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MHA-Net: Multipath Hybrid Attention Network for
Building Footprint Extraction From High-Resolution

Remote Sensing Imagery
Jihong Cai and Yimin Chen

Abstract—Deep learning approaches have been widely applied to
building footprint extraction using high-resolution imagery. How-
ever, the traditional fully convolution network still has problems
in recovering spatial details and discriminating buildings with
varying sizes and styles. We propose a novel multipath hybrid
attention network (MHA-Net) to address these challenges. We
design a separable convolution block attention module and an at-
tention downsampling module as the basic modules with separable
convolutions and channel attention. The MHA-Net architecture
consists of three components: the encoding network, multipath
hybrid dilated convolution (HDC), and dense upsampling convo-
lution (DUC). The encoding network is used to encode the high-
level semantic contexts of images. The multipath HDC aggregates
multiscale features by combining rich semantic representations ex-
tracted by HDCs, which can achieve promising results in extracting
tiny buildings. The DUC is capable of recovering precise spatial
information of buildings. We evaluate our network on two public
datasets: the WHU aerial building dataset and the Massachusetts
building dataset. According to the experimental results, MHA-Net
outperforms other classical semantic segmentation models and
several recent building extraction models. In particular, MHA-Net
can improve the extraction accuracy of small buildings and is robust
to complicated building roofs.

Index Terms—Building footprint extraction, deep learning, high-
resolution remote sensing imagery, semantic segmentation.

I. INTRODUCTION

A S THE fundamental entities in urban systems, buildings
are the primary carriers of human production and life.

Precise building footprint data is essential to the researches of
the urban environment [1], [2], energy consumption [3], urban
planning [4], urban function [5], building change detection [6],
and urban morphology [7]. Remote sensing data have become
the primary sources for building footprint extraction. Because of
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the diversity of buildings’ type and scale, it is still challenging to
extract buildings accurately from remote sensing imagery [8].

Early studies of building extraction relied on the fusion of
LIDAR points and multispectral imagery [9]–[12]. More recent
studies, however, aim at extracting building footprints directly
from high-resolution imagery [13]. For instance, Huang and
Zhang [14], [15] designed a morphological building index (MBI)
and a morphological shadow index to automatically extract
buildings from high-resolution imagery. Ok [16] developed an
automatic building detection method with shadow information
and graph cuts. Bi et al. [17] proposed a multiscale filtering
building index (MFBI) for building extraction. The MFBI can
overcome the heavy computation of the MBI morphological
operations. The methods mentioned above consistently require
image transformation to obtain the complex features of building
objects. However, the effectiveness of using these features varies
substantially from one case to another because of the varying
sensors, building types, and ground conditions [8].

In recent years, deep learning, especially the convolution
neural networks (CNNs), has become one of the most prevalent
methods in the computer vision field. CNNs can automatically
learn rich image features without prior knowledge via deep con-
volutional architectures. They have been widely used in remote
sensing areas for object detection [18], hyperspectral image
classification [19], and scene classification [20], [21]. The fully
convolutional networks (FCNs), which are developed based on
the conventional CNNs, have been used to perform pixel-wise
image classification through semantic segmentation [22], [23].
The empirical literature has reported the high performances of
several FCN-based models, such as U-Net [24], SegNet [25],
PSP-Net [26], and Deeplab series [27]–[30].

With the advances made in FCNs and semantic segmentation,
many FCN-based models have been designed to automatically
extract building footprints [8], [13], [31]–[42]. For example,
Bischke et al. [34] developed a multitask building segmentation
network to address the problem of preserving building footprint
boundaries. Liu et al. [35] proposed the SRI-Net model to extract
building footprints. In SRI-Net, a modified Res-Net-101 is used
as the encoder to capture multilevel context information. The
SRI-Net model also incorporates a spatial residual inception
module to aggregate multiscale information. However, SRI-Net
has higher computation complexity because the convolutional
kernel size in SRI-Net is enlarged to broaden the receptive field.
The JointNet model proposed by Zhang and Wang [36] uses
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the dense connectivity block with atrous convolutions to extract
multitype ground objects. Kang et al. [37] designed a dense
spatial pyramid pooling (DSPP) module based on atrous spatial
pyramid pooling (ASPP) to extract dense and multiscale features
for buildings. Liu et al. [38] used dense upsampling convolution
(DUC) and SELU activation functions to strengthen building
discrimination and boundary preservation. Guo et al. [39] pro-
posed a scene-driven multitask parallel attention convolution
network (MTPA-Net) to extract buildings for various scenes.
Zhu et al. [40] developed the MAP-Net model that can learn
multiscale features via a multiparallel path and aggregate them
with an attention module. Ding et al. [41] argued that traditional
CNNs could not capture the shape patterns of buildings and
proposed an adversarial shape learning network (ASLNet) to
strengthen the performance of building extraction by augment-
ing building shape features.

