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Tilt Correction Toward Building Detection
of Remote Sensing Images

Kang Liu , Zhiyu Jiang, Mingliang Xu , Matjaž Perc , and Xuelong Li , Fellow, IEEE

Abstract—Building detection is a crucial task in the field of
remote sensing, which can facilitate urban construction planning,
disaster survey, and emergency landing. However, for large-size
remote sensing images, the great majority of existing works have
ignored the image tilt problem. This problem can result in parti-
tioning buildings into separately oblique parts when the large-size
images are partitioned. This is not beneficial to preserve semantic
completeness of the building objects. Motivated by the above fact,
we first propose a framework for detecting objects in a large-size
image, particularly for building detection. The framework mainly
consists of two phases. In the first phase, we particularly propose a
tilt correction (TC) algorithm, which contains three steps: texture
mapping, tilt angle assessment, and image rotation. In the second
phase, building detection is performed with object detectors, espe-
cially deep-neural-network-based methods. Last but not least, the
detection results will be inversely mapped to the original large-size
image. Furthermore, a challenging dataset named Aerial Image
Building Detection is contributed for the public research. To evalu-
ate the TC method, we also define an evaluation metric to compute
the cost of building partition. The experimental results demonstrate
the effects of the proposed method for building detection.

Index Terms—Building detection, cost of building partition
(CoBP), deep neural network (DNN), remote sensing, tilt correction
(TC).

I. INTRODUCTION

BUILDING detection plays a crucial role in the field of
remote sensing, such as urban planning, natural disaster

survey, illegal construction surveillance, antiterrorism surveil-
lance, and emergency landing [1]–[6]. From the perspective of

Manuscript received March 16, 2021; revised May 14, 2021; accepted May
21, 2021. Date of publication May 25, 2021; date of current version June 16,
2021. This work was supported in part by the Key Research Program of Frontier
Sciences, Chinese Academy of Sciences under Grant QYZDY-SSW-JSC044, in
part by the National Natural Science Foundation of China under Grant 61871470
and Grant 62001397, in part by the Natural Science Basic Research Program of
Shaanxi under Grant 2020JQ-212, and in part by the Open-Ended Foundation
of National Radar Signal Processing Laboratory under Grant 61424010207.
(Corresponding author: Xuelong Li.)

Kang Liu is with the Shaanxi Key Laboratory of Ocean Optics, Xi’an Institute
of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China, and also with the University of Chinese Academy of Sciences,
Beijing 100049, China (e-mail: liukang@opt.ac.cn).

Zhiyu Jiang and Xuelong Li are with the Key Laboratory of Intelligent Inter-
action and Applications (Ministry of Industry and Information Technology) and
the School of Artificial Intelligence, Optics and Electronics, Northwestern Poly-
technical University, Xi’an 710072, China (e-mail: jiangzhiyu@nwpu.edu.cn;
li@nwpu.edu.cn).

Mingliang Xu is with the School of Information Engineering, Zhengzhou
University, Zhengzhou 450001, China (e-mail: iexumingliang@zzu.edu.cn).

Matjaž Perc is with the Faculty of Natural Sciences and Mathematics, Uni-
versity of Maribor, 2000 Maribor, Slovenia (e-mail: matjaz.perc@gmail.com).

Digital Object Identifier 10.1109/JSTARS.2021.3083481

information acquisition, the remote sensing images can be di-
vided into synthetic aperture radar (SAR) images, light detection
and ranging (LiDAR) images, and optical images.

Compared to the optical images, the signal-to-noise ratio
(SNR) of SAR and LiDAR is relatively low. However, the
SAR comparatively has much stronger ability of cloud and
mist transmission. Hence, the SAR can complement the limits
of optical sensors, especially when the optical sensors lose
efficacy due to their daylight and weather dependence. In order
to combine better results, Dubois et al. [7] utilized two types
of detector to complement with each other for the SAR phase
images. Based on the K-singular value decomposition method,
Adelipour and Ghassemian [8] proposed a building detection
method using sparse representation to learn dictionaries. To
ensure a consistent and fast computation of the complex SAR
information, Ferro et al. [9] adopted some low-level features and
their composition features, such as length, width, and height, to
the facade detection. Aiming at the problem of automatically
detecting manmade structures in very high resolution SAR
images, Shahzad et al. [10] first used advanced interferometric
techniques to classify the spaceborne SAR tomography point
clouds and then used the fully convolutional network (FCN) to
detect the buildings.

