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Abstract—The accurate retrieval of canopy chlorophyll content
(CCC) is essential to the effective monitoring of forest productivity,
and environmental stress. However, the clumping index (CI), a vital
canopy structural parameter, affects inaccurate remote sensing of
forest CCC. In this article, we proposed a concept of effective CCC
(CCCe) and an integrated CI approach to retrieving forest CCC
using empirical regression and random forest regression. First, the
PROSPECT-D and four-scale models were used to simulate forest
canopy spectra, and the forest CCCe including CI was found more
feasible to be remotely sensed than the CCC. Then, an empirical
regression model and random forest model trained using differ-
ent combinations of the medium resolution imaging spectrometer
(MERIS) terrestrial chlorophyll index (MTCI), reflectance, and
CI values were used to estimate the CCC. Finally, the proposed
approach was tested using satellite-based CI and MERIS product.
Using the empirical regression model, the results showed that the
retrieval of forest CCC using the MTCI was greatly improved by
the inclusion of the CI (RMSE from 63.64 to 36.51 µg cm−2 for
broadleaf; RMSE from 96.02 to 58.49 µg cm−2 for coniferous).
Using the random forest approach and the model trained using the
reflectance in red and red-edge bands, MTCI, and CI performed
best, with RMSE = 27.95 µg cm−2 for broadleaf and RMSE =
34.83 µg cm−2 for coniferous. Overall, it is concluded that include
the CI, particularly the approach using forest random regression,
have the potential for satellite-based forest CCC mapping at re-
gional and global scales.

Index Terms—Clumping index (CI), forest chlorophyll, four-
Scale, medium resolution imaging spectrometer (MERIS),
PROSPECT-D, random forest.
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I. INTRODUCTION

CHLOROPHYLL converts solar radiation into stored chem-
ical energy during photosynthesis. It is an important eco-

logical variable and also an indicator of vegetation physiological
activity [1]–[3]. Vegetation chlorophyll contains most of the
incorporated foliar nitrogen, which is highly correlated with
the foliar photosynthetic rubisco capacity [4], [5]; moreover,
most of the photosynthetically active radiation absorbed by the
chlorophyll in the vegetation canopy is used for photochemical
conversion during photosynthesis [6]. The canopy chlorophyll
content (CCC) is determined by the leaf area index (LAI) and
leaf chlorophyll content (LCC), which are expressed per unit
leaf area [7], [8], as

CCC = LCC× LAI. (1)

Accurate CCC information is essential to assessments of the
gross primary production of vegetation ecosystems [3], [9]–[11].

The use of remote sensing for extracting the spatial and
temporal details of vegetation CCC has proved to be superior
to ground sampling [1], [12], [13]. In recent decades, empirical
regression, in particular linear regression, has been the most
popular and simplest technique used to relate CCC to spectral
characteristics such as the reflectance and spectral vegetation
index. Compared with the red and near-infrared (NIR) regions,
the red-edge region of the canopy spectrum is more closely
related to the vegetation CCC [12]. Several chlorophyll-related
indices, especially one that use red-edge spectral characteristics,
have been developed and demonstrated to show promise for
making estimates of crop and forest CCC [1], [14]–[16]. In
general, the application of linear regression methods is limited to
by the underrepresentation of training samples [17], [18], and it
is a great challenge to obtain sufficient field samples that include
seasonal and spatial changes in canopy chlorophyll and structure
for use in the construction of statistical regression models [19].

To increase the representativeness of training data, a hybrid
inversion method combing linear regression and canopy spectral
simulation based on radiative transfer models (RTMs) has been
used for estimating vegetation chlorophyll status [17], [18].
RTMs can better describe complex canopies as well as leaf
spectra for different canopy structures, leaf parameters, and
soil backgrounds [3]. RTMs of vegetation at the leaf level
[20] and canopy level [21] have been used to simulate canopy
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reflectance and to retrieve vegetation parameters including veg-
etation chlorophyll [3], [22]–[24]. However, the direct inver-
sion of physical RTMs to retrieve vegetation parameters has
the disadvantage of a large workload and being slow, and
the look-up tables (LUTs) method suffers from huge amount
of high-dimension data in the LUT [17], [18]. The hybrid
inversion approach, which has the advantages of including
a large amount of training data from RTMs and a high computa-
tional efficiency for the empirical regression has been considered
[19], [25], [26]. However, as applied to the remote sensing of
vegetation parameters, linear regression is still site-specific and
does not account for complex situations where the modeled
relationship is not linear.

Advanced nonlinear regression methods have a better learn-
ing ability than linear regression methods, but require a larger
sample size [11]. Therefore, in the hybrid inversion approach,
RTMs are used to provide large amounts of simulated spectral
data corresponding to different vegetation conditions to train
those advanced nonlinear regression models [27]. In recent
years, machine-learning methods have been widely used to build
models for retrieving physicochemical parameters of vegetation
and have improved the prediction accuracy and generalization
of these models [28], [29]. Because of its proven accuracy and
stability, random forest regression, which is as an important
nonparametric ensemble algorithm, has recently been used to
retrieve crop CCC [30], [31] and forest CCC [32], [33].

