Mc indicates the feature ob-
tained after the current channel performs global average pooling
on Xc;c is the current channel; and Xc(i, j) is the feature value
of input feature image Xc under coordinates (i, j). The feature
image of each channel accumulates all the values, averages them
to generate featureMc and subsequently combines featuresM of
C channels. Two fully connected (FC) layers are implemented.
The first FC layer uses the Relu activation function to generate
features ofC/r × 1× 1 size, where r is a hyperparameter and is
used to change the ECA block parameter in the network. Here,
we set r to 16 following the previous experience of SE block.
The second FC layer uses the Sigmoid activation function to
generate feature S ∈ RC×1×1

S = σ (W2δ (W1M)) (2)
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TABLE I
BACKBONE

where W1 and W2 represent two FC operations; δ and σ are two
activation functions;S is the generated feature and represents the
importance of each feature channel following feature selection.
The normalized weight is multiplied to the feature of each
channel to output feature U ∈ RC×H×W

Uc = Fscale (Xc, Sc) = ScXc (3)

where Uc = [U1, U2, . . . , Uc] represents the feature generated
following the scale operation for current channel c. The scale
operation multiplies each element in Sc and Xc to generate
feature U for each channel.

We add the ECA block to the proposed network to enhance
the channel attention. The ECA Block is a simplified structure,
which consists of a global average pooling operation, two full
connections layers and a scale operation. Therefore, ECA block
can be used to replace the complex convolution component of the
network in order to reduce the number of network parameters.
For example, after replacing the additional convolution layer
with ECA block, the amount of network parameters is reduced
from 7.06 to 5.08 M. Our results demonstrate that including the
ECA Block can generally improve the detection accuracy and
reduce the number of parameters (see Section IV-C).

C. Multiscale Context

The CNN in object detection is associated with a high shallow
network resolution and low deep network resolution. Shallow
convolution features represent the details of the object, while
deep convolution features indicate the semantic information.
However, using multiscale feature maps for object detection
ignores the detailed features in the shallow convolution fea-
tures. Such shallow convolution features play a vital role in the
detection of small objects. In order to fuse the scale context
information [35], [36], we include the FPN-based SC structure
to the network. In Table II, we added convolutional layers to the
end of the backbone to extract low-scale feature maps.

MSCCA employs feature maps of different sizes to indepen-
dently detect objects of varying sizes. In our proposed frame-
work, the pyramid is constructed via bottom-up and top-down

TABLE II
FEATURE PYRAMID

Fig. 3. Multiscale context block.

pathways, and lateral connections (see Fig. 3). For every scale
feature image (with the exception of the highest level), we
upsample the spatial resolution by a factor of 2 (via bilinear
interpolation upsampling) and merge with the same sized feature
image convolved by 1 × 1. Feature maps of other sizes undergo
the same procedure until a new feature pyramid is generated.
Feature maps that fully integrate the scale context information
are then adopted to detect objects of different scales

U = [Fupsample (X)⊕ S] . (4)

For each feature layer X of the pyramid, X ∈ RC×H×W . X
is upsampled to twice the scale and fused with S in the channel
dimension to generate feature U ∈ RO×H×W . S ∈ RL×H×W

is a feature of the same scale as X . Fusing the features via
the concat operation can make an excessively large feature
dimension. Thus, we reduced the number of channels.

D. Loss Function

Remote sensing images typically exhibit arbitrary object
orientations. Thus, MSCCA employs quadrilateral bounding
boxes to detect objects across different directions. The location
information of the bounding box is expressed as (x, y, w, h),
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whereby (x, y) represents the center point coordinates of the
bounding box, and w and h are the width and height of the
bounding box, respectively. If we define the default box as
b = (x, y, w, h), then the corresponding quadrilateral is repre-
sented as q = (x1, y1, x2, y2, x3, y3, x4, y4), whereby (xi, yi)
are the coordinates of the four vertices of the quadrilateral frame.