In comparison to the SAR, the working frequency of LiDAR
is much higher. The LiDAR also has the ability of accurate
ranging and high resolution. For offering a high success rate
for building detection, Cai et al. [11] proposed a coarse-to-fine
strategy, which is based on semisuppressed fuzzy C-means and
restricted region growing. Dey and Awrangjeb [12] applied a
corner correspondence algorithm to give an evaluation metric on
the extracted boundary. Chen et al. [13] adopted a multiscale grid
method to reconstruct airborne LiDAR data and detect building
roofs. Without filtering the ground points, a virtual first and
last pulse method is proposed to detect the buildings [14]. To
discriminate building regions from LiDAR data, a vegetation
mask-based connected filter algorithm based on digital surface
model data of LiDAR point cloud is contributed in [15].

The SNR of the optical images is relatively high, and the
detailed information is much rich. Much more optics-based
methods can be divided into traditional methods and deep
neural network (DNN)-based methods. The traditional meth-
ods are usually based on hand-designed features and require
much technical expertise [16]. Huang et al. [17] proposed a
morphological building index (MBI) to describe the building
characteristics. Based on the shape, spectral, geometric, and
contextual information, the MBI is the comprehensive semantic
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information of manmade objects. Li et al. [18] proposed a mul-
tiscale morphological attribute index to extract buildings. This
method can overcome the inherent defects of the MBI to a certain
degree. Inspired by the observed geometric features, Huang
et al. [19] proposed a geometric building index for accurate
building detection. Norman et al. [20] combined the plateau
objective function and the statistical method to extract building
footprint. This method is a space statistical optimization method.
Agarwal and Rajan [21] extracted candidate building pixels to
the maximum stable extremum region (MSER). Uniting with
independent component analysis, these geometric features are
then used to choose buildings. Karadag et al. [22] fused the re-
lated problem information of buildings to the segmentation step
for building detection. However, the aforementioned methods
are traditional methods, and the generalization and robustness
of these methods are limited and unstable.

In order to compensate for the traditional building de-
tection models, a large number of DNN-based works have
emerged [23]–[25]. This trend is reaping huge fruits from the
DNN, which has been widely used in the natural image ap-
plications. Alidoost and Arefi [26] used a single aerial image
and a convolutional neural network (CNN) to verify the ability
of building detection and roof identification. To overcome the
diverse spatial resolutions, scales, and orientations, Hamaguchi
et al. [27] combined a few CNN models. For the trained CNN
model, Dong et al. [28] designed object features with suit-
able scales. To relieve the diversity problem of samples, Zhu
et al. [29] presented the first generative adversarial network
(GAN)-based data augmentation method. The method is based
on a multibranch conditional GAN. Especially conducive to
large-scale buildings, Ji et al. [30] contributed a weight-shared
Siamese U-Net network. For arbitrary direction buildings, Yang
et al. [31] made a detection network with U-rotation to find
accurate bounding boxes. Based on near-infrared information,
Fang et al. [32] utilized fine spatial resolutions to detect building
shadow. Bai et al. [33] aligned the texture information with re-
gion of interest and density residual network, so that the regional
mismatching problem can be solved. To detect dense and small
buildings, Shu et al. [34] proposed an end-to-end model guided
by the center point. Jiang et al. [35] used an encoder–decoder
network and a residual refinement module to form a predictive
architecture for the prediction. Yao et al. [36] applied the visual
saliency and condition random field to train a coarse-to-fine
model. The model is mainly aiming to detect airports. Xie et
al. [37] improved the real-time YOLO [38] algorithm to be a
new framework with local constraints. Reda and Kedzierski [39]
proposed a faster edge region CNN algorithm for improving
building detection. In order to automatically detect buildings,
Shahzad et al. [10] utilized an FCN to train the model. To reduce
the influence of complex backgrounds, Du et al. [40] integrated
with the saliency map to design a single-shot method.

However, the most reviewed works have ignored the building
tilt problem of large-size remote sensing images. Consequently,
these tilted buildings are not beneficial to keep the semantic
completeness of the buildings in the task of object detection,
because the buildings are usually divided into separately oblique
parts when the large-size images are partitioned, as shown in

Fig. 2. On the one hand, we have observed that the distribution
of buildings, especially in urban cities, is usually with certain
relations to the environment or surrounding facilities. It can be
found that the map of land planning and directions of roads have
some relationships with the distribution of buildings. On the
other hand, we have found that the outlook shapes of buildings
are mostly rectangle-like and have obvious boundary lines. This
clue is also rewarding to the prediction of building tilt angle.
Thus, we can utilize these priors to predict the tilt angle for the
correction of remote sensing images.