Some other studies use prior information that is derived from
GIS data to strengthen the performance of building extraction.
For instance, Sun and Wang [43] used the digital surface model
(DSM) to facilitate building extraction. Li et al. [44] proposed
several strategies such as data augmentation, post-processing,
and data integration to combine multisource GIS data, thereby
improving the accuracy of building extraction. Sun et al. [45]
proposed a conditional GIS-aware network that employs com-
plementary information from GIS data to extract building foot-
prints from a very-high-resolution synthetic aperture radar im-
age. However, although extra auxiliary data can increase the
performance of building extraction, they are not always available
in practice. It is still important to develop effective models that
can directly extract building footprints from images without too
much prior information.

According to the literature mentioned above, the major chal-
lenge of building extraction is to recover spatial detail and
improve the discrimination of buildings with varying sizes
and styles. Aiming at addressing this challenge and improving
extraction accuracy, we propose a multipath hybrid attention
network (MHA-Net) for automatical building footprint extrac-
tion. First, we apply the separable depthwise convolutions and
the channel attention modules in our network. The separable
depthwise convolutions can improve the network’s efficiency
while the channel attention modules can capture the global
relations of the channels, thereby enhancing the segmentation
performance. Second, a multipath hybrid dilated convolution
(HDC) framework is adopted to aggregate multiscale contexts
with large receptive fields, which is capable of capturing building
features with varying sizes and styles. Finally, instead of using a
conventional encoder-decoder structure, we recover the spatial
information by a DUC structure that can maintain the spatial
details of building boundaries. The main contribution of this
study can be summarized as follows.

1) An effective semantic segmentation model, MHA-Net, is
proposed for building footprint extraction. The network
can accurately extract buildings of different scales.

2) We introduce the multipath HDC to strengthen the net-
work’s ability to detect buildings with varying sizes and
styles. By applying the DUC, we can avoid the loss of

spatial information caused by encoder-decoder structure
and better recover the spatial details of buildings.

3) Our network is tested and compared with other models
using two public remote sensing building datasets, i.e.,
the WHU aerial building dataset and the Massachusetts
building dataset. The results illustrate the better perfor-
mance of the proposed MHA-Net over the conventional
building extraction methods.

The rest of this article is organized as follows. Section Ⅱ
introduces the proposed MHA-Net. Section Ⅲ describes our
experiments and the results. Section Ⅳ concludes this article.

II. NETWORK

A. Architecture Overview

Fig. 1 demonstrates the architecture overview of MHA-Net,
which contains three components.

1) An encoding network to capture high-level semantic fea-
tures. The basic modules of this component include the
separable convolutional block attention modules and the
attention downsampling modules (ADMs). Both contain
a channel attention module before their outputs to exploit
more context information. Section II-B provides the de-
tails of the encoding network.

2) A multipath HDC structure. The HDC structure uses sev-
eral combinations of dilated convolutions with different
rates to capture multiscale image context. These features
are further aggregated via a channel attention module.
Section II-C provides the details of this component.

3) A DUC structure. Here the DUC structure is to restore
the spatial information of building footprints. Section II-D
provides the details of the DUC structure.

B. Encoding Network

1) Depthwise Separable Convolution: The basic modules of
MHA-Net are based on the depthwise separable convolution,
which consists of a depthwise convolution and a pointwise
convolution [46]. Unlike the standard convolution, the depth-
wise convolution applies a single filter per each input channel.
The pointwise convolution, i.e., a 1 × 1 standard convolution,
can create a linear combination of the depthwise convolution
outputs. Suppose that C convolutions (k × k) are applied to an
input feature map with C0 channels. The total number of param-
eters using standard convolutions would reach C0Ck2, while the
number of parameters using depthwise separable convolutions
reduces to C0k2 + C0C. The depthwise separable convolution
can significantly save parameters while improving the network
performance [46].