Prior knowledge is increasingly recognized as an impor-
tant criterion for the quantitative remote sensing of vegetation
parameters [34], [35]. The foliage clumping effect, which is
characterized by the clumping index (CI), are one important
canopy structural factor that influence the interception, absorp-
tion, and transmission of photosynthetic-effective radiation in
vegetation, especially in the case of forests [36]. Variation in
CI strongly affects canopy reflectance and reflectance-based
vegetation indices [37], [38]. Therefore, retrieval of the CCC
based on the reflectance or vegetation indices should mainly
account for the effect of the CI. Early satellite CI products were
estimated based on polarization and directionality of the earth’s
reflectances with limited temporal frequency, and spatial reso-
lution [39]. Several recent global satellite CI products have been
derived from the moderate resolution imaging spectroradiometer
(MODIS) bidirectional reflectance distribution function (BRDF)
product [40]–[42], and these CI products represent not only the
differences between different vegetation types, but also temporal
and spatial differences for vegetation of the same type [38],
[43]. It has been proved that satellite-based CI can improve the
estimating accuracy of the LAI [44] and the fractional vegetation
cover [45]. It may be useful to use prior knowledge of the CI to
improve the remote sensing of forest CCC, however, there has
been little research on using satellite CI products for forest CCC
estimation.

Given that the medium resolution imaging spectrometer
(MERIS) produced the first red-edge dataset with global cov-
erage and long-term series, the objective of this article was to
evaluate the effect of the CI on the MERIS terrestrial chloro-
phyll index (MTCI) related to CCC using simulations from the
PROSPECT-D and four-scale geometrical-optical model, and to

develop and test hybrid approaches for estimating forest CCC
from MERIS data using random forest regression and traditional
empirical regression that take into account the foliage clumping
effect by including prior knowledge of the CI.

II. DATA AND METHODS

A. Simulated Dataset

To simulate the remotely sensed spectra of forests that are spa-
tially heterogeneous and that have clumped structural character-
istics with varying CCC, the leaf RTM PROSPECT-D [20] and
the four-scale geometrical-optical model [21] were used in this
article. Previous studies have demonstrated that the PROSPECT
model [46] is suitable for a large number of vegetation species
and plant functional types (PFTs), including coniferous forest
(CNF) [47]–[49]. As given in Table I, the PROSPECT-D model
adds another input parameter—the leaf anthocyanin content—to
the seven parameters in the PROSPECT model that are used
to simulate leaf reflectance and transmittance. The four-scale
model is a geometric-optical model that takes into account the
structural composition of forest canopies at different scales; this
includes nonrandomly distributed crowns; foliage clumped into
crowns; foliage clumped into branches; and foliage clumped
into shoots [21]. As this model encapsulates the clumping phe-
nomenon, it provides a more realistic description of the forest
canopy.

First, the PROSPECT-D model was used to simulate leaf
reflectance spectra for use as input parameters (leaf optical prop-
erties) to the four-scale model. The leaf parameter values used in
PROSPECT-D were based on the ranges reported in [47]–[49];
the values used are given in Table I. Next, canopy reflectance
were simulated based on the four-scale model using the leaf
optical properties, forest background reflectance spectra, and
the tree architecture, canopy structure, and imaging geometry
as inputs. Table II gives the parameters that were used as inputs
to the four-scale model.

Based on the specified input parameters, the 4-Scale model
generates the canopy reflectance (ρ) as a linear sum of four
components

ρ = ρPTλ FPT + ρZTλFZT + ρPGλFPG + ρZGλFZG (2)

where ρPTλ, ρZTλ, ρPGλ, and ρZGλ are the reflectance factors
corresponding to the sunlit vegetation, shaded vegetation, sunlit
ground, and shaded ground; respectively, FPT, FPG, FPG, and
FZT represent the probabilities of viewing the respective scene
components [50]. The CI for the landscape can be quantified by
a vegetation dispersion parameter using a modification of Beer’s
Law in the direction of the zenith angle, θ [36], [51]

P (θ) = e−G(θ)LΩ/cosθ (3)

where P(θ) is the probability that a beam of light at a zenith angle
θ will be transmitted through the canopy, i.e., the gap fraction;
G is the mean projection of the unit foliage area in the same
direction, for which normally the value is 0.5; L is the LAI, and
Ω is the CI for the landscape. To avoid the variation of CI with



SUN et al.: IMPROVING THE RETRIEVAL OF FOREST CCC FROM MERIS DATASET BY INTRODUCING THE VEGETATION CI 5517

TABLE I
INPUT PARAMETERS USED IN THE PROSPECT-D MODEL. PFT; LCC; N = STRUCTURAL PARAMETER; CAR = CAROTENOID CONTENT; CAnt = LEAF