Motivated by the above fact, this article mainly focuses on the
formulation of the tilt correction (TC) algorithm, which takes ad-
vantage of the edge information of the large-size remote sensing
images. The main contributions are fourfold and summarized as
follows.

1) We propose a new framework for detecting buildings in
large-size images. First, the TC is performed based on tilt
angle estimation. Second, building detection is performed
with object detectors. Finally, the detection results are
inversely mapped to the original large-size image. The
results are more reasonable, because the buildings can
avoid the oblique cutting of partition and the completeness
of objects can be preserved to a certain extent.

2) A TC algorithm is especially proposed to solve the tilt
problem of remote sensing images. This is a simple and
effective method, which estimates tilt angles by linear edge
detection and statistic histogram.

3) An evaluation metric named cost of building partition
(CoBP) is defined. The CoBP is a quantitative indicator,
which can evaluate the average CoBP for the whole image
dataset.

4) A publicly available Aerial Image Building Detection
(AIBD) is contributed. The box annotations of AIBD are
converted from a publicly semantic segmentation dataset.
The AIBD dataset contains totally 11 571 samples and an-
notated in the form of PASCAL VOC1 and also converted
into the form of COCO.2

The remainder of this article is organized as follows. Some
related works are reviewed in Section II. The proposed method-
ology introduced in Section III. Section IV presents the dataset,
evaluation metrics, experiment results, and their analysis. Fi-
nally, Section V concludes this article.

II. RELATED WORKS

In this section, we will briefly review several works, which are
mostly related to this article, including object detection methods
and TC. The object detection methods used in this article are
mainly based on the DNNs.

A. Object Detection Methods

Object detection is a fundamental task in the field of computer
vision, which mainly focuses on object positioning and object
classification in an image or video sequence. It can be widely

1[Online]. Available: https://host.robots.ox.ac.uk/pascal/VOC/
2[Online]. Available: https://cocodataset.org/

https://host.robots.ox.ac.uk/pascal/VOC/
https://cocodataset.org/
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Fig. 1. Flow architecture of the proposed method. The flow architecture mainly contains two phases: TC and building detection. The TC includes three steps:
separately texture mapping, tilt angle assessment, and image rotation and partition. The second phase performs building detection on the partitioned images by
means of object detectors. The detection results will be eventually mapped into the original large-size image.

Fig. 2. Examples of TC. (a) Original examples without TC. (b) Processed
examples with TC. It can be observed that the building instances without TC,
particularly for the components surrounded by red ellipse, are partitioned into
oblique parts. This phenomenon is not beneficial to the semantic completeness
of the buildings. However, those with TC are mostly not partitioned into oblique
parts.

used in robot navigation, intelligence video surveillance, indus-
try detection, aeronautics and astronautics, and so on [41]. The
DPM detector [42] is a representative peak of the traditional ob-
ject detection algorithms, which achieved state-of-the-art results
on the PASCAL VOC benchmarks in the years of 2007, 2008,
and 2009. Based on the core idea of “divide and conquer,” DPM
is an evolution method from the HOG detector [43]. The final
results of DPM are obtained by combining the inference of the
different object components.

The DNN-based detection techniques have been proved
to possess good excellent performance among natural image
scenes. These methods perform much better than traditional
detectors and can be mainly regarded as two-stage methods
and one-stage methods. The two-stage methods usually per-
form region proposals first and then determine the category
and location of the candidate objects. There are several rep-
resentative methods. In 2014, the region-based convolutional
neural network (R-CNN) [44] is proposed. The selective search
method is utilized to generate region proposals, and then, the
fix-resized images are input to AlexNet, where the map features
are extracted. Finally, the classifier support vector machine
is used to predict the category for each candidate. However,
the R-CNN has much computation time for so many region
proposals. Later on, Girshick et al. [45] proposed the Fast
R-CNN, which supports the bounding box regression, but is still
time-consuming. Combining with the region proposal network,
Ren et al. [46] proposed the Faster R-CNN, which is the first
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end-to-end deep detector [46]. Adding a segmentation branch
for the Faster R-CNN, He et al. [47] proposed the Mask R-CNN
as a generic instance segmentation architecture.

Some other researchers regarded the object detection as a
regression problem. Most of the one-stage methods determine
the category and location in a unified phase [38], [48], [49].
Compared with the two-stage methods, the running time of
YOLO [38] is superfast, and the data volume is competitively
small. Meanwhile, the SSD [48] combining the regression theory
and the anchor mechanism can balance the precision and the
inference speed. In order to solve the imbalanced problem of
the one-stage methods between the positive samples and nega-
tive samples, a focal loss is designed in the RetinaNet [49]. The
RetinaNet can achieve the mean average precision (mAP) with
the two-stage methods.