The loss function is divided into the confidence lossLconf and
the location loss Lloc

L (x, c, l, g) =
1

N
(Lconf (x, c) + αLloc (x, l, g)) (5)

where α is the weight; N is the number of matched default
boxes; x�{1, 0} is the matching value indicating whether the
default box matches the ground truth; c is the confidence; l is the
predicted bounding box; and g is the ground truth. Positioning
loss Lloc is a smooth L1 loss between the predicted bounding
box and ground truth. If the overlap between the default box and
ground truth exceeds the threshold (0.5), then it is considered as
a positive sample

Lloc (x, l, g) =

N∑
i∈Pos

∑
m

xk
ij smoothL1

(
lmi − ĝmj

)
(6)

where m ∈ {x, y, w, h, x1, y1, x2, y2, x3, y3, x4, y4}, (x, y) rep-
resents the center coordinates of the box; xk

ij ∈ {1, 0} is an
indicator of the match between the ith predicted bounding box
and the jth ground truth; Pos is a positive sample; k is a ground
truth object category; and ĝmj represents the coded ground truth,
which ensures that the weight of the ground truth center position
and weakens the width and height widths

ĝxj =
(
gxj − dxi

)
/dwi ĝyj =

(
gyj − dyi

)
/dhi (7)

ĝwj = log

(
gwj
dwi

)
ĝhj = log

(
ghj
dhi

)
(8)

ĝx1
j =

(
gx1
j − dxmin

i

)
/dwi ĝy1

j =
(
gy1

j − dymin

i

)
/dhi (9)

ĝx2
j =

(
gx2
j − dxmax

i

)
/dwi ĝy2

j =
(
gy2

j − dymin

i

)
/dhi (10)

ĝx3
j =

(
gx3
j − dxmax

i

)
/dwi ĝy3

j =
(
gy3

j − dymax

i

)
/dhi (11)

ĝx4
j =

(
gx4
j − dxmin

i

)
/dwi ĝy4

j =
(
gy4

j − dymax

i

)
/dhi (12)

where d represents the default box; dwi and dhi are the width
and height of the default box, respectively; (xmin, ymin) and
(xmax, ymax) represent the coordinates of the upper left and

lower right points of the horizontal default box, respectively;
and is the smoothL1 loss defined as

SmoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

. (13)

Fig. 4. Area distribution map of the objects contained in the DOTA dataset.

Confidence loss Lconf is described in formula (17) and can be
divided into the cross-entropy loss of the positive and negative
samples

Lconf (x, c) = −
N∑

i∈ pos

xp
ij log (ĉ

p
i )−

∑
i∈ neg

log
(
ĉ0i
)

where ĉpi =
exp (cpi )∑
p exp (c

p
i )

(14)

where cpi is the multicategory output; confidence ĉpi is obtained
following the activation of the Softmax function; p represents
the pth category; the 0th category is the background; i is the ith
predicted bounding box; and Posand Neg indicate positive and
negative samples, respectively. In order to ensure a balance, the
ratio of the positive to negative sample is set to 3:1.

III. DATASETS

A. DOTA

The DOTA dataset [37] was published on CVPR by Wuhan
University. DOTA is a large-scale dataset used for the object
detection of aerial images. It contains 2806 aerial images from
different sensors and platforms. The images in the DOTA-v1.0
dataset were collected from Google Earth, some of which were
taken by the satellite JL-1, and others were taken by the satellite
GF-2 of the China Resources Satellite Data and Application
Center. The size of each image ranges from approximately
800× 800 to 4000× 4000 pixels and contains objects of various
proportions, orientations, and shapes. Current object detection
methods generally divide small objects into two categories: 1)
objects smaller than 32 × 32 pixels; and 2) objects with a width
and height less than one-tenth of the original image. Fig. 4
presents the area distribution of all object types in the DOTA
dataset, where the horizontal axis represents the object pixel area
size and the vertical axis is the percentage of each category in a
certain scale range. The DOTA dataset contains a large number
of small objects, the majority of which are aircrafts, cars, and
boats. The objects are divided into the following 15 categories:
plane, ship, storage tank, baseball field, tennis court, basketball
court, ground track field, harbor, bridge, large vehicle, small
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Fig. 5. Area distribution map of the objects contained in the NWPU VHR-10
dataset.

vehicle, helicopter, roundabout, soccer ball field, and swimming
pool.