ANTHOCYANIN CONTENT; Cb = BROWN MATTER; Cm = DRY MATTER CONTENT; AND Cw = EQUIVALENT WATER THICKNESS

TABLE II
INPUT PARAMETERS USED IN THE FOUR-SCALE MODEL

θ, an average CI [39] can be used

CI = LAIe/LAI (4)

where LAIe is the effective LAI computed using the following
equation [52]:

LAIe = − 2

π
2∫

0

ln [P (θ)] cosθ sinθ dθ. (5)

The canopy reflectance and CI generated by the four-scale
model were used in this article. It should be noted that the canopy
reflectance spectra derived from the model were resampled to
match the corresponding band of the MERIS based on its spectral
response function. In total, 5 778 864 simulated samples were
generated for broadleaf forest (BOF) and 8 113 560 samples
generated for CNF. Due to the enormous amount of data, one
percent of the dataset was randomly selected to train the retrieval
model using linear regression and random forest regression.

B. Satellite Data

1) MERIS Surface Reflectance Data: Data from the MERIS
sensor carried on the ENVISAT satellite provide multispectral
data including red-edge bands that provide the highest available
revisit frequency; these data were, therefore, used for the test
carried out in this article. MERIS is a medium-spectral resolution
imaging spectrometer, which samples the surface reflectance in
fifteen spectral bands with a temporal revisit time of two–three
days and a spatial resolution of 300 m. Detailed specifications
of the MERIS sensor are given in Table III. The full-resolution
(FR) surface reflectance product produced by ESA which is a
seven-day synthesis of data collected at the original two–three
days revisit frequency was used. In the seven-day product, the

TABLE III
SPECIFICATIONS OF THE MERIS SENSOR

reflectance is normalized to the nadir view, and the solar zenith
angle corresponds to that at 10: 00 local time on the median day
of the compositing period. The product consists of 13 bands,
removing bands 11 and 15. The MERIS FR surface reflectance
product covers the period from 2003 to 2012.

2) LAI Product: The MODIS LAI product (MCD15A3H V6
Level4) is derived from MODIS data and has a spatial resolution
of 500 m and a 4-day temporal resolution. The algorithm used
to produce the LAI chooses the best pixel available from all
the acquisitions made by the two MODIS sensors located on
NASA’s Terra and Aqua satellites within a given 4-day period
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TABLE IV
DETAILS OF THE FIELD MEASUREMENTS USED IN THIS ARTICLE. THE SAMPLING LOCATION (LAT = LATITUDE, LONG = LONGITUDE), SAMPLING YEAR,

DOMINANT SPECIES, PFT, CNF, BOF, MEAN LAI VALUE, AND MEAN LCC VALUE ARE SHOWN. THE COMMUNITY-LEVEL CCC CAN BE OBTAINED BY

MULTIPLYING THE LCC BY THE LAI

LAI∗: field measurement; LAI※: MODIS LAI.

[53]. The MODIS LAI is defined as the one-sided green leaf
area per unit ground area in the case of broadleaf canopies and
as half of the total needle surface area per unit ground area in
the case of coniferous canopies.

3) CI Product: Depending on a more robust hotspot cor-
rected BRDF model to reconstruct the hotspot effect and a
backup algorithm to estimate CI for outlying pixels, a global
CI product was derived from MODIS BRDF parameters based
on CI–NDHD (the normalized difference between hotspot and
dark spot) equations with 500 m spatial resolution and 30-day
temporal intervals [41], and was used in this article.

C. Validation Sites and Data

Three article sites located in Sudbury, Haliburton, and Borden,
Ontario, Canada were used in this article. Field sampling of
black spruce and aspen was carried out in 2003/2004/2007 (black
spruce coniferous forest) and 2007 (aspen BOF) at the Sudbury
site [54], [55]. The sugar maple (broadleaf) forest at Haliburton
was sampled in 2004 [56] and red maple (broadleaf) forest at
Borden was sampled in 2013 [10]. The in situ LCC and LAI were
measured to validate the modeled results based on the MERIS
data. It should be noted that the LAI ground-based measurements
made at Sudbury in 2003/2004 and Borden site in 2013 were field
measurements, while in 2007 at Sudbury and 2004 at Haliburton,
MODIS LAI data were used due to the lack of simultaneously
measured LAI values matched with the field-measured LCC.
Meanwhile, in order to reduce the impact of spatial heterogene-
ity, the Landsat 5 TM 16-day NDVI composite product was
employed to upscale the spatial resolution of the ground-based
LAI measurements to that of medium-resolution data (500 m).
First, the NDVI values for 30-m and 500-m pixels were obtained
and a functional relationship between them was established. The
LAI at a resolution of 500 m was then calculated by applying
this function to the field-measured LAI data.