The aforementioned methods are mostly anchor-based meth-
ods. There are mainly three shortcomings of these methods:

1) imbalanced positive and negative samples;
2) hyperparameters are difficult to adjust;
3) intersection over union (IoU) matching is time-

consuming.
Therefore, many anchor-free methods are proposed for the

object detection in recent years [50]–[52]. These methods mainly
focus on the key points of the objects. The CornerNet [50]
assumes that the paired corner points have similar embedding
vectors and forms a heatmap for the bottom-right corner. This hy-
pothesis is not always effective because some different appear-
ances have similar embedding vectors. Based on the CornerNet
and adding a center point, the CenterNet [51] forms a triplet to
denote keypoints. However, the CenterNet cannot perform well
for the dense objects. Attempting to avoid above shortcomings,
the CentripetalNet [52] utilized the centripetal shift of object
keypoints.

B. Tilt Correction

TC is usually needed before the task of detection and recog-
nition in many application scenes, such as face recognition,
character recognition, license plate recognition, etc. This process
can reduce the detection and recognition difficulty because of the
image tilt. For the ship license number recognition, Liu et al. [53]
utilized MSER-based center points and L1− L2 distance line
fitting. To perform character recognition, Li et al. [54] used
the Hough transform to calculate the angle of plate rotation.
This method estimated the coordinates of four corners of the
plate region as well as the angles of each character rotation.
Based on the character median line, Yang et al. [55] adopted a
corner detection and projection method for license plate TC. In
the field of remote sensing, object detection is also possessing
enormous demand. And it plays an important role in many
application scenes, such as airplane detection, ship detection,
airport detection, building detection, etc. These methods also
give inspiration to our proposed method.

III. PROPOSED METHODOLOGY

In this section, we will introduce the proposed methodology in
detail. The flow architecture of the proposed method is shown

in Fig. 1. The flow architecture mainly contains two phases:
TC and building detection. As the first phase, the TC algorithm
includes three steps: texture mapping (see Section III-A), tilt
angle assessment (see Section III-B), and image rotation and
partition (see Section III-C). Building detection, as the second
phase, is explained in Section III-D. Building detection will
be performed in the partitioned images by means of object
detectors. The detection results will be eventually mapped to
the original large-size image.

A. Texture Mapping

In this subsection, we will present texture mapping of the
TC algorithm. For large-size remote sensing images, we have
observed that the geographical distribution of buildings is mostly
coupled with road planning orientation. This fact can contribute
a clue to relieve the partition problem. In order to extract the
orientation information for the tilt angle assessment, texture
mapping is calculated. At the beginning, a denoising filter is
performed to keep the edge information. The denoising filter is
formed as

If (i, j) =

∑
m,l I(m, l)w(i, j,m, l)∑

m,l w(i, j,m, l)
(1)

where If (i, j) is the filtered intensity of pixel (i, j) and I(m, l)
is the intensity of the center pixel (m, l) of the filter window.
The term w(i, j,m, l) is the filter weight, calculated as follows:

w(i, j,m, l) = exp

(
− (i−m)2 + (j − l)2

2σ2
s

− (I(i, j)− I(m, l))2

2σ2
c

)
(2)

where σ2
s and σ2

c are the space smooth parameter and the color
intensity smooth parameter, respectively. σs and σc are both set
as 2 in this article. Then, texture mapping is obtained by

G = α× |Gx|+(1− α)× |Gy| (3)

where |Gx| and |Gy| are the gray values obtained with the
horizontal edge detector and the vertical edge detector for the
filtered image, respectively, and the term α is a weighted factor,
which is set as 0.5 in this article.

For ensuring that the rotated image patches do not contain
black areas after rotation, we perform boundary padding for
the white box referred to in Fig. 1. The cyan square box is
the padding patch (rotation window), and the padding width
is calculated as

wp =

(√
2−1

2

)
wi (4)

where wi is the width of the purpose image patch i and wp is the
padding width of i. The size of square patch is wi × wi (500×
500 in this article), so the maximum black area is appeared when
the rotation angle is ±45◦ with the rotation radius of

√
2
2 wi. For

a large-size image, the padding area is filled with the mean color
of the whole image.
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B. Tilt Angle Assessment

The tilt angle assessment is performed in this subsection. First
of all, linear edges are detected on texture mapping. The main
direction of image appearance usually depends on long lines.
Therefore, the tilt angle of these long detected lines is calculated.
The progressive probabilistic Hough transform (PPHF) [56] is
utilized to detect the lines. Compared to the classical Hough
transform for line detection, the PPHF mainly reduces the com-
puting costs. The cross points with over vote-threshold number
in the polar coordinates will be selected as the candidates. The
lines related to these cross points are found as the detected lines.
The detected lines are filtered by the length threshold (set as
40 pixels in this article). This approach can avoid the negative
influence of nonsequence or background points.