2) Channel Attention: According to Woo et al. [47], the
channel attention module is an improvement of the squeeze and
excitation module [48]. The channel attention module focuses
on finding channels that are more meaningful in a given fea-
ture map. Fig. 2 shows the diagram of the channel attention
module. The channel attention module incorporates a global
average-pooling and a global max-pooling to aggregate each
channel’s spatial information, thereby generating two different
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Fig. 1. Overview of the MHA-Net.

Fig. 2. Diagram of the channel attention module.

spatial context descriptors with a shape of 1 × 1 × c (where
c indicates the channel number of the input feature map). Both
of the spatial context descriptors are then passed to a shared
weight multilayer perceptron with one hidden layer to produce
the channel attention maps. To reduce the number of parameters,
the hidden layer’s size is set to c/r, in which r denotes the reduc-
tion ratio. Afterward, two outputs are merged by element-wise
summation. The values of the merged channel attention map are
further transformed between 0 to 1 using a sigmoid activation
function. Finally, a feature map that highlights the meaningful
channels can be obtained by multiplying the input features by
the channel attention map.

3) Modules and Architecture Design: Fig. 3(a) and (b)
illustrate the separable convolution block attention module
(SCBAM) and the ADM, respectively. Based on the residual
bottleneck [49], a SCBAM starts with two 1 × 1 convolution
layers and a depthwise convolution layer. The filter number of the
first 1× 1 convolution layer and the depthwise convolution layer

is set to one-fourth of the input channels to enhance the model
efficiency. The first 1 × 1 convolution layer and the depthwise
convolution layer are followed by a batch normalization layer
and a ReLU layer, while the second 1 × 1 convolution layer is
followed by a batch normalization layer only.

A channel attention module [47] is applied after these three
layers in order to highlight the most important channels. The out-
puts of the channel attention module add input features element-
wise via a short connection to avoid gradient vanishment [49].
These outputs are further connected to a ReLU activation layer.

The ADM [Fig.3(b)] is designed for downsampling the feature
maps. The ADM includes a max-pooling layer and a depthwise
convolution layer with a stride of 2 [38], [50]. Similar to the
SCBAM, the ADM has a three-layer convolution architecture,
while the number of filters in each layer being the same as the
number of input channels. The stride of the depthwise convolu-
tion is set to 2. Then, the downsampled features concatenate
the output of a 2 × 2 max-pooling layer with stride 2. The
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Fig. 3. Primary modules of our proposed model. (a) and (b) are SCBAM and ADM, respectively. (c) shows the encoding part of our network’s architecture,
designed to capture and downsample the image’s semantic information. BN indicates batch normalization; ReLU indicates rectified linear unit.

concatenated features are also forwarded to a channel attention
module. A ReLU activation layer is added before the output.

The encoding network is shown in Fig. 3(c). Two 3 × 3
standard convolutions, each followed by a batch normalization
layer and a ReLU activation layer, are first applied to the input
images. After that, we use three bottleneck blocks to capture
the semantic information. Each bottleneck block consists of an
ADM and two SCBAMs. The depths of the bottleneck blocks
are 256, 512, and 1024. For an input image with a shape of
256 × 256 × 3, the output features of the encoding network
have a size of 32 × 32 × 1024.

C. Multipath Hybrid Dilated Convolution

In semantic segmentation tasks, dilated convolutions are
widely used to enlarge the receptive fields of a network and
aggregate multiscale context [51]. A dilated convolution is con-
structed by inserting zeros in the convolutional kernel. However,
stacking dilated convolutions may lead to a “gridding” problem
[52] [Fig. 4(a)]. Since dilated convolution introduces zeros in
the kernel, gaps usually exist between the pixels that participate

in the center pixel’s computation. These gaps may further cause
serious information miss in the input features [52].

The HDC framework is designed to address the “gridding”
problem, which has been applied in semantic segmentation by
[52]. HDC can make the final receptive field of a series of
dilated convolutions fully cover a square region without holes or
missing edges. For example, compared with the stacked layers
with dilation rates as 2, 2, and 4, grouping succeeding dilated
convolution layers with dilation rates like 1, 2, and 5 [Fig. 4(b)]
together can capture contexts from a broader range of pixels,
despite that they have the same size of the receptive field.
Notably, the dilation rate within a layer group should not have
a common factor relationship. Layers with dilation rates like 2,
4, and 8 will still lead to the gridding problem on the top layer.

