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Hyperspectral Sparse Unmixing With
Spectral-Spatial Low-Rank Constraint
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Abstract—Spectral unmixing is a consequential preprocessing
task in hyperspectral image interpretation. With the help of large
spectral libraries, unmixing is equivalent to finding the optimal
subset of the library entries that can best model the image. Sparse
regression techniques have been widely used to solve this optimiza-
tion problem, since the number of materials present in a scene
is usually small. However, the high mutual coherence of library
signatures negatively affects the sparse unmixing performance. To
cope with this challenge, a new algorithm called spectral-spatial
low-rank sparse unmixing (SSLRSU) is established. In this article,
the double weighting factors under the �1 framework aim to im-
prove the row sparsity of the abundance matrix and the sparsity
of each abundance map. Meanwhile, the low-rank regularization
term exploits the low-dimensional structure of the image, which
makes for accurate endmember identification from the spectral
library. The underlying optimization problem can be solved by
the alternating direction method of multipliers efficiently. The
experimental results, conducted by using both synthetic and real
hyperspectral data, uncover that the proposed SSLRSU strategy
can get accurate unmixing results over those given by other ad-
vanced sparse unmixing strategies.

Index Terms—Hyperspectral imaging, low-rank constraint,
sparse unmixing, weighted sparse regression.

I. INTRODUCTION

HYPERSPECTRAL imaging collects hundreds of images,
using different wavelength channels, for the same area

on the surface of the Earth [1]. Therefore, it is possible to
realize quantitative and refined Earth observation research [2].
At present, hyperspectral remote sensing technologies have been
widely used in mineral exploration, environmental monitoring,
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military applications, etc [3]. However, limited by the spa-
tial resolution of imaging spectrometers and the complexity
of ground features, there are a large number of mixed pixels
in hyperspectral images [4], which greatly hinders the further
exploration of the hyperspectral image information. Spectral
unmixing is an effective way for the mixing problem, which
estimates the pure spectral endmembers and their corresponding
fractional abundances in each mixed pixel [5].

For the past years, linear mixture model-based approaches
have been widely studied in the field of hyperspectral unmixing,
such as minimum volume algorithms [6]–[8] and nonnegative
matrix factorization (NMF)-based algorithms [9]–[11] achieve
remarkable performance, among which sparse unmixing [12]
relying on spectral libraries becomes one of the most active
research topics. The purpose of sparse unmixing is to find the
optimal subset of entries in a large spectral library which can
best model the mixed pixels in the hyperspectral image. In
the beginning, some sparse unmixing methods focused on the
exploration of the sparse characteristic from the spectral view-
point. For instance, the sparse unmixing algorithm via variable
splitting and augmented Lagrangian (SUnSAL) [12] adopts the
�1 regularizer to measure the sparsity on the abundance matrix.
The �p (for 0 ≤ p < 1) regularizer [13] and other nonconvex
approximations [14] are used to further impose sparsity. The
collaborative SUnSAL (CLSUnSAL) [15] algorithm introduces
the �2,1 regularizer to impose the global row sparsity of the
matrix. Furthermore, the double reweighted sparse unmixing
(DRSU) [16] algorithm introduces the double weighting factors
to penalize nonzero coefficients in the solution, and obtains
promising results.

Recently, in order to promote the spatial correlation of images,
a new trend is to incorporate spatial information into the sparse
unmixing models [17], [18]. For example, the well-known total
variation (TV) spatial regularization [19], [20] is used to promote
the smoothness of abundance maps. The superpixel segmenta-
tion technology [21]–[23] is employed to design adaptive neigh-
borhoods with more accurate spatial-contextual information.
The nonlocal similarity [24] is adopted to preserve the nonlocal
spatial structure on abundance maps. Furthermore, the spectral
and spatial weighting factors [25] are introduced into the �1
unmixing framework to consolidate the spatial connection.

The high spatial correlation of the image implies the low
rankness of the abundance matrix [26]. Accordingly, when
the low-rank constraint is imposed on the abundance matrix,
the low-dimensional subspace structure of the image will be
well preserved [27]. More recently, the sparsity and low-rank
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constraints [28] were simultaneously imposed on the abundance
matrix to reduce the solution space. In [29], a subspace unmixing
with low-rank attribute embedding method was proposed to
alleviate the influence of spectral variability on the unmixing
results. In [30], the abundance matrix is converted to 3D, and the
low-rank properties are exploited by using local blocks. In [31],
the joint-sparse-blocks and low-rank unmixing (JSpBLRU) al-
gorithm was developed to enhance the sparsity along the rows
within each block, and the desired results were obtained.

The aforementioned spectral unmixing approaches with the
dual constraints have achieved remarkable performance. It is
well known that pixels with the same or similar components and
proportions are highly correlated, thus the abundance vectors
corresponding to the ones are dependent. Reduced-rank abun-
dance matrix uncovers the spatial low-dimensional structure
and enhances the spatial correlation of the image. The joint
constraint of low-rank and sparsity aims to obtain a low-rank
approximation of the sparse solution. The unmixing technique
with the aforementioned constraints makes for weakening the
interference of other similar spectral signatures in the library,
and finding the actual spectral signatures in the scene from
the library more accurately. However, the above methods still
have some shortcomings in endmember identification. It is a
challenging problem to deal with the high mutual coherence of
spectral libraries.