For urban rectangle buildings, unparallel lines are usually
vertical to each other. Due to the problem of rotation cycle,
the linear edges of one building may have arctan tilt angles with
different plus-minus signs. In order to calculate the tilt angle
histogram and get the final tilt angle of the rotation window, we
need to unify the angles. The final assessment tilt angle is its
complement angle when the tilt angle of some linear edges is
negative, as follows:

dj=

{
dj ,
90− |dj | ,

if dj > 0
otherwise

. (5)

The tilt angle histogram H is used to calculate the rotation
angle degree of the rotation window. Hi is the ith bin of H ,
which is defined as

Hi =

M∑
j=1

F

(
i =

⌊
dj
ds

⌋)
(6)

where M denotes the number of detected lines, dj is the arctan
value, and the term ds is the angle degree step and set as 10◦

in this article; thus, the histogram has nine bins. In addition, the
F (·) is the indicator function, which equals 1 if the condition is
established.

Then, the rotated degree θ is obtained with weighted lj as

θ =
1

W

K∑
j=1

dj × lj (7)

where K denotes the number of detected lines of the max peak
bin in H , lj is the length of line j, and W =

∑M
j=1 lj is the sum

of the line length of the max peak bin. Thus, the tilt angle of the
rotation window is calculated.

C. Building Image Rotation

Building image rotation is based on the theory of affine trans-
formation. The affine transformation usually performs through
translation, scale, rotation, flip, and shear in the coordinate
system. In order to get better results, usually, the rotation center is
the center of the building image. The rotation will be performed
as follows:

xc = (wi + 2× wp) /2

yc = (wi + 2× wp) /2 (8)

Fig. 3. Drawing of CoBP. The yellow rectangular boxes are contributed to the
CoBP, while the blue rectangular boxes are not contributed to the CoBP. A1 and
A2 are two points along the tilt orientation line of the partitioned building.

where (xc, yc) is the point coordinate of the rotation center, wi

is the width of the purpose image patch i, and wp is the padding
width of i. The rotated degree θ is obtained in Section III-B, and
θ will be used to compute the point coordinate after rotation as
follows:

x2 = (x1 − xc) cosθ − (y1 − yc) sinθ + xc

y2 = (x1 − xc) sinθ + (y1 − yc) cosθ + yc (9)

where (x1, y1) denotes the point coordinate before rotation and
(x2, y2) denotes the point coordinate after rotation. The partition
window by the white box with width wi will be partitioned from
the rotated window with width wi + wp. The rotated window
does not contain the black area. Two examples of TC are shown
in Fig. 2. The three subsections introduced above are the main
steps of the proposed TC algorithm, which is also summarized
in Algorithm 1.

D. Building Detection and Inverse Mapping

The partitioned image will be input into the object detec-
tor in the building detection phase. The object detector can
be two-stage methods, one-stage methods, anchor-based, and
anchor-free methods. Most of the recent object detection meth-
ods possess both predicted bounding boxes and classification
probability scores. The detection results can be shown visually
with bounding boxes and probability scores. Large-size remote
sensing images usually contain geography and elevation. The
detection results will be more reasonable and comprehensive
if integrating this information. Therefore, the detection results
are necessary to be inversely mapped into the large-size image.
Inverse mapping of the detected bounding boxes will be per-
formed for the detection results with inverse mapping degree
−θ referred to

xp1 = (xp2 − xc) cos(−θ)− (yp2 − yc) sin(−θ) + xc

yp1 = (xp2 − xc) sin(−θ) + (yp2 − yc) cos(−θ) + yc (10)
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Fig. 4. Examples of the AIBD. The geometric shapes, color characteristics, and scale variations are tremendously different.

Fig. 5. Curves of CoBP.

where (xp1, yp1) is the point coordinate of the detected object
box in the partition window and (xp2, yp2) is the point coordinate
of the detected object box in the image after inverse mapping
rotation. However, the relative position index should be taken
into consideration for the final coordinate in the large-size image.