We use the proposed SCBAM to form the HDC framework.
As suggested by [52], we set modules’ dilation rates to 1, 2,
5, and 9 [Fig. 5(a)]. Inspired by multiscale modules like ASPP
[28], [29], Inception [46], [50], and dense prediction cell [53], we
developed a multipath HDC framework [Fig. 5(b)] to further ag-
gregate complex multiscale context in building extraction tasks.
The multipath HDC consists of four parallel paths to combine
the information at different levels. Unlike the ASPP structure,
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Fig. 4. Gridding problem and the HDC. The blue pixels contribute to the
calculation of the red pixel by three 3 × 3 convolution layers; (a) illustrates the
gridding problem. The convolution layers from left to right have dilation rates
r = 2, 2, 4, respectively. In contrast, the convolution layers in (b) have dilation
rates of r = 1, 2, 5, respectively; (b) has the same receptive field as (a), but it
aggregates more comprehensive contexts.

each path usually has more than one dilation convolution layer.
The first path stacks two HDC groups with dilation rates of 1,
2, 5, and 9. The second path has 1/2 depth of the first path and
contains four SCBAMs with the same dilation rates of 1, 2, 5, and
9. The third path has two modules with dilation rates of 1 and 2,
while the fourth path only contains one module with the dilaton
rate of 1. We also add a short connection to concatenate the input
features. Combining all these features captured by the four paths
can include context information comprehensively from global
to local scales. The concatenated features are forwarded to a
channel attention module to identify meaningful information.
A standard 1 × 1 convolution layer with 1024 channels is
added to aggregate the multiscale context, followed by a batch
normalization layer and a ReLU activation layer. Finally, we
use a 1 × 1 convolution with 64 channels to facilitate spatial
information restoring through the DUC.

D. Dense Upsampling Convolution

The DUC, which has been termed sub-pixel convolution as
well, was first proposed by [54] for image super-resolution tasks.
Wang et al. [52] applied this operation to better recover spatial
details of prediction maps. The DUC has also been applied in
building extraction tasks [38] and yielded satisfactory results.
As bilinear upsampling and deconvolution would inevitably
cause spatial information loss, using these upsampling layers
will affect the segmentation precision, especially for building
objects that have irregular shapes. The DUC operation, however,
does not insert extra values to recover the spatial information.
The DUC operation reshapes the input feature map of H/d × W /
d × d2 to one with a shape of H × W × 1 (Fig. 6). The number of
features is unchanged during the operation. Therefore, the DUC
operation can effectively recover tiny objects that may miss in
the bilinear interpolation operation. The output feature map is
then activated by a sigmoid function. We use a threshold of 0.5
to transform the probability map into the final binary results.

E. Evaluation Metrics

In this article, we use four metrics to evaluate each model’s
extraction performance, including precision, recall, F1-score,
and IoU. Four metrics are defined as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 × Precision× Recall

Precision + Recall
(3)

IoU =
TP

FP + TP + FN
. (4)

TP, FP, and FN represent the pixel number of true positive,
false positive, and false negative.

III. EXPERIMENTAL RESULTS

A. Dataset

WHU Aerial Building Dataset: This dataset is proposed by
[31]. It provides highly accurate labels of 187 000 buildings
with different colors, sizes, and usage in New Zealand for testing
CNN-based methods. The image dataset contains 8189 tiles of
512 × 512 pixels with 0.3 m ground resolution. Among the
samples, the training set consists of 4736 tiles, and the validation
set and the test set have 1036 and 1416 tiles, respectively [31].

Massachusetts Building Dataset: This dataset is proposed by
[55]. This dataset consists of 151 aerial images of the Boston
area. The ground resolution is 1 m. Each of the images has
1500 × 1500 pixels. The aerial images in this dataset are split
into a training set of 137 images, a test set of 10 images, and a
validation set of 4 images [55]. Compared with the WHU dataset,
the Massachusetts dataset has lower ground resolution and label
accuracy [31]. Therefore, using this dataset is appropriate to
evaluate the model’s ability of segmentation for different sources
of images [37].