Due to the large number of pictures in the dataset and the large
scale changes, we crop the pictures to a size of 512 × 512 pixels
and randomly select 3/5 of the samples as the training set, 1/5
as the verification set, and 1/ 5 as the test set.

B. NWPU VHR-10

The NWPU VHR-10 dataset [38] is derived from a 10-
level geographic remote sensing dataset for space object de-
tection. The dataset includes 650 images containing objects
and 150 background images. The image content and object
types/characteristics are similar to those of the DOTA dataset
(see Fig. 5). Although the dataset contains many object types,
the number of samples is small, and the number and proportion
of small objects is much less than that of the DOTA dataset.
In particular, the NWPU VHR-10 dataset has almost no objects
with an area of less than 1000 pixels. The 10 types of objects
are: airplane, ship, storage tank, baseball field, tennis court,
basketball court, ground track field, harbor, bridge, and vehicle.

IV. RESULTS

A. DOTA Dataset Results

The multiscale object detection method generates candidate
regions of different scales on the feature maps, which are of
different receptive field sizes and the size of the default box
is based on these receptive field sizes. The default box setting
contains two features: the scale and aspect ratio. The scale of
each feature image default box is set as follows:

Sk = Smin +
Smax − Smin

m− 1
(k − 1) , k ∈ [1,m] (15)

where Sk is the scale of the default box to the image; Smin and
Smax represent the ratio of the lowest and highest scales, set to
0.15 and 0.9, respectively; and m is the number of feature maps
of different sizes. Once the default box scale Sk of each feature
image layer is determined, the specific default box is calculated
according to the predefined aspect ratio. When the aspect ratio
is 1, the side lengths of the two square default boxes are equal
to Sk and S

′
k =

√
SkSk+1, where Sk+1 is the default box scale

Fig. 6. DOTA results of SSD (left), Pelee (middle), and MSCCA (right).

Fig. 7. NWPU VHR-10 results of Pelee (left) and MSCCA (right).

of the feature image in the next layer. If the aspect ratio does not
equal 1, the default box is calculated as follows:

wa
k = Sk

√
aha

k = Sk/
√
a (16)

wherewa
k andha

k are the width and height of the candidate region
of the kth feature image; and ais the value of the aspect ratio.

For the size of input image is 512 × 512, we select seven
feature image scales to cover the different object sizes, as
same as SSD [15], DSSD [42], FSSD [52], Rainbow SSD [53],
Pelee [32], etc. The default box aspect ratios set to [[1,2,1/2],
[1,2,3,1/2,1/3], [1,2,3,1/2,1/3], [1,2,3,1/2,1/3], [1,2,3,1/2,1/3],
[1,2,1/2], and [1,2,1/2]].

During training, the pretrained model is employed to initialize
the parameters. The learning rate is set at 0.005 for the first
120 000 iterations and is subsequently reduce by an order
of magnitude after every 40 000 iterations computation, with
200 000 iterations in total. The momentum, weight decay, and
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TABLE III
DOTA DATASET DETECTION RESULTS

TABLE IV
NWPU VHR-10 DATASET DETECTION RESULTS

batch size are set to 0.9, 0.0005, and 16, respectively. The model
is trained using the stochastic gradient descent method on four
Nvidia Titan Xp GPUs.

Table III is the test results of the MSCCA model on the
DOTA dataset, while Fig. 6 depicts the results of the model
leaflet test. The result proves that MSCCA has higher detection
accuracy than Pelee in detecting various objects. Pelee achieves a
detection accuracy of 74% on the DOTA dataset, while that of the
proposed MSCCA is 80.4%. This demonstrates the ability of the
ECA Block and scale context features to improve the detection
accuracy. The proposed MSCCA has a higher detection accuracy
than S2A-NET.

The following are the detection results of SSD, Pelee, and
MSCCA on DOTA. As shown in Fig. 6, the information in
Pelee is not enough to detect the objects. The prediction result
of MSCCA outperforms the Pelee by a large margin. And the
boxes of objects are regressed more accurately.

B. NWPU VHR-10 Dataset Results

The cropping, sample selection, and settings of the NWPU
VHR-10 dataset [38] follow those of the DOTA dataset. Seven
feature maps of different sizes are used, and six default boxes
of varying ratios are generated for each pixel and scale feature
layer. However, in contrast to the DOTA dataset, the NWPU
VHR-10 dataset only contains a horizontal manual annotation
box, and thus the results are maintained in the horizontal box.