E. Cost of Building Partition

To quantitatively evaluate the effect of the TC method, we
also define a metric named CoBP in (3). The metric CoBP can
evaluate the average CoBP for the whole image dataset. It can
give a quantitative indicator with the TC method. The drawing
of CoBP is shown in Fig. 3

CoBP =
1

N×M

N∑
i=1

M∑
j=1

exp(−(1−VT )
2) (11)

where N denotes the number of sample images and M is
the number of buildings, which are partitioned by the parti-
tion window in a rotation window. Δxij=|x1ij − x2

ij
| and

Δyij=|y1
ij
− y2

ij
| are, respectively, the horizon distance and

the vertical distance between the two pointsA1 andA2 of the jth

building in the ith rotation window. Because of the periodicity
of the tilt degree, the tangent value VT of the tilt building is
calculated as

VT =
min(Δxij ,Δyij)

max(Δxij ,Δyij)
. (12)

In Fig. 3, the buildings on the boundary of the partition win-
dow are taken into consideration, while the others are not. The
best situation is that no buildings are partitioned into tilted parts.
However, it is unavoidable that some buildings are partitioned
into parts. We want to know how much the TC algorithm can
decrease the CoBP for the whole testing dataset. Therefore,
the CoBP is calculated on the building instances, which are
partitioned by the partition window. The maximum is obtained
when VT equals 0, while the minimum is obtained when VT

equals 1. Hence, the value range of the CoBP is 0.368–1.0.

Algorithm 1: TC for Building Detection.
Input:Large-size image I , patch width wi, patch number N
Output:N corrected image patches
1: For image I:
2: for i = 1 to N do
3: Make boundary padding as ip with width wp using

(4) for patch i.
4: Calculate weighted texture mapping Ti referring to

(3).
5: Perform edge detection on Ti and obtain image Ei.
6: Find M lines of Ei utilizing line detector.
7: for j = 1 to M do
8: Calculate arctan value di and length lj of line Lj

as (5).
Compute angle histogram H in (6).

9: end for
10: Assess tilt angle θ referring to (7).
11: Perform image rotation on ip adopting θ.
12: Partition image patch i from ip with width wi.
13: end for
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Fig. 6. Qualitative comparisons of (a) SSD-512, (b) YOLOv3-608, (c) RetinaNet, (d) CentripetalNet, and (e) Faster R-CNN (with resnet101). The Faster R-CNN
with TC achieves the best results. The white bounding boxes are as TPs and the yellow bounding boxes are FNs.

IV. EXPERIMENTS AND RESULTS

A. Dataset

For the evaluation requirement of the TC, a specialized dataset
is needed. However, most of the existing datasets for building
detection are already image patches, which cannot meet this
requirement. Therefore, a publicly available AIBD is annotated

in the form of PASCAL VOC3 and also converted into the form
of COCO.4 The original images of AIBD are based on the Inria
Aerial Image Data,5 which are mainly used for the semantic

3[Online]. Available: http://host.robots.ox.ac.uk/pascal/VOC/
4[Online]. Available: https://cocodataset.org/
5[Online]. Available: https://project.inria.fr/aerialimagelabeling/

http://host.robots.ox.ac.uk/pascal/VOC/
https://cocodataset.org/
https://project.inria.fr/aerialimagelabeling/
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Fig. 7. Curves of training error of Faster R-CNN [46] with TC.

TABLE I
BUILDING STATISTICS OF AIBD

segmentation [57]. The building annotated labels of the AIBD
are converted from the semantic annotations of Inria Aerial
Image Data.

The Inria Aerial Image Data include a train subset and a test
subset, which both have two semantic classes: building and not
building. The train subset and the test subset both have five urban
cities, and each city covers 81 km2 with 36 image tiles, so the
total number of tiles for both the train subset and the test subset
is 180 and covers 405 km2. The tile size is 5000 × 5000 pixels
with 0.3-m resolution. The train subset has its reference data.

The AIBD can be accessed and publicly downloaded as soon
as possible from Baidu Netdisk.6 The AIBD includes two seman-
tic classes: building and not building. The large-size images are
partitioned into 500 × 500 image patches with the TC algorithm.
The AIBD dataset totally contains 11 571 image samples and
the same number of annotation files. Some statistics of AIBD
are shown in Table I. The instance number, percentage, and pixel
number of the small, medium, and large building instances are
reported. The number of building instances is 51 977, 121 515,
and 16 824 for the small instances, medium instances, and
large instances, respectively. Correspondingly, the percentage
of the small, medium, and large building instances is separately
0.273%, 0.638%, and 0.089%. The division criterion is based on
the COCO metric. The AIBD is a challenging dataset for the task
of building detection. Fig. 4 shows some examples of the AIBD.
The geometric shapes, color characteristics, and scale variations
are tremendously different. The geometric shapes, color charac-
teristics, and scale variations of the building instances are also
summarized as follows.