In order to better handle the high mutual coherence between
spectral signatures in the library as well as consider the low-rank
spatial structure of the abundance, a new spectral-spatial low-
rank sparse unmixing (SSLRSU) is proposed. In this article, the
double weighting factors under the �1 framework are used to
improve the sparsity of the abundance matrix. Meanwhile, the
low-rank constraint exploits the low-dimensional structure of
the image and accurately identify endmember signatures from
the spectral library. In terms of its computational complexity,
the proposed SSLRSU can be efficiency solved by the notable
alternating direction method of multipliers (ADMM) [32].

The main contributions of our work can be summarized as
follows.

1) For our new SSLRSU algorithm, the double weighting
factors are utilized to upgrade the sparsity of the arrange-
ment, while the low-rank constraint is used to preserve
the spatial low-dimensional structure of abundance maps
and improve the ability to identify endmembers from the
spectral library. The spectral-spatial low-rank constraint
effectively alleviates the negative impact of the high mu-
tual coherence of the spectral library on the unmixing
results.

2) In terms of iterative optimization, the proposed SSLRSU
model is iteratively solved by an inner and outer loop
scheme, where the inner loop updates the Lagrange mul-
tipliers by ADMM, and the outer loop updates the double
weights. It can speed up the convergence of the algorithm.

The rest of this article is organized as follows. The proposed
SSLRSU unmixing technique (and its solution algorithm) are
described in detail in Section II. Sections III and IV portray
the experimental results with simulated and real hyperspectral
datasets. Finally, Section V concludes this article.

II. PROPOSED SPECTRAL-SPATIAL LOW-RANK SPARSE

UNMIXING ALGORITHM

A. Sparse Unmixing

Sparse unmixing solves the linear spectral mixture problem
in dictionary-based semisupervised fashion. It assumes that the
observed hyperspectral image can be expressed as a linear
combination of certain spectral signatures known in advance.
Therefore, the spectral library is introduced to approach the un-
mixing problem instead of extracting or generating endmembers
from the original hyperspectral image. Unmixing is equivalent to
finding the optimal subset of spectral signatures in the library that
can best model images. LetY ∈ Rd×n be a hyperspectral image,
where d and n is the numbers of bands and pixels, respectively.
The sparse unmixing model can be written as follows:

Y = AX+N (1)

where A ∈ Rd×m denotes the spectral library containing m
spectral signatures, X ∈ Rm×n denotes the abundance matrix
with regard to the library A, and N ∈ Rd×n denotes the noise
or model error.

The abundance matrix indicates the proportion of each end-
member in the spectral library participating in mixed pixels.
Since each mixed pixel consists of only a few endmembers
compared with the large spectral library, the abundance matrix
usually contains a lot of zero values, that is, X is sparse.
According to this analysis, sparse unmixing can be reformulated
as an �2-�0-norm optimization problem as follows:

min
X

1

2
||Y −AX||2F + λ||X||0 s.t. X ≥ 0 (2)

where ‖ · ‖F is the Frobenius norm, λ ≥ 0 is a regularization
parameter that tradeoff the sparsity regularization term and the
data fitting term, ||X||0 denotes the number of nonzero values of
X, andX ≥ 0 is a physical constraint called abundance nonneg-
ativity constraint (ANC). Notice that another physical constraint
called abundance sum-to-one constraint (ASC) is not imposed
on the X due to the drawbacks mentioned in [12]. The �0-norm
in (2) leads to an NP-hard problem, which can be relaxed to
�1-norm under the condition of restricted isometric property
(RIP) [33], [34]. The optimization problem (2) is replaced as
follows:

min
X

1

2
||Y −AX||2F + λ||X||1,1 s.t. X ≥ 0 (3)

where ||X||1,1 =
∑n

j=1 ||xj ||1, xj is the jth column vector of
X.

The problem (3) has been solved by the SUnSAL algo-
rithm [32]. Nevertheless, the �1-norm minimization problem is
subject to a few inherent shortcomings: 1) It focuses on analyz-
ing the abundance vector of each single pixel without exploiting
spatial structure information for abundance estimation. 2) The
sparsity of real abundance maps is generally beyond the reach of
the �1-norm. 3) As an underdetermined system of equations, its
uniqueness of the sparsest solution is severely limited by the high
mutual coherence of the spectral library. The mutual coherence
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of the spectral library A is given by

μ(A) = max
1≤k , j≤m,k �=j

|aTk aj |
‖ak‖2‖aj‖2 (4)

where ‖ · ‖2 is the �2-norm, ak is the kth column vector of A.
Mutual coherence computes the maximum cosine angle distance
between any different columns in the system matrix, whose
value lies in the range [0, 1]. The coherence characterizes the
dependence between the columns of the matrix. Unfortunately,
the mutual coherence of the spectral library is close to one,
which indicates that the spectral signatures in the library are
very similar [35]. The highly correlated spectral signatures have
a negative impact on the uniqueness of the solution, and multiple
solutions for abundance estimation imply the uncertainty of end-
members identification [36]. Specifically, the single endmember
may be interpreted as multiple similar spectral signatures or
incorrect spectral signature [37], [38]. The high sparsity of
the abundance vector balances this undesired aspect, and the
reduction of nonzero rows in the abundance matrix facilitates
the search for the optimal subset of signatures in the library [39].