Table IV gives details of the validation data acquired at each
field location. These data included 20 BOF measurements and 28

coniferous forest (CNF) measurements. The ground-based ob-
servations at Borden site in 2013 was used to match MERIS data
in the previous year, due to the stability of vegetation seasonal
changes at the same site between adjacent years [47]. Because
available field-measured forest CCC is relatively scarce, the Bor-
den data is also used in this article. The average 500-m CCC was
obtained by multiplying the measured LCC by the corresponding
LAI. Using a bilinear resampling method implemented in ENVI
software (Exelis VIS, Inc., Boulder, CO, USA), the MERIS data
were resampled to spatial resolution of 500-m—the same as the
MODIS data—to be consistent with that of the validation data.

D. Algorithm Development

Two distinct approaches were undertaken to retrieve the CCC
by including the CI. The workflow of the proposed approaches
developed to retrieve forest CCC is shown in Fig. 1. First, the
canopy reflectance and CI were generated by the four-scale
geometrical-optical model. Next, by using MATLAB software
(The Math Works, Natick, MA, USA), empirical regression and
the random forest method were employed to build CCC retrieval
models involving CI based on the simulated datasets. Finally,
the MERIS satellite data were used to validate the feasibility of
the models that had been constructed. In order to validate the
feasibility of the retrieval models that did and did not include
CI, this article used the coefficient of determination (R2), and the
bias (Bias), and the root mean square error (RMSE) as metrics
to quantify the accuracy of the models.

1) Empirical Regression Approach Including CI: The com-
monly used MTCI, which has been proven to be closely related
to the CCC [14], [24], was selected for estimating the CCC using
an empirical regression approach. The MTCI is calculated from
the red and red-edge bands and is quantified by the following
equation, where Rijk is the reflectance at the ijkth wavelength
[14]

MTCI =
R753.75 −R708.75

R708.75 −R681.25
. (6)
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Fig. 1. Workflow of the proposed approach that was developed to predict forest CCC.

The linear regression of the MTCI against the CCC was
analyzed. However, the variation in forest canopy CI may mean
that there were still variations in the MTCI even for the same
CCC value.

To reduce the influence of the vegetation canopy structure
on the estimates of forest CCC using only the MTCI, an im-
proved MTCI-based empirical method that included the CI was
developed in this article. Inspired by the idea that the effective
LAI is strongly related to LAI-related VIs, the concept of the
effective CCC (CCCe), which included the LCC and LAIe,
was introduced. The LAIe, expressed as (4) and (5), is based
on gap-fraction theory, which eliminates the need to assume a
random distribution of foliage [57]. We defined CCCe as

CCCe = LCC× LAIe = CCC× CI. (7)

CCCe can also be considered as including CCC and CI.
Chlorophyll-related vegetation indices such as the MTCI should
be more strongly dependent on CCCe than on the CCC. Linear
regressions were carried out using the MTCI as the independent
variable and CCCe as the dependent variable

CCCe = f (MTCI) . (8)

The estimated CCCe can be converted into the CCC by using
the CI according to (7) and (8). This improved empirical regres-
sion model of CCC retrieval that introduces prior knowledge of
the CI, and then be expressed as

CCC = CCCe/CI =
f (MTCI)

CI
. (9)

Implementing the Random Forest Regression Approach: Ran-
dom forest regression is an advanced machine learning technique
and was used to train narrowband MERIS spectral data for
making estimates of the CCC in this article. Random forest is a

nonparametric nonlinear statistical ensemble bagging method
that employs recursive partitioning of data into increasingly
homogeneous subsets, called regression trees, and averages the
results for all of the trees. In this article, the random forest
regressions were trained using 100 trees for the training set.
In previous research, red and red-edge bands were selected
as predictors for random forest regression model [32], [33].
However, the reflectance of these bands is strongly affected by
the canopy structure, which makes it difficult to distinguish the
characteristics of some types of vegetation, especially forest.
The CI is a vital structural parameter of vegetation canopies
and the MTCI is sensitive to chlorophyll at the leaf and canopy
levels [14], [24], [39], [41]. Therefore, in this article, an attempt
was made to include CI and MTCI to improve the ability of the
retrieval model with use of only red and red-edge bands. As given
in Table V, four types of predictor variable combinations were
selected. Six red and red-edge bands including bands–10 were
selected as input features—known as Refl-basic predictors—for
the CCC estimation.