B. Implementation Setting

Because of the hardware limitation, we did not use the raw
images to train our model. The training set and the validation
set were cropped into 256 × 256 pixels in the data prepro-
cessing procedure. Several data augmentation operations were
introduced to improve the model robustness, including random
flipping, random rotation, and color enhancement. We rescaled
all pixel values of each tile to between 0 and 1. We used Adam
optimizer [56] with an initial learning rate of 0.0001. The learn-
ing rate was updated based on a polynomial decay strategy with a
rate of 0.9 per epoch. Four image tiles consisted of a mini-batch.
An L2 regularization was applied in all the convolutions to avoid
over-fitting. The weight decays were set respectively to 0.00001
and 0.0001 for the WHU dataset and the Massachusetts dataset.
We trained 100 epochs for the WHU dataset and 600 epochs for
the Massachusetts dataset. In our experiment, we used binary
cross-entropy loss as the loss function in our experiments. The
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Fig. 5. HDC and the architecture of multipath HDC. (a) Example of HDC. (b) Architecture of multipath HDC.

Fig. 6. Illustration of DUC.

experiment was implemented using Keras with a TensorFlow
backend.

C. Selected Models for Comparison

We compared the proposed MHA-Net model against three
classic semantic segmentation networks, including SegNet, U-
Net, and Deeplab v3+. SegNet was proposed by [25] for the
semantic segmentation of road scenes. The novelty of SegNet is
that the decoder uses the pooling indices to perform nonlinear
upsampling. SegNet achieves good segmentation performance
and has the advantage of memory efficiency. U-Net [24] was
initially developed for biomedical image segmentation. Its ar-
chitecture consists of a contracting path (encoder) to capture
semantic information and a symmetric expanding path (decoder)
to obtain precise localization information. Deeplab v3+ [30] has
been regarded as one of the best semantic segmentation models.
It achieves the state-of-art results on the PASCAL VOC 2012
dataset and the Cityscapes dataset. The innovation of Deeplab
v3+ is that it uses the ASPP module to aggregate multiscale
contexts captured by an efficient xception-41 encoder.

TABLE I
QUANTITATIVE COMPARISON OF PRECISION, RECALL, F1-SCORE, AND IOU ON

THE TEST SET OF THE WHU AERIAL BUILDING DATASET

The best value under each metrics is marked in bold.

Besides the networks mentioned above, we also introduce
other networks that are specially designed for building foot-
prints extraction, including JointNet, SRI-Net, DE-Net, EU-Net,
and MAP-Net. JointNet [36] combines the dense connectivity
pattern with atrous convolution layers and can extract large ob-
jects efficiently. JointNet had been tested on the Massachusetts
dataset and achieved good performance. SRI-Net [35] captures
and aggregates multilevel features via spatial residual incep-
tion modules and has achieved good performance on WHU
aerial building dataset. DE-Net [38] combines the inception-
style downsampling modules, SELU activation function, and a
densely upsampling module to encode the spatial information
contained in the feature maps. EU-Net [37] uses the DSPP
module to extract dense and multiscale features and a focal
loss function to make the training stage more stable. MAP-Net
[40] has an HRNet-like architecture with a multiparallel path
to capture spatial multiscale features. We do not reproduce
the results of these building extraction networks since most
of their source codes are not available. The reported networks’
accuracies are shown in Table I, II, and III. The computational
complexities of these networks are shown in Table V.
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TABLE II
QUANTITATIVE COMPARISON OF PRECISION, RECALL, F1-SCORE, AND IOU ON

THE MASSACHUSETTS BUILDING DATASET TEST SET

The best value under each metrics is marked in bold.

TABLE III
ABLATION STUDY RESULTS OF THE PROPOSED NETWORK ON THE TEST SET OF

THE WHU AERIAL BUILDING DATASET

The best value under each metrics is marked in bold.

TABLE IV
QUANTITATIVE COMPARISON OF PRECISION, RECALL, F1-SCORE, AND IOU ON

THE TEST SET OF THE WHU AERIAL BUILDING DATASET USING

DIFFERENT DILATION RATES

The best value under each metrics is marked in bold.