B. Proposed SSLRSU Model

The sparsity constraint plays an important role in improving
the performance of sparse unmixing. A sufficiently sparse so-
lution means a precise abundance estimation. It has been found
that the reweighted �1-norm can effectively and flexibly enhance
the sparsity of the solution [16], [20], [25], [40]. Moreover,
low-rankness is another intrinsic structural feature of the abun-
dance matrix [28], which motivates the integration of low-rank
constraint into the sparse unmixing model. Inspired by the above
ideas, the SSLRSU model is proposed, as follows:

min
X

1

2
||Y −AX||2F + λ||(H1H2)�X||1,1

+ τ rank(X) s.t. X ≥ 0.

(5)

The double weighting factors are incorporated into the �1-
norm, which offsets the imperfect measurement of the sparsity of
fractional abundances in the original method to a certain extent.
The weighting factor H1 aims to enhance the row sparsity of the
abundance matrix. It can be construed as selecting fewer spectral
signatures (endmembers) from the spectral library to model the
image. H1 ∈ Rm×m is an iterative diagonal matrix, defined as

H
(t+1)
1 = diag

[
1

||X(t)(1, :)||2 + ε
, . . . ,

1

||X(t)(i, :)||2 + ε

]
(6)

whereX(t)(i, :) is the ith row ofX at the tth iteration and ε > 0 is
a small constant added to avoid singularities. Each entry inH1 is
inversely proportional with the �2-norm value of the correspond-
ing row vector in the abundance matrix. Guided by the weights,
the nonzero rows of estimated abundances will be concentrated
to the rows with larger values in each iteration. The weighting
factor H1 enforces the row sparsity of the abundance matrix in
a natural way. That is to say, there will be fewer endmembers
taking part in the expression of the image, thereby removing
part of the highly correlated spectral signatures limitations. The
other weighting factorH2 ∈ Rm×n is introduced to improve the

sparsity of the solution, defined as

H
(t+1)
2 (i, j) =

1

X(t)(i, j) + ε
(7)

where H(t+1)
2 (i, j) denotes the ith row and jth column element

in H2 at the (t+ 1)th iteration and X(t)(i, j) denotes the ith
row and jth column element in X at the tth iteration. The
weighting factor H2 encourages the larger fractional abundance
by smaller weight values iteratively and vice versa. It more
efficiently reduces the nonzero elements contained in fractional
abundances. The operator � denotes the Hadamard product of
two variables. The sparsity-inducing regularizer in the form
of double weighted �1-norm can not only obtain more sparse
solutions but also model the image with fewer endmembers.

The low-rank regularization term captures the spatial structure
of hyperspectral data by seeking the lowest rank representation
of the abundance matrix. More precisely, abundance vectors
can be considered to be linearly dependent due to the spatial
correlation of pixels in a scene. Therefore, besides the traditional
sparse constraints, the low-rank regularizer is also employed to
reduce the solution space in abundance estimation. It is well
known that matrix rank minimization is an NP-hard problem.
Nuclear norm minimization, as a relaxation to the low-rank
regularizer, is a common alternative to directly calculating the
rank of the matrix [41], [42]. The rank of X is replaced by its
nuclear norm, the problem (5) is represented as follows:

min
X

1

2
||Y −AX||2F + λ||(H1H2)�X||1,1

+ τ ||X||∗ s.t. X ≥ 0 (8)

where ||X||∗ =
∑r

i=1 σi(X), σi(X) denotes the ith singular
value of X and r = rank(X).

Nuclear norm can be easily solved by existing convex opti-
mization tools. But they treat all singular values equally, which
will lead to a bias to the matrix with small singular values.
The weighted nuclear norm minimization (WNNM) mitigates
the punishment bias between larger singular values and small
singular values by assigning smaller weights to larger values and
larger weights to smaller values [43]. The iteratively weighted
nuclear norm of X is defined as

||X||(t+1)
b,∗ =

r∑
i=1

b
(t)
i σ

(t)
i (X) (9)

where b(t)i = 1

σ
(t)
i (X)+ε

, ε > 0 is a small constant added to avoid

singularities. It is known that larger singular values generally
retain the main information of the matrix. The WNNM mit-
igates the punishment on larger singular values of X, so the
corresponding shrinkage is small and most of information is
well preserved. Meanwhile, the WNNM takes serious shrinkage
on smaller singular values, thereby generating a lot of zero
singular values, leaving only several largest singular values of
X. The low-dimensional approximation of X is obtained after
a series of weighted singular value shrinkages. Rank measures
the second-order sparsity of a matrix, since it is closely related
to the correlation among columns and rows of the matrix [44].
On the one hand, the low-rank abundance matrix captures the
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correlation of pixels, which encourages mixed pixels to share
the same endmembers and similar abundance maps. On the other
hand, it promotes the reduction of linearly independent vectors in
the abundance matrix while ensuring that the main information
of fractional abundances can be preserved. In the case that
the double weighting factors promote the row sparsity of the
abundance matrix, the reduced-rank matrix helps to determine
the endmembers accurately, and removes part of mismatches
caused by the highly similar spectral signatures.