III. RESULTS

A. Influence of the CI on the spectral reflectance, the MTCI
and the CCC retrieval model

In this article, the correlation between the CI, the MERIS
spectral bands (bands 8–10) and the MTCI using simulations
produced by the 4-Scale model (see Fig. 2), which were gener-
ated for a fixed LCC (LCC= 40μg cm−2) and LAI (LAI= 4) for
nadir observations (solar zenith angle = 30°), was investigated.
As shown in Fig. 2, the CI is significantly correlated with band
8 of MERIS and the MTCI. In addition, the correlation between
the CI and the MERIS bands appears to more significant for BOF
than for coniferous forest. Surprisingly, the CI has relatively little
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TABLE V
RANDOM FOREST TRAINING PROGRAMS

Refl: MERIS reflectance in the six red and red–edge bands (bands 5–10); Refl_MTCI: combined predictors for the six red and red-edge reflectance (bands–10)
and the MTCI; CI_Refl: CI, bands 5–10 combined predictors.

Fig. 2. Relationship between CI and MTCI and CI and the red and red-edge reflectance for broadleaf and coniferous forest types. The red and red-edge bands
used to calculate the MTCI were bands 8–10.

effect on bands 9 and 10, especially in the case of coniferous
forest.

To explore the role of the CI in the CCC linear regression
model, the relationships between the MTCI and CCC with and
without the inclusion of the CI were analyzed using a simulated
dataset from the 4-Scale model (see Section II-A). Scatter plots
of CCC against MTCI and CCCe against MTCI for BOF [see
Fig 3(a) and (c)] and coniferous forest [see Fig. 3(b) and (c)]
are shown in Fig. 3. Fig. 3 shows that the correlation between
CCCe and MTCI is obviously better than that between CCC
and MTCI, especially for BOF. In detail, the scatter points in
Fig. 3(a) and (b) are clearly banded according to the CI values.
If the previously established linear regression model had been
used, the CCC would be overestimated for points with low CI
values and underestimated for high CI values. In Fig. 3(c) and
(d), scatter points are closely grouped around the regression
line, and the points corresponding to different CI values are
clustered together. Taking these results together, it can be seen
that if accurate prior knowledge of the CI is integrated into the
CCCe–MTCI relationship, the influence of foliar clumping in
the canopy on the MTCI-based chlorophyll estimates can be
reduced.

Fig. 4 shows estimates of the importance of the different pre-
dictors in the random forest regression model for both broadleaf
and coniferous forest. Of the six MERIS bands, band 10 is the

most important. With the inclusion of the MTCI, the importance
is separated by MTCI, as the MTCI is calculated using bands
8–10. Once the CI is included, the CI is the most important of all
the predictors. Therefore, in the random forest regression model,
the CI is the most important predictor for CCC estimation

B. Validation of the Improved Empirical Regression Model
Using MERIS Satellite Data

The transferability of an algorithm across spatial and tem-
poral scales is essential for large-scale retrieval of the CCC
or any ecological variable. MERIS satellite data were used to
validate the accuracy of the CCC retrieval models. According
to the formulations of the CCCe–MTCI relationship shown in
Fig. 3, the retrieval models that include CI can be expressed as
CCC = (121.9 × MTCI − 67.34)/CI for BOF and CCC =
(61.02 × MTCI − 33.17)/CI for coniferous forest. Fig. 5 shows
the results of the validation of the empirical regression models
for CCC retrieval using MERIS data. The results show that
MTCI-based empirical regression model for CCC estimation has
large limitations and generally overestimates the CCC, giving an
RMSE of over 60 μg cm−2 for either BOF or coniferous forest.
However, when the CI is included, the accuracy of the CCC
retrieval is significantly improved. In detail, the MTCI-based
regression model with the CI has relatively better performance
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Fig. 3. Influence of variations in the CI on the MTCI–CCC and MTCI–CCCe relationships for broadleaf and coniferous forest types.

Fig. 4. Predictor importance for CCC estimates using random forest regression ensembles for broadleaf and coniferous forest types.
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Fig. 5. Validation of empirical regression models for estimating forest CCC using MERIS satellite data. (a) and (b) MTCI-based retrieval models without the CI
for broadleaf and coniferous forest, respectively. (c) and (d) MTCI-based retrieval models with the CI for broadleaf and coniferous forest, respectively.

(R2 = 0.76, Bias = −22.95 μg cm−2, and RMSE = 36.51 μg
cm−2) compared to the original model without the CI (R2 =
0.70, Bias = −54.88 μg cm−2, and RMSE = 63.64 μg cm−2)
for broadleaf trees, and there are also an improvement (R2 =
0.53, Bias = −49.31 μg cm−2, and RMSE = 58.49 μg cm−2)
compared to the original one (R2 = 0.49, Bias = −90.44 μg
cm−2, and RMSE = 96.02 μg cm−2) for coniferous trees. These
results imply that the proposed empirical regression model for
retrieving the CCC that includes the CI can be successfully used
with MERIS satellite data.