6Online. [Available]: https://pan.baidu.com/s/1u8XKQnADIa2pNTvRVnSn
tA (password:v09f)

TABLE II
EXPLANATIONS OF THE STANDARD COCO METRICS [46]

1) Geometric shapes: The geometric shapes of AIBD are
variable, such as rectangular, L-shape, U-shape, T-shape, and
other irregular shape with many right angles.

2) Color characteristics: The color characteristics are distinct
from each other among tremendously different backgrounds.

3) Scale variations: The pixel number of building objects
ranges from tens to hundreds of thousands.

B. Evaluation Metrics

The average precision (AP) and its derivative metrics are
adopted to quantitatively evaluate the proposed method for the
task of building detection. The standard COCO metrics, includ-
ing AP, AP50, AP75, APs, APm, and APl, are briefly reported
in Table II. The metric AP is a comprehensive indicator in the
field of object detection, comprehensively considering the metric
precision and recall as follows:

precision =
TP

TP + FP
(13)

recall =
TP

TP + FN
(14)

where the term TP is true positives, FP is false positives, and
FN is false negatives. These terms are calculated from the
IoU between the predicted bounding box and the ground truth
bounding box

IoU =
Bpredict ∩Bgt

Bpredict ∪Bgt
(15)

where Bpredict denotes the area of the predicted bounding box,
and Bgt denotes the area of the ground truth bounding box. For
the multiclass object detection, the mAP is also calculated, and
it is the average AP of all different object classes.

C. Experiment Setups

The dataset applied in the experiments is divided into the
train subset, the validation subset, and the test subset as the
percentage 0.25%, 0.25%, and 0.5%, respectively. The train
subset and the validation subset are together used for training
in our experiments. In order to keep the generalization ability
of the model with TC, training samples are with their own
TC samples together to train the detection model. Eight typi-
cal and representative methods are selected as the competitive
methods, such as DPM [42], Faster R-CNN [46], YOLO [38],

https://pan.baidu.com/s/1u8XKQnADIa2pNTvRVnSntA (password:v09f)
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Fig. 8. Typical detection results of different scales, colors, and architectures. The results without TC are on rows (a1) and (b1), and the results with TC are on
rows (a2) and (b2). The white bounding boxes are TPs, the yellow bounding boxes are FNs, and the red bounding boxes are FPs.

TABLE III
HYPERPARAMETER SETUPS OF THE TRAINING MODELS

SSD [48], CornerNet [50], CenterNet [51], FoveaBox [58], and
CentripetalNet [52].

The competitive experiments are mainly performed on the
platform mmdetection7 [59]. The form of AIBD is converted
into the form of COCO. The platform GPUs are with four Nvidia
GeForce GTX 1080. The hyperparameter setups of the training

models for the competitive methods are reported in Table III.
The hyperparameter setups follow the presets of the platform
mmdetection. The available and executable code version of

7[Online]. Available: https://github.com/open-mmlab/mmdetection

https://github.com/open-mmlab/mmdetection
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TABLE IV
BUILDING DETECTION RESULTS OF COMPETITIVE METHODS USING THE COCO METRIC

TABLE V
RUNNING TIME ON SINGLE IMAGE OF THE COMPETITIVE METHODS

The time duration is measured in seconds.

DPM [42] is voc-release38 in MATLAB. Therefore, the platform
of DPM is Windows 10 with 16-GB RAM and eight i7-9800
Intel Core CPUs. The available evaluation metric of DPM is
only AP50.

D. Experiment Results and Analysis

CoBP evaluation: In order to evaluate the effect of the CoBP
for the whole dataset, a metric named CoBP is defined in
Section III-E. The CoBP is calculated for both the samples with
the TC algorithm and those without the TC algorithm. The tilt
angle histogram is set as nine bins. The CoBP curves are shown
in Fig. 5. The magenta curve is the average CoBP without the
TC algorithm as the tilt angle bins on the AIBD. The cyan curve
is the average CoBP with the TC algorithm as the tilt angle bins
on the AIBD. We can find that the CoBP reduces a lot as the tilt
degree of rotation window if the TC algorithm is applied. As the
tilt angular periodicity, the tangent value VT of the tilt building
is calculated as (12). The CoBP reaches maximum when the tilt
is 45◦, while the CoBP reaches minimum when the tilt is 0◦ and
90◦. The purpose of the proposed method is to reduce the CoBP

8[Online]. Available: http://www.rossgirshick.info/latent/

so as to effectively perform building detection. It is revealed
that the TC algorithm can relieve the problem of the building’s
oblique cutting.