Finally, the SSLRSU model is represented as

min
X

1

2
||Y −AX||2F + λ||(H1H2)�X||1,1 + τ ||X||b,∗

s.t. X ≥ 0. (10)

The proposed SSLRSU model simultaneously explores the
spectral dual sparsity as well as the spatial low-dimensional
structural information of fractional abundances. By reducing
the number of spectral signatures participating in expressing
hyperspectral data and searching for exact match between the
actual spectral signatures in the image and the samples in the
spectral library, the proposed model can cope with the negative
influence of the high coherence of the spectral library on the
unmixing results.

C. Solution of the Optimization Problem

In this section, we use the alternating direction method of
multipliers (ADMM) to solve the SSLRSU model in (10). Uti-
lizing five auxiliary matrix variables U, V1, V2, V3, V4, we
reformulate the original problem (10) into an equivalent form as

min
U,V1,V2,V3,V4

1

2
||Y −V1||2F + λ ||(H1H2)�V2||1,1

+ τ ||V3||b,∗ + ιR+(V4)

s.t. V1 = AU,V2 = U,V3 = U,V4 = U (11)

where U = X, and ιR+(X) =
∑n

i=1 ιR+(xi) is the indicator
function, i.e., ιR+(xi) is zero if xi belongs to the nonnegative
orthant and +∞ otherwise.

To make notations more concise, we rewrite (11) in a compact
form

min
U,V

g(U,V) s.t. GU+BV = 0 (12)

where g(U,V) = 1
2 ||Y −V1||2F + λ ||(H1H2)�V2||1,1 +

τ ||V3||b,∗ + ιR+(V4),G = (A, I, I, I)T,B = diag(−I),V =
(V1,V2,V3,V4)

T. By introducing the scaled Lagrange multi-
pliers D = (D1,D2,D3,D4)

T, the augmented Lagrangian for
(12) is written as

L(U,V,D) = g(U,V) +
μ

2
||GU+BV −D||2F (13)

where μ > 0 is a penalty parameter. Now, we implement the
ADMM to solve the optimization problem (12), by minimizing
L(U,V,D) with respect to U and V sequentially and updating

D. Thus, we get:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(k+1) = argmin
U
L(U,V(k),D(k))

V(k+1) = argmin
V
L(U(k+1),V,D(k))

D(k+1) = D(k) − (GU(k+1) +BV(k+1)).

(14)

The subproblems of U and V in (14) have closed form solu-
tions. The U-subproblem is a least-squares problem as follows:

U(k+1) = argmin
U

μ

2
||AU−V

(k)
1 −D

(k)
1 ||2F+

+
μ

2
||U−V

(k)
2 −D

(k)
2 ||2F

+
μ

2
||U−V

(k)
3 −D

(k)
3 ||2F

+
μ

2
||U−V

(k)
4 −D

(k)
4 ||2F .

(15)

The solution of (15) is

U(k+1) = (ATA+ 3I)−1(AT(V
(k)
1 +D

(k)
1 )

+V
(k)
2 +D

(k)
2 +V

(k)
3 +D

(k)
3 +V

(k)
4 +D

(k)
4 ).

(16)

The V-subproblem of (14) is decomposed into four indepen-
dent subparts related toV1,V2,V3,V4. The optimized solution
for V1 is calculated as follows:

V
(k+1)
1 = argmin

V1

1

2
||Y −V1||2F

+
μ

2
||AU(k+1) −V1 −D

(k)
1 ||2F

=
1

1 + μ
[Y + μ(AU(k+1) −D

(k)
1 )]. (17)

In the same vein, we get the least-squares problem regarding
V2 as follows:

V
(k+1)
2 = argmin

V2

λ||(H1H2)�V2||1,1

+
μ

2
||U(k+1) −V2 −D

(k)
2 ||2F . (18)

Since problem (18) is componentwise separable, the solution of
V2 is

V
(k+1)
2 = soft(U(k+1) −D

(k)
2 ,

λ

μ
H1H2) (19)

where soft(·, ·) is a soft-threshold function defined by
soft(y, τ) = sign(y)max{|y| − τ, 0}.