C. Validation of the Random Forest Model Using MERIS
Satellite Data

The random forest model was trained and run using six red
and red-edge bands, and then the spectral bands combined with
the MTCI and CI as input predictors for the CCC. The results for
the random forest model, showing the relationships between the
predicted CCC and measured CCC for broadleaf and coniferous
forest, are presented in Figs. 6 and 7, respectively. As shown
in these figures, the performance of the retrieval models trained
with predictors that included the CI was generally better than
those that did not include the CI. For BOF, the CI_Refl_MTCI-
based model performed best and achieved an R2 value of
0.77, a Bias value of 3.66 μg cm−2, and an RMSE value of

27.95 μg cm−2 [see Fig. 6(d)]. The validation results for conif-
erous forest are similar to those for BOF. The best-performing
model for coniferous forest was also the CI_Refl_MTCI-based
model, which achieved an R2 value of 0.61, a Bias value of
−21.66 μg cm−2, and an RMSE value of 34.83 μg cm−2.
Although the two random forest regression models that did
not include the CI had RMSE values of over 30 μg cm−2 for
broadleaf [see Fig. 6(a) and (b)] and coniferous forest [see
Fig. 7(a) and (b)], they still clearly outperformed the empirical
regression model based on the MTCI [see Fig. 5(a) and (b)].
Overall, these results suggest that including the CI effectively
improves the accuracy of the retrieval models and that the ran-
dom forest approach has great potential for making predictions
of the CCC based on simulations made by the four-scale model.

IV. DISCUSSION

A. Potential of Different Regression Models for Making CCC
Estimates by Introducing the CI

The CI describes the random spatial distribution of foliage,
which is an important structural parameter, especially for forest
canopies [36]. As a result, for the same CCC, the canopy
reflectance can be different due to the difference in canopy
structure [55]. The relationship between vegetation indices and
the effective LAI has been shown to be stronger than that
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Fig. 6. Validation of CCC modeling based on MERIS satellite data for BOF. (a) Random forest trained using six red and red-edge bands. (b) Random forest
trained using six red and red-edge bands and MTCI. (c) Random forest trained using CI and six red and red-edge bands. (d) Random forest trained using CI, six
red and red-edge bands, and MTCI.

between vegetation indices and forest LAI [57], [58]. Similarly
to these previous studies, in this article, it has been found that the
variation in CI greatly affects the chlorophyll-related vegetation
index, MTCI (see Fig. 3), and that the MTCI is more closely
correlated with CCCe than with CCC (see Fig. 3). These results
show that the effect of the CI on the canopy reflectance and
vegetation indices should be considered when making estimates
of forest CCC. Previous studies have shown that incorporating
the airborne CI minimizes the ill-posed nature of forest LCC
estimates made by inverting the RTM using a LUT [55]. Our
findings indicate that using satellite CI products as prior knowl-
edge is, indeed, useful for making CCC estimates based on
either empirical regression or random forest regression. This
proposed MERIS-based CCC retrieval model involving CI also
has potential for other red edge satellites, such as the successor of
MERIS—ocean and land color instrument on sentinel-3 satellite.

In addition, the empirical regression model and random forest
regression model performed differently in terms of precision
and accuracy. Although the empirical regression model that
included the CI performed better at making CCC estimates
(RMSE = 36.51 μg cm−2 for BOF and 58.49 μg cm−2 for
coniferous forest) than when only the MTCI was included, the
weak predictive ability of this model resulted in RMSE values
of over 35 μg cm−2. The random forest model that included six

spectral bands, MTCI and CI produced the best CCC estimates
and had the smallest RMSEs for both BOF (27.95 μg cm−2) and
coniferous forest (34.83 μg cm−2) due to its stronger learning
and generalization ability for complex samples compared to
linear regression [27], [33]. Thus, it is suggested that the random
forest regression models that include satellite CI products are
suitable for retrieving CCC. It is also appropriate to include
more inputs in these models, including remote sensing features
and prior knowledge.

B. Random Forest Performance Using Different Combinations
of MERIS Bands

It is well known that certain, carefully selected spectral bands
are more sensitive to the physical and chemical parameters of
vegetation than all the bands together [59]–[61]. In this article,
forest CCC retrieval models were trained using red and red-edge
bands which have proved to be sensitive to the vegetation chloro-
phyll status at the canopy level [33], [62], [63]. Also, in order
to make a comparison with our selected red and red-edge bands
from the MERIS SR product, we also assessed the performance
of retrieval models that were trained using all 13 available bands
(Reflall) and another six bands (Reflcor: B5, B6, B8, B9, B10,
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Fig. 7. Validation of CCC modeling based on MERIS satellite data for conif-
erous forest. (a) Random forest trained using six red and red-edge bands. (b)
Random forest trained using six red and red-edge bands and MTCI. (c) Random
forest trained using CI and six red and red-edge bands. (d) Random forest trained
using CI, six red and red-edge bands, and MTCI.