However, not all of the buildings can be corrected to purposed
orientation because the tilt angles are statistical values estimated
by the detected lines of the images. The TC cannot be estimated
if buildings do not exist in the partition boundary. Besides, the
proposed method can be used to deal with the buildings of
irregular shape with distinctive linear features. However, when
the buildings do not have distinctive linear features, the proposed
method cannot be effectively performed. For most cases, the TC
can be utilized in the experiments.

Table IV shows the building detection results of competitive
methods using the COCO metric. For building detection, all
of the representative methods adopted frequently used back-
bones, such as VGG-16, Darknet-53, Resnet50, Resnet101, and
Hourglass-104. Each of the methods was tested on the condition
with and without the TC algorithm. We can see that all of
the APs with the TC algorithm are better than those without
the TC algorithm. The best APs are achieved by the Faster
R-CNN [46], and the results are optimal when the backbone
is Resnet101. The result values of the metric AP50 achieve the

http://www.rossgirshick.info/latent/
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highest scores, among which the results of CornerNet [50] are
the worst. Considering the building instance scale, the results of
the small instances are as good as the medium instances and the
large instances on the whole. However, the AP50 results of the
DPM [42] are the worst. The main reason is that the robustness
and generalization of the traditional DPM is limited. Therefore,
the DPM cannot effectively manage the large building dataset
with complex backgrounds and variable building objects. The
experiment results demonstrate that the TC algorithm is benefi-
cial to the APs of building detection.

The average running time for each image of the competitive
methods is reported in Table V. The running time of the methods
with TC is more than those without TC. The running results of
YOLOv3-320 [38] are the slowest because the resizing process
of large-size variation needs much more time. On the whole, all
the running time results of the competitive methods are less than
0.5 s.

Example results of the proposed method are presented in
Fig. 6. The white bounding boxes are as TPs and the yellow
bounding boxes are FNs. The Faster R-CNN with resnet101
achieves the best results. The Faster R-CNN has the least FNs
among its competitors. Take the irregular image in the third
column as example; the bounding boxes of examples are more
accurate. There are nearly no FNs of the three examples. The
curves of the training error of Faster R-CNN [46] with TC as
the iterations are shown in Fig. 7.

Here, we would like to discuss some unsatisfactory results.
Some building examples are unfortunately marked in yellow
bounding boxes as FNs and red bounding boxes as FPs, es-
pecially for YOLOv3-608 [38] and CentripetalNet [52]. There
are two reasons that can explain this phenomenon. On the one
hand, the scales, colors, and architectures of the building objects
are extreme variations, so the building dataset possesses huge
within-cluster variation. On the other hand, quite a few building
boundaries are not clear in intricate backgrounds. Therefore, it
is difficult for the one-stage methods and anchor-free methods
to obtain superior detection results.

Some more detection results of the Faster R-CNN, whose
backbone is resnet101, are shown in Fig. 8. The detection results
without TC are at rows (a1) and (b1), and those results with TC
are at rows (a2) and (b2). The detection rectangles of rows (a1)
and (b1) have many overlaps and contain much backgrounds
inner them, whereas the detection rectangles of rows (a2) and
(b2) are much compact to the real building objects. It is revealed
that a more robust model with less difficult testing samples can
perform better and the bounding boxes of the samples without
TC contain much more backgrounds and are not fully semantic
building objects.

V. CONCLUSION

In this article, we first propose a framework for detecting
objects in a large-size image instead of small-size patch, partic-
ularly for building detection. The framework mainly consists of
two phases. In the first phase, a simple and effective TC algo-
rithm is proposed to solve the problem of oblique cutting, and
this method can preserve the completeness of building objects.

In another aspect, the detection results will be more reasonable
and comprehensive when inversely mapped to the large-size
image. Building detection is performed in the second phase with
object detectors, especially DNN-based methods. Besides, a new
evaluation metric named CoBP is defined to evaluate the CoBP
for the dataset. Moreover, a challenging AIBD is annotated for
the public research. The experimental results manifest the effects
of the proposed method both qualitatively and quantitatively.
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