The subproblem regarding V3 can be solved by a shrinkage
operation as follows:

V
(k+1)
3 = argmin

V3

τ ||V3||b,∗ + μ

2
||U(k+1) −V3 −D

(k)
3 ||2F

= SVTb, τμ
(U(k+1) −D

(k)
3 ) (20)

where SVTb,β(X)=UDiag(max(σ1−βb1, 0)), . . . ,
(max(σr − βbr, 0))V

T denotes the weighted singular value
threshold function of X, b = [b1, b2, . . . , br] is the nonnegative
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Fig. 1. Residual ||GU(t) +BV(t)||F as a function of outer loop iteration
times for the proposed algorithm.

weighting vector, and the singular value decomposition of X is
defined by X = UDiag(σ1, . . . , σr)V

T.
The solution of V4 is calculated as follows:

V
(k+1)
4 = argmin

V4

ιR+(V4) +
μ

2
||U(k+1) −V4 −D

(k)
4 ||2F

= max(U(k+1) −D
(k)
4 , 0).

(21)
Finally, the Lagrange multipliers are updated as follows:⎧⎨
⎩
D

(k+1)
1 = D

(k)
1 − (AU(k+1) −V

(k+1)
1 )

D
(k+1)
i = D

(k)
i − (U(k+1) −V

(k+1)
i ), i = 2, 3, 4.

(22)

Summarizing the aforementioned description, we arrive at the
complete scheme to solve the SSLRSU model, as presented in
Algorithm 1. The proposed SSLRSU algorithm is comprised
of inner and outer loop. The outer loop updates the weighting
coefficients, and the number of iterations is set to 100. The
inner loop updates the Lagrange multipliers in ADMM, and the
maximum number of iterations is set to 5. It is difficult to justify
the convergence of Algorithm 1. Nevertheless, it is observed
that the residual of the original problem generally decreases as
the iteration times increase. As shown in Fig. 1, the residual
||GU(t) +BV(t)||F , as a function of outer loop iteration times
for the proposed algorithm, reaches a certain level after only
20 iterations and then levels off. Based on experience, an inner
loop with 5 iterations is sufficient to achieve acceptable results
in most cases. It can be concluded that the scheme with inner and
outer loop not only guarantees the convergence of the algorithm
but also accelerates it. When the maximum number of iterations
is reached or the residual meets the error tolerance, the proposed
algorithm will stop.

III. EXPERIMENTS WITH SYNTHETIC DATA

In this section, we demonstrate the unmixing performance
of the proposed method using two synthetic hyperspectral

Algorithm 1: Pseudocode of the SSLRSU Algorithm.
1: Initialization:
2: k, t = 0, choose μ, λ, τ, ε > 0,
U(0) = (ATA+ 3I)−1ATY [45],
V

(0)
1 = AU(0),V

(0)
2 = U(0),V

(0)
3 = U(0),V

(0)
4 =

U(0), D(0)
1 = D

(0)
2 = D

(0)
3 = D

(0)
4 = zero(size(U))

3: Repeat:
4: H(t+1)

1 ←
diag

[
1

||(U(t)−D(t)
2 )(1,:)||2+ε

, . . . , 1

||(U(t)−D(t)
2 )(m,:)||2+ε

]
5: H(t+1)

2,ij = 1

U
(t)
ij −D(t)

2,ij+ε

6: Repeat:
7: U(k+1) ← (ATA+ 3I)−1(AT(V

(k)
1 +D

(k)
1 ) +

V
(k)
2 +D

(k)
2 +V

(k)
3 +D

(k)
3 +V

(k)
4 +D

(k)
4 )

8: V(k+1)
1 ← 1

1+μ [Y + μ(AU(k+1) −D
(k)
1 )]

9: V(k+1)
2 ← soft(U(k+1) −D

(k)
2 , λ

μH
(t)
1 H

(t)
2 )

10: V(k+1)
3 ← SVTb, τμ

(U(k+1) −D
(k)
3 )

11: V(k+1)
4 ← max(U(k+1) −D

(k)
4 , 0)

12: Update Lagrange multipliers:
13: D(k+1)

1 ← D
(k)
1 −AU(k+1) +V

(k+1)
1

14: D(k+1)
2 ← D

(k)
2 −U(k+1) +V

(k+1)
2

15: D(k+1)
3 ← D

(k)
3 −U(k+1) +V

(k+1)
3

16: D(k+1)
4 ← D

(k)
4 −U(k+1) +V

(k+1)
4

17: Update iteration: k ← k + 1
18: U(t+1) ← U(k)

19: D(t+1)
2 ← D

(k)
2

20: Update iteration: t← t+ 1
21: Until some stopping criterion is satisfied.

datasets with different characteristics. We compare the proposed
SSLRSU algorithm with five advanced sparse unmixing algo-
rithms, including SUnSAL [12], SUnSAL-TV [19], DRSU [16],
ADSpLRU [28], and JSpBLRU [31]. The latter three algorithms
adopt weighted sparse regression or low-rank constraints.

The signal-to-reconstruction error (SRE, measured in dB) is
used to quantitatively evaluate the unmixing accuracy, which is
defined as

SRE(dB) = 10 · log10(E(||x||22)/E(||x− x̂||22)) (23)

where x̂ denotes the estimated abundance, x denotes the true
abundance, E(·) denotes the expectation function.