Fig. 8. MERIS band correlation matrix used for band selection.

and B13) that were selected based on the band-to-band correla-
tion matrix (see Fig. 8). The band correlation matrix offers an
overview of the statistical analysis of MERIS reflectance data for
all possible combinations of wavelengths [64]. Based on these
results, undesirable bands can be omitted because highly cor-
related bands generally contain similar information. Therefore,
the Reflcor that had low correlation with other bands, including
B5, B6, B8, B9, B10, and B13, were compared with the six red
and red-edge bands described in Section III. Table VI gives the
performance achieved for broadleaf and coniferous forest using
the three different training sets. Because the blue band of satellite
images is greatly affected by aerosol, atmosphere correction in
blue band is not accurate as red and near infrared band, which
can affect the retrieval accuracy of models with the Reflall set
of predictor variables. When the Reflcor set were used, it can
be seen that the results for BOF were similar to those obtained

using the Refl set of predictor variables proposed in this article.
However, its performance was far inferior to that of the Refl
set of predictor variables in the case of coniferous forest. The
biggest discrepancy in the results between the Reflcor and Refl
sets occurred in the near infrared. The addition of another NIR
band—B13, in the Reflcor did not improve the overall accuracy
of the CCC retrieval for the coniferous forest case, and the reason
may be that the coniferous forest has more shadows components,
which brings great uncertainty to the NIR reflectance [25]. In
general, the misspecification of training parameters is the most
important source of uncertainty. The use of more bands or
combinations of vegetation indexes is something that can be
tried in later studies.

C. Uncertainties in Modeling CCC

For our proposed models that included the CI, validation of the
results of MERIS-based CCC estimates for BOF (best RMSE =
27.95 μg cm−2) and coniferous forest (best RMSE = 34.83 μg
cm−2) were made for a total of 48 sample areas. The few studies
for forests based on sentinal-2 data that have been carried out
have reported CCC estimation results with an RMSE of 31 μg
cm−2 for model inversion using an LUT [11] and an RMSE of
34 μg cm−2 using random forest [33]. Compared with the
sentinal-2 data, which have a resolution of 10 m, MERIS data,
which have a resolution of 300 m, contain more mixed pixels,
which will increase the difficulty of the inversion. Our results are
reasonable and encouraging compared with the accuracy evalua-
tion results reported in the previous studies described above [11],
[33]. Our validation results indicate that the proposed algorithms
performed well across different sites and forest types although
some uncertainty remains. The sources of this uncertainty and
ways that this uncertainty might be minimized are discussed in
more detail below.

In this article, simulated datasets generated by the
PROSPECT-D model and four-scale model were used to es-
timate the CCC. However, the uncertainty in the simulated data
used for modeling can affect the retrieved vegetation parameters
[47]. To evaluate the effects of including the CI, in this article, a
wider range of canopy structure parameters was used and more
than 5 000 000 simulated datasets were produced for each forest
type; however, it is still difficult to fully cover all possible real
forest types. In the future, more detailed simulation scenarios
corresponding to different forest types should be established or
more existing data, such as tree heights extracted using Lidar
[65], should be used as prior knowledge to improve the ability
to describe real forest scenes.

The MERIS product and the CI product also served as an input
variable for CCC estimation in this article. In addition to the
uncertainty factors of MERIS surface reflectance relating to sen-
sor noise, radiation calibration and atmospheric correction errors
[66], the error in the satellite CI product is another important
source of uncertainty in our proposed CCC retrieval model. The
accuracy of CI products derived from satellite data, especially
MODIS BRDF product, is constantly improving [40]–[42]. He
et al. [40] used the MODIS BRDF parameter that has a 500-m
resolution to derive a global CI map and the MODIS-derived



SUN et al.: IMPROVING THE RETRIEVAL OF FOREST CCC FROM MERIS DATASET BY INTRODUCING THE VEGETATION CI 5525

TABLE VI
COMPARISONS BETWEEN THE PERFORMANCES OF CCC RETRIEVAL USING THE RANDOM FOREST MODEL WITH DIFFERENT MERIS TRAINING DATASETS

Refl: Reflectance in the red and red-edge bands, including bands 5–10; these had previously been tested as described in Section III; Reflall: all 13 available
MERIS bands; Reflcor: reflectance selected based on the correlation matrix, which includes MERIS band 5, band 6, band 8, band 9, band 10, and band
13; CI: Clumping index; and MTCI: MERIS terrestrial chlorophyll index.

Fig. 9. Relationship between the CI error and the RMSE of the CCC retrieved using the empirical regression and random forest models for (a) BOF and (b)
coniferous forest. ERM stands for the empirical regression model based on MTCI and CI, and RFR stands for random forest regression.