D. Experimental Results Using the WHU Aerial
Building Dataset

In the training stage, we cropped the raw images due to the
limited GPU memory, making the raw images of the test set have
a larger size than images for training. To apply the well-trained
model to the test set, as suggested by [35], we predict the raw
images with a certain stride. The larger predicted images are ob-
tained by seamlessly stitching many 256× 256 tiles with overlap
areas. We set the predicting stride as 128 in our experiment.
The quantitative comparison of different models on the test set
of the WHU aerial building dataset is demonstrated in Table Ⅰ.
MHA-Net outperforms other models on precision, F1-score, and
IoU on this dataset. Compared with other building extraction
models, our model achieves the F1-score improvements by
1.2%, 0.63%, 0.39%, and 0.22%, and the IoU improvements

TABLE V
COMPLEXITY COMPARISON IN TERMS OF FLOPS, TRAINABLE PARAMETERS,

AND IOU SCORE ON THE WHU TEST DATA SET

The best value under each metrics is marked in bold.

by 2.17%, 1.14%, 0.6%, and 0.4%. The recall of MHA-Net is
only 0.01% less than that of EU-Net.

The representative examples of building extraction results
are shown in Fig. 7. The first two columns are original RGB
aerial images and the corresponding ground truth images. The
other four columns are the prediction results of SegNet, U-Net,
Deeplab v3+, and MHA-Net. Visual inspection reveals that all
these models can accurately extract middle-size buildings such
as dwellings. Owing to the DUC operation, MHA-Net performs
better in recognizing small buildings than the other models. As
shown in rows 4 and 6, MHA-Net also outperforms the other
three models in the detection of building edges and is more
robust to complicated building roofs.

E. Experimental Results Using the Massachusetts
Building Dataset

To better illustrate the results of building extraction, we
cropped the test set images of this dataset into 512×512 pixels to
evaluate the selected models. As in the previous experiment, we
set the predicting stride to 128. Table II shows the results of the
model comparison. The highest values are highlighted in bold.
The results show that building extraction models outperform
the classical deep learning models on this dataset. EU-Net has
the highest recall of 0.8340, while MHA-Net achieves the best
precision, F1-score, and IoU. Our model outperforms other
building extraction models by 1.68% and 0.35% for F1-score
and by 2.47% and 0.53% for IoU.

Fig. 8 shows the representative examples of building extrac-
tion results on the test set of the Massachusetts Building Dataset.
From the visual comparison, we can observe that MHA-Net
can accurately detect the buildings’ internal structure. It also
outperforms other models in recognition of small or long and
thin buildings. Overall, the proposed MHA-Net has a better
performance in extracting the detailed information of urban
buildings.
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Fig. 7. Visualization of building extraction results on the test set of the WHU aerial building dataset. The first two columns are original images and corresponding
ground truth labels. Columns from 3 to 6 are segmentation results of SegNet, U-Net, Deeplab v3+, and MHA-Net, respectively.

F. Ablation Study

We conducted ablation experiments on the WHU aerial build-
ing dataset to better understand the influence that each compo-
nent has in the proposed MHA-Net. The channel attention mod-
ules, the multipath HDC framework, and dilated convolutions
are removed or replaced in the MHA-Net to show these compo-
nents’ influences on the network. More specific procedures of
the experiments are explained below.

First, we test a single HDC network in which the channel
attention modules are completely removed from all SCBAMs.
Only a single path with two HDC groups remains, and the
dilation rates are set as 1, 2, 5, and 9. Second, we evaluate
the effectiveness of the channel modules by adding them to
the single HDC network. Next, we evaluate the multipath HDC
structure of MHA-Net by only removing the channel attention
modules from the SCBAMs. Finally, an alternative multipath
HDC structure, denoted as multipath HDC v2, is explored. Here

the multipath HDC v2 structure is created by cutting the deepest
path of the original multipath HDC and replacing it with a
three-layer HDC using the dilation rates of 1, 2, and 5.