The probability of success ps mentioned in [12] gives an indi-
cation about the stability of the estimation. The ps is defined as
follows: ps ≡ P (‖x̂− x‖2/‖x‖2 ≤ threshold). The abundance
estimation is considered to be successful when the relative error
power of the estimation result is less than a certain threshold, and
threshold = 3.16 (5 dB) is demonstrated to be appropriate [12].
The higher SRE(dB) or ps value means the better performance
of the algorithm. A new indicator called sparsity is introduced
to measure the proportion of nonzero elements in the estimated
abundance [25]. The lower the sparsity is, the more sparse the
abundance solution is. It should be noted that it is necessary to set



6124 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. True fractional abundances of the endmembers in the DC1.

Fig. 3. True fractional abundances of the endmembers in the DC2. (a) Muscovite GDS108 (endmember1). (b) Kaolinite KGa-1. (c) Dumortierite HS190.3B. (d)
Nontronite GDS41. (e) Alunite GDS83 Na63. (f) Pyrophyllite PYS1A fine g. (g) Halloysite NMNH106236. (h) Kaolinite CM9. (i) Sphene HS189.3B.

the values in x̂ less than 0.005 to zero via the hard thresholding
operation in advance. In all experiments, we tune parameters
beforehand for each algorithm and set the maximum number of
iterations to 500 to ensure fair competition.

A. Simulated Datasets

Two spectral libraries are used in our experiments as minerals
dictionaries, which are the subsets of the United States Geologi-
cal Survey (USGS) library.1 The spectral libraryA1 ∈ R224×240

is comprised of 240 spectral signatures with 224 bands dis-
tributed uniformly in the wavelength range of 0.4-2.5 μm. An-
other spectral libraryA2 ∈ R221×222 contains 222 different ma-
terials with 221 bands distributed uniformly in the wavelength
range of 0.4–2.5 μm. Two simulated data cubes are, respec-
tively, formed by nine endmembers from A1 and A2 following
the linear mixture model. Subsequently, they are contaminated

1[Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06

by white Gaussian i.i.d. noise with three levels of signal-to-
noise ratio (SNR): 30, 40, 50 dB. The ANC and ASC are
enforced on fractional abundances. The details are explained as
follows.

1) Simulated Data Cube 1 (DC1): DC1 contains 100× 100
pixels with 224 bands per pixel. It is generated by nine
spectral signatures randomly chosen from the spectral
library A1. The fractional abundances with the charac-
teristic of piecewise smooth, also used in [19], reveal
the spatial features well for illustrating the relative merits
of different algorithms. The true abundance maps of the
endmembers are shown in Fig. 2.

2) Simulated Data Cube 2 (DC2): DC2 is made up of
100× 100 pixels with 221 bands. Nine specific endmem-
bers are chosen fromA2, as depicted in [46] and [47]. The
fractional abundances are created by fractals that imitate
the spatial distribution of typical landform in the natural
world. The fractional abundance maps associated to each
endmember are shown in Fig. 3.

http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 4. SRE(dB) as a function of parameters λ and τ on DC2 at SNR = 30 dB, 40 dB, 50 dB.

TABLE I
SRE(DB), ps AND SPARSITY RESULTS FOR DIFFERENT UNMIXING METHODS ON DC1 (THE OPTIMAL PARAMETER SETTINGS ARE SHOWN IN THE PARENTHESES)

B. Impact of the Regularization Parameters

There are two regularization parameters λ and τ in the pro-
posed method should be concerned, since they are related to
the unmixing performance of the algorithm. To analyze the
sensitivity of parameters, we take the DC2 at SNR = 30 dB,
40 dB, 50 dB as examples to illustrate the influence of the two
parameters in the proposed SSLRSU algorithm. Fig. 4 displays
SRE(dB) as a function of parameters λ and τ . We can see that
surfaces given by the function at different SNR levels are stable
around the optimal parameters. That is to say, it is easy to
obtain the suboptimal parameters settings, which suggests the
robustness of our method. Further analysis shows that the values
of optimal parameters λ and τ tend to increase with the decrease
of SNR. When the noise level is low, the accuracy of the solution
is more influenced by the parameter τ , and when the noise level
is high, the parameter λ plays a more important role.

C. Results and Discussion

Tables I and II display the mean SRE(dB), ps, sparsity results
obtained by each algorithm after 50 runs on DC1 and DC2.
The optimal parameter settings related to the reported values

are listed in the parentheses. From the tables, we observe that
the proposed SSLRSU algorithm achieves the highest SRE(dB)
values in all cases, which indicates that joint weighted sparse
and low-rank constraints can improve the accuracy of abun-
dance estimation. It is notable that the proposed method shows
significant advantage in the case of lower SNR, which verifies
its strong antinoise capability. Moreover, compared with other
algorithms, the proposed SSLRSU algorithm achieves the larger
ps values, which proves the stability of abundance estimation.
We also see that the SSLRSU and ADSpLRU algorithms gen-
erally gain better sparsity than other competitors, which reveals
the improvement of the sparsity of the solution by low-rank
constraints.