The pretrained PeleeNet model is employed to initialize the
parameters during training, with a 0.005 learning rate for the
first 60 000 iterations that is subsequently reduced by an order
of magnitude until the total 80 000 iterations are complete.
The momentum, weight decay, and batch size are set to 0.9,

0.0005, and 16, respectively, and training is performed using
the stochastic gradient descent method using four Nvidia Titan
Xp GPUs.

Table IV is the detection results of the MSCCA model and
other methods on the NWPU VHR-10 dataset. MSCCA outper-
forms the HyperNet by 5.7%. The following are the detection
results of Pelee and MSCCA on NWPU VHR-10. Since there is
no manual quadrilateral annotation in NWPU VHR-10 dataset,
we use a horizontal default box to detect. As shown in Fig. 7, as
same as the results on DOTA, the detection effect of MSCCA is
better than that of Pelee.

C. Ablation Study

In order to investigate the impact of the ECA Block and MSC
structure on the detection results, we created several training
models for the DOTA dataset and NWPU VHR-10 dataset to
test using Nvidia Titan Xp and applied on Jetson TX2. We then
evaluated the model size, detection speed, and computational
complexity of the proposed method.

Tables V and VI are the impact of each structure in terms
of the detection accuracy, parameter file size, and detection
speed under a single Nvidia Titan Xp GPU. In Table V, without
any structure, Pelee achieves a detection result of 74.0% mAP.
Following the addition of the ECA block after each network
stage, the accuracy improves to 75.8% mAP. This demonstrates
the ability of the ECA block to strengthen the characterization
performance of the network, thus improving the detection re-
sults. The inclusion of the MSC structure fusion scale context
further improves the detection accuracy to 80.2% mAP. We then
evaluate the impact of the ECA block, replacing the complex
convolutional layer in the network. Replacing the ECA block
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TABLE V
INFLUENCE OF THE ECA BLOCK AND MSC STRUCTURE ON THE DETECTION PERFORMANCE FOR DOTA DATASET

TABLE VI
INFLUENCE OF THE ECA BLOCK AND MSC STRUCTURE ON THE DETECTION PERFORMANCE FOR NWPU-VHR DATASET

with Resblock or the transition layer reduces the network pa-
rameters yet the detection accuracy is also weakened. Following
this, we include a convolutional layer to provide small-scale
feature maps for the multiscale detection framework. We use a
pooling layer to replace the convolutional layer downsampling,
and subsequently add the ECA Block to enhance the channel
attention.

For lightweight network, flops, model parameters, and mem-
ory access cost (MAC) [50], [51] is widely used to measure
the computational cost. Follow the design guide of lightweight
network, in the proposed structure MSC and ECA block, we
balanced the number of input and output channels for 1 × 1
convolution and make their ratio approach 1:1. This operation
has been proved to reduce the MAC of the network. With the
addition of MSC structure, the parameters and flops of the model
are increased, but the inference time of the model is accelerated.
Compared with Pelee, this structure was able to achieve an mAP
of 80.4% and 6.4% higher than Pelee. The model size reduced
from 26.5 to 20.6 MB and detection speed increased from 30.0 to
32.3 fps. Thus, the MSCCA can be considered as a lightweight
oriented object detection model in remote sensing images.

V. CONCLUSION

A lightweight MSCCA model was proposed in this article. It
employs PeleeNet as the backbone network. The feature image
channel attention is enhanced and the multiscale context infor-
mation is fused with multiscale detection methods to improve
the characterization ability of the CNN. Results show that for
512× 512 input images, MSCCA was able to achieve 80.4% and
94.4% mAP on the DOTA and NWPU VHR-10, respectively.
Meanwhile, the model size of MSCCA is 21% smaller than that
of its predecessor. MSCCA can be considered as a practical
lightweight oriented object detection model in remote sensing
images. In the future, the proposed MSCCA model will be
applied to edge devices for object detection application in remote
sensing images. Moreover, computing optimization methods

(like TenserRT) will be used to improve the processing efficiency
of model inference procedures.
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