Table III shows the ablation experiments results of precision,
recall, F1-score, and IoU. Surprisingly, the single HDC model,
the network with the most straightforward architecture, has the
highest recall value in our self-comparison study. This result
highlights the merit of the HDC framework with a large receptive
field to easily detect tiny buildings and the change inside large
buildings. Either adding channel attention modules or multipath
structure will reduce the model’s recall, but they can significantly
improve the model’s precision and make the model achieve
higher values of F1-score and IoU. Channel attention modules
highlight the most meaningful channels of feature maps and re-
strain invalid information. Compared with the single-path HDC
structure, the multipath HDC structure can extract multiscale
contexts and aggregate them by a channel attention module. This
feature is useful when extracting buildings of various sizes and
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Fig. 8 Visualization of building extraction results on the test set of the Massachusetts building dataset. The first two columns are original images and corresponding
ground truth labels. Columns from 3 to 6 are segmentation results of SegNet, U-Net, Deeplab v3+, and MHA-Net, respectively.

styles. These two experiments demonstrate that the network can
increase precision by learning more comprehensive information,
but at the cost of decreased recall value. As the integrity of shapes
is essential for extracted buildings, attaining higher precision
values is more reasonable for a building extraction model. The
multipath HDC v2 model achieves higher values of F1-score and
IoU than the first four models, but it has no advantage over the
proposed MHA-Net. Therefore, a deeper network is essential
for capturing comprehensive contexts.

G. Experimental Results Using Different Dilation Rates

In our MHA-Net, we set the dilation rates of the multipath
HDC as 1, 2, 5, and 9. We also explore the performances of
multipath HDC networks using different dilation rates. We tested
five groups of dilation rates. Table IV shows their quantitative
results. The multipath HDC network with dilation rates of 1,
1, 1, and 1 has the lowest recall, F1-score, and IoU values
among all models, since its receptive field is much smaller than

others. Our MHA-Net with dilation rates of 1, 2, 5, and 9 has
the largest receptive field and obviously outperforms the other
four compared models. The network with dilation rates of 1, 2,
4, and 8 has the second-largest receptive field and achieves the
best recall value. However, it has lower precision, F1-Score, and
IoU performance than the network with dilation rates of 1, 2, 3,
and 5 due to the “gridding problem.” Overall, these experiments
reveal that properly enlarging the receptive field of multipath
HDC structure can improve its performance as long as it avoids
the “gridding problem.”

H. Complexity of MHA-Net

We further compared the computational cost of different
models in terms of floating point of operations (FLOPs) and the
number of trainable parameters. These two metrics have been
frequently used to measure models’ computational complexity
in the deep learning area [40], [46], [57]. Higher FLOPs and
more trainable parameters correspond to greater complexity
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of a model. As shown in Table V, U-Net and Deeplab v3+
have the highest FLOPs and the highest number of parameters,
respectively, while their performance is relatively poor. For
EU-Net, its FLOPs and the number of trainable parameters
are quoted from [37]. However, the results of EU-Net only
regard the encoder of EU-Net. The actual computational cost
of EU-Net should be higher than the results reported by [37].
The proposed single HDC network has the lowest complexity.
The single HDC network with channel attention modules has the
second-lowest FLOPs and the second-less trainable parameters
among all models. However, it achieves a high accuracy of build-
ing extraction, suggesting that it is an effective and lightweight
model. The proposed MHA-Net has relatively high FLOPs,
while the number of required training parameters is moderate
compared with other models.

IV. CONCLUSION

In this article, we proposed an effective fully convolutional
network MHA-Net for building extraction tasks using high-
resolution remote sensing images. MHA-Net consists of three
components: the encoding network, multipath HDC, and DUC.
The encoding network encodes the high-level semantic contexts
of images. The multipath HDC aggregates multiscale features
by combining rich semantic representations extracted by HDCs.
The DUC operation is used for upsampling feature maps and
recovering spatial details. We designed SCBAM and ADM as the
network’s basic modules. Separable convolutions replace stan-
dard convolutions to improve the efficiency and effectiveness
of feature learning. Each module contains a channel attention
module that can highlight the meaningful channels of feature
maps.

Our network is evaluated on the WHU aerial building dataset
and the Massachusetts building dataset. The experimental results
show that MHA-Net outperforms other classical semantic seg-
mentation models and building extraction models we tested. The
visual extraction results demonstrate that MHA-Net can improve
the extraction accuracy of small buildings and is robust to
complicated building roofs. The self-comparison results further
proved the effectiveness of the proposed architecture.

MHA-Net is specially designed for building extraction on
high-resolution remote sensing images. In future works, we will
explore its performance on other remote sensing segmentation
tasks, such as road detection, land cover classification, classifi-
cation for multiband images.
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