For a visual comparison, Figs. 5 and 6 show the ground-truth
abundances and the estimated fractional abundances obtained
by different algorithms on DC1 and DC2 at SNR = 30 dB, and
only 500 randomly selected pixels are displayed for clarity. Each
colored line in figures corresponds to a nonzero vector of the
abundance matrix, which represents the proportion of an end-
member in images. As seen in Figs. 5 and 6, the abundance maps
estimated by the proposed SSLRSU algorithm have the best
visual effect, and the abundance lines in the figures are consistent
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TABLE II
SRE(DB), ps, AND SPARSITY RESULTS FOR DIFFERENT UNMIXING METHODS ON DC2 (OPTIMAL PARAMETER SETTINGS ARE SHOWN IN THE PARENTHESES)

Fig. 5. Ground-truth abundance and the estimated abundances obtained by SUnSAL, SUnSAL-TV, DRSU, ADSpLRU, JSpBLRU and SSLRSU on DC1 when
SNR = 30 dB.

with the real ones. Furthermore, the abundance maps obtained
by SSLRSU have less noise and fewer outliers, which indicates
the advantage of this algorithm in antinoise and endmember
identification. Pay attention to the regions where the fractional
abundances should be zero, we observe that the abundance maps
estimated by the SUnSAL and SUnSAL-TV algorithms contain
a lot of noise and false abundance lines. The abundance maps
obtained by DRSU are noisy and have several false abundance
lines, especially in DC2. Although not as obvious as DRSU,
the JSpBLRU algorithm gets a few false endmembers as well.
The abundance maps estimated by ADSpLRU are corrupted
by interference lines with small values. The abundance maps
estimated by the proposed SSLRSU algorithm are closest to the
real ones, and there are few false lines in the results. Compared

with algorithms without low-rank constraints (such as DRSU),
the combined constraint algorithm shows better performance
and concentrates the abundance lines on the primary rows.
Compared with the other combined constraint algorithms, the
proposed SSLRSU algorithm hardly extracts false endmem-
bers, which indicates that it can achieve accurate matching
between the actual spectral signatures in the image and the
samples in the spectral library. In other words, the proposed
SSLRSU algorithm shows great advantage in identifying end-
members from the spectral library. It is demonstrated that the
SSLRSU algorithm effectively avoids the confusing spectral
signatures in the library, and partially overcomes the obstacle
brought by the high correlation of spectral libraries in sparse
unmixing.
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Fig. 6. Ground-truth abundance and the estimated abundances obtained by SUnSAL, SUnSAL-TV, DRSU, ADSpLRU, JSpBLRU, and SSLRSU on DC2 when
SNR = 30 dB.

Fig. 7. Fractional abundance maps estimated by SUnSAL, SUnSAL-TV, DRSU, ADSpLRU, JSpBLRU and SSLRSU on DC1 when SNR = 30 dB. Difference
maps between the ground-truth abundance and the results obtained by (a) SUnSAL, (b) SUnSAL-TV, (c) DRSU, (d) ADSpLRU, (e) JSpBLRU, (f) SSLRSU.

Fig. 8. Fractional abundance maps estimated by SUnSAL, SUnSAL-TV, DRSU, ADSpLRU, JSpBLRU, and SSLRSU on DC2 when SNR = 30 dB. Difference
maps between the ground-truth abundance and the results obtained by (a) SUnSAL, (b) SUnSAL-TV, (c) DRSU, (d) ADSpLRU, (e) JSpBLRU, (f) SSLRSU.

To further illustrate the performance of our SSLRSU algo-
rithm, Figs. 7 and 8 show the fractional abundance maps of each
endmember1 in DC1 and DC2 estimated by different methods
when SNR = 30 dB. For intuitive comparison, the figures also
show the difference maps between the ground-truth abundances
and the estimated abundances. The other endmembers in
simulated datasets are elided as they are similar to the exhibited
endmembers. From the difference maps, it is found that among
all the comparison algorithms, the difference between the

abundance estimated by the proposed SSLRSU algorithm and
the true abundance is the smallest, which shows the excellent
performance of the proposed method. The results obtained by
the SUnSAL algorithm are inaccurate due to the lack of consid-
eration of spatial information. The abundance maps estimated
by SUnSAL-TV present blurring and oversmoothing visually.
The ADSpLRU and SSLRSU delineate the high fractional
abundance regions precisely, while the SSLRSU recovers
the details more completely. The superiority of SSLRSU
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TABLE III
COMPUTATIONAL TIMES (IN SECONDS) FOR DIFFERENT UNMIXING METHODS TO PROCESS DC2 WITH AN SNR OF 30 DB

algorithm indicates that the joint of the double weighted
sparse regression and the low-rank representation can improve
unmixing performance.