CI values were found to be highly correlated (R2 = 0.76) with
the field-measured CI data. Jiao et al. [41] updated the CI
estimation algorithm by reconstructing the hotspot signatures
of the MODIS BRDF product; the evaluation results gave an R2

value of 0.80 and an RMSE of 0.07 for the CI. As satellite CI
products improve, more studies are using satellite CI products
as prior knowledge in the estimation of vegetation parameters.
For example, the MODIS-derived CI data produced by Jiao et al.
[41] were included to build a robust retrieval model of fractional
vegetation cover [44]. This MODIS-derived CI data also have
been used to test our approach—an improvement in the results
could be seen when this was done. We included the error in the CI
in a group of simulated test data and found that this error and the
error in the CCC estimates were correlated (see Fig. 9). Taking
the current reported error in the CI product (RMSE = 0.07)
as an example, the increase in the RMSE for CCC estimates is
small (less than 20μg cm−2), regardless of whether the empirical
method or the random forest method is used. In cases where the
CI is underestimated, if the absolute error in the CI exceeds 0.1,
using the empirical regression method will produce a greater

RMSE for the CCC estimates. In general, the likely size of the
error in CCC estimates produced by the reported error in the CI
product based on MODIS BRDF data is acceptable. In the future,
more accurate CI products should help improve the accuracy of
CCC estimates retrieved using our proposed approaches.

D. Uncertainties in Validation of the CCC Retrieval Model
Based on MERIS Data

The validation of MERIS-based CCC estimates requires field
measurements of forest LCC and LAI which are matched with
satellite pixels. We used Landsat NDVI data to carry out scaling
of the field-measured LAI; however, it is difficult to acquire
field measurements of forest LCC and LAI data at the same
time and, at present, there are not many simultaneous samples
of LCC and LAI available. In order to obtain as many test
samples as possible, in this article, for some samples, measured
LAI data were used and, for others, MODIS LAI data were
used. Compared with the field-measured LAI data, the MODIS
LAI product matches the MERIS data better in terms of spatial
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scale. In the MODIS LAI retrieval algorithm, the MODIS LAI is
designed to give the true LAI and several previous studies have
found that the MODIS LAI is closer to the true field-measured
values than to the effective LAI [67]–[69]. Although the MODIS
LAI C6 product has an RMSE of 0.66 and is a significant
improvement on the previous versions [69], the error of the
MODIS LAI data increases the uncertainty of the validation
of CCC retrieval in this article.

In addition, there was no available higher-resolution red-edge
satellite data during the acquisition time of the MERIS data that
could be used to scale the in situ LCC. In forest areas, the hetero-
geneity of the LAI is generally higher than that of the LCC [11],
[56]. Taking one particular forest area as an example [11], the
coefficient of variation for the in situ LCC was 8.9%, whereas for
the in situ LAI it was 20.9%. This means that the heterogeneity
of the forest LAI contributes more to the heterogeneity of the
CCC in a coarse-resolution pixel than the LCC. In fact, there
have been no studies on the scaling of in situ LCC data for
testing MERIS-based LCC estimates [47]. This lack of scaling
of the LCC inevitably produces uncertainties. Naturally, due
to the diversity of forest species and the complexity of growth
conditions, more ground measurements of forest CCC need to
be tested in the future.

V. CONCLUSION

In this article, the concept of the effective CCC by integrating
CCC and CI was proposed. Compared with CCC, CCCe is
closely related to canopy spectral feature (e.g., MTCI), which
implies that the CI may be important for remote sensing of
forest CCC. We developed a new approach for MERIS-based
estimating forest CCC that included the CI using empirical
regression and also a random forest approach based on sim-
ulations made by the PROSPECT-D and four-scale models.
Our findings demonstrate that when the prior knowledge of the
CI was included in the CCC estimation using either empirical
regression or random forest regression, the accuracy improved
markedly compared with the results for models that do not
include the CI. First, the results for the empirical regression
approach showed that the MTCI-based CCC retrieval model that
included CI information performed better than that without the
CI and produced a decrease in the RMSE to 36.51 μg cm−2

from 63.64 μg cm−2 for BOF and to 58.49 μg cm−2 from
96.02 μg cm−2 for coniferous forest. Next, the validation of
the results for the random forest model trained using different
predictors suggested that CI_6B_MTCI-based model that used
the CI, the red and red-edge bands, and the MTCI performed
best, achieving an R2 value of 0.77, a Bias value of 3.66μg cm−2,
and an RMSE of 27.95μg cm−2 for BOF and an R2 value of 0.61,
a Bias value of−21.66μg cm−2, and an RMSE of 34.83μg cm−2

for coniferous forest. These results demonstrate the feasibility
of making MERIS-based CCC estimates by including the CI, as
well as showing that the random forest approach has more poten-
tial to predict forest CCC than the empirical regression approach
at large scales. In addition, our findings also show that selecting
the chlorophyll-related reflectance and utilizing a chlorophyll-
related vegetation index like the MTCI is necessary for building a
robust random forest model for estimating forest CCC. In future,

more diverse validation data and satellite data with red-edge
band should be used to further assess the accuracy and robustness
of the proposed forest CCC retrieval models. The evaluation of
the effectiveness of different satellite-based CI products involved
in forest CCC retrieval is also worth exploring further.
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