Table III reports the processing time for the DC2 with an SNR
of 30 dB. All the algorithms are implemented using MATLAB
R2016a and tested in the same computing environment: A
desktop computer equipped with an Intel Core 7 Duo central
processing unit (at 3.6 GHz) and 24 GB of RAM memory. It can
be observed that the SSLRSU, ADSpLRU, and JSpBLRU algo-
rithms are faster than SUnSAL-TV. But all of them are slower
than SUnSAL and DRSU, due to the increased complexity of
the model. Compared with the ADSpLRU and JSpBLRU algo-
rithms that consider low-rank constraints, the proposed SSLRSU
algorithm is slightly slower than them, but the calculation time
of these three algorithms is roughly the same.

IV. EXPERIMENTS WITH REAL DATA

In this section, the notable Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) Cuprite scene2 is embraced for sur-
veying the unmixing execution of the proposed technique. The
spatial size of the Cuprite image is 350× 350, with 224 spectral
bands in the range of 0.4–2.5 μm and the spectral resolution
is 10 nm. Prior to the analysis, due to low SNR and water
absorption interference, the bands 1-2105-115, 150-170, and
223-224 were removed. Finally, there are 188 spectral bands
left for the experiment. The spectral library A1 ∈ R188×240

used in the experiment is the same as that used by DC1, and
the corresponding noisy bands are also removed. Because it is
difficult to obtain the ground-truth abundance of hyperspectral
data, the classification map generated by Tricorder 3.3 software
product3 [48] is used as a reference to qualitatively assess the
unmixing performance of different methods, as shown in Fig. 9.4

Fig. 10 shows the abundance maps estimated by SUnSAL,
SUnSAL-TV, DRSU, ADSpLRU, JSpBLRU, and SSLRSU al-
gorithms for three dominant minerals (Alunite, Buddingtonite,
and Chalcedony) in Cuprite area. In this experiment, the regular-
ization parameters of SUnSAL and DRSU were empirically set
to λ = 0.001, λ = 0.0001, respectively, whereas the parameters
for SUnSAL-TV, ADSpLRU, JSpBLRU, and SSLRSU were
set to λ = 0.001, λTV = 0.001, and λ = 0.0005, τ = 0.001 and
λ = 0.05, τ = 0.2 and λ = 0.003, τ = 0.2, respectively. It can
be seen from Fig. 10 that all the unmixing algorithms can
interpret these three minerals well, which indicates that the
sparse unmixing algorithm is effective for real hyperspectral
datasets. However, we can see that the abundance map (e.g.,

2[Online]. Available: http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3[Online]. Available: http://speclab.cr.usgs.gov/PAPER/tetracorder
4[Online]. Available: http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.

gif

Fig. 9. USGS mineral map of Cuprite mining district in Nevada.

Fig. 10. Fractional abundance maps estimated by SUnSAL, SUnSAL-TV,
DRSU, ADSpLRU, JSpBLRU and SSLRSU for the Cuprite subscene.

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://speclab.cr.usgs.gov/PAPER/tetracorder
http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Buddingtonite mineral) obtained by the SUnSAL algorithm con-
tain a lot of noise. The abundance maps (e.g., Alunite and Bud-
dingtonite minerals) estimated by the SUnSAL-TV algorithm
look oversmoothing. Compared with the DRSU, ADSpLRU,
and JSpBLRU algorithms, the abundance maps obtained by the
proposed SSLRSU algorithm are closer to the reference map and
contain less noise, especially for the Buddingtonite mineral.

In addition, compared with the two algorithms ADSpLRU and
JSpBLRU that impose low-rank constraints, the abundance maps
estimated by our SSLRSU algorithm are usually comparable or
higher in the regions considered as individual materials. Finally,
the sparsity got by SUnSAL, SUnSAL-TV, DRSU, ADSpLRU,
JSpBLRU, and SSLRSU are 0.0682, 0.0743, 0.0430, 0.0471,
0.0728, and 0.0334, respectively. From these small differences,
it can be concluded that the proposed method uses fewer ele-
ments to interpret the data, thereby obtaining higher sparsity.
Therefore, it is concluded from a qualitative point of view that
the newly created SSLRSU algorithm exhibits good potential in
improving unmixing performance.

V. CONCLUSION

In this article, a new SSLRSU method has been created for
enhanced hyperspectral data analysis. Differing from the pre-
vious spectral unmixing algorithms using sparse reduced-rank
regression technique, the proposed SSLRSU algorithm traded
on the spatial structure characteristics of hyperspectral images,
and completely considered the sparsity and linear independence
of the row vectors in abundance matrix. The joint constraint
strategy improves the ability to identify endmembers from the
spectral library, thus effectively alleviating the negative influ-
ence of the high mutual interference of the spectral library on
the unmixing results. The proposed SSLRSU model is solved
iteratively by an inner and outer loop scheme to speed up the
convergence of the algorithm. Experimental results with both
simulated and real hyperspectral data uncover that the proposed
SSLRSU calculation can get steady and precise unmixing re-
sults. In future work, we will exploit a tensor-based low-rank
representation model [49] for hyperspectral sparse unmixing.
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