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Three-Order Tucker Decomposition and
Reconstruction Detector for Unsupervised

Hyperspectral Change Detection
Zengfu Hou , Wei Li , Senior Member, IEEE, Ran Tao , Senior Member, IEEE, and Qian Du , Fellow, IEEE

Abstract—Change detection from multitemporal hyperspectral
images has attracted great attention. Most traditional methods us-
ing spectral information for change detection treat a hyperspectral
image as a two-dimensional matrix and do not take into account in-
herently structure information of spectrum, which leads to limited
detection accuracy. To better approximate both spectral and spatial
information, a novel three-order Tucker decomposition and recon-
struction detector is proposed for hyperspectral change detection.
Initially, Tucker decomposition and reconstruction strategies are
used to eliminate the influence of various factors in a multitemporal
dataset. Specifically, a singular value accumulation strategy is used
to determine principal components in factor matrices. Meanwhile,
a spectral angle is used to analyze spectral change after tensor
processing in different domains. Finally, a new detector is designed
to further improve the detection accuracy. Experiments conducted
on five real hyperspectral datasets demonstrate that the proposed
detector achieves a better detection performance.

Index Terms—Change detection, hyperspectral imagery (HSI),
principal components (PCs), singular value accumulation, tensor
decomposition.

I. INTRODUCTION

MULTITEMPORAL remote sensing images can be used to
continuously observe and discover changed information

of imaged scenes. Change detection is widely used in various
military (e.g., missile early-warning and battlefield dynamic
monitoring) and civil (e.g., environmental monitoring, land
change, urban expansion, disaster detection, and evaluation)
applications [1], [2]. Multitemporal hyperspectral images can
provide fine and sophisticated spectral diagnostic information,
which creates potentials for accurate change detection and iden-
tification of change types [3].
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Unlike multitemporal color or multispectral images, hy-
perspectral remote sensing simultaneously explores two-
dimensional (2-D) spatial and one-dimensional (1-D) spectral
information of ground objects. Therefore, change detection
technology based on multitemporal hyperspectral images is
more complex. Meanwhile, affected by various factors (seasons,
terrain, weather conditions, solar altitude angle, etc.), there
may exist spectral variations in unchanged pixels and changed
information may be submerged in noise and background, which
further increase the difficulty of change detection. Although
various hyperspectral change detection methods are proposed
according to different applications, these methods are still scarce
compared to change detection methods for the multispectral
remote sensing image.

The early change detection algorithms are mainly algebra-
based methods [4], which are based on the assumption that
changes cause obvious difference of pixel gray levels, and pixel
by pixel analysis is adopted. These methods include image
difference, image ratio, image regression, absolute distance
(AD) [5], Euclidian distance (ED) [5], etc. Therefore, the ac-
curacy of radiometric and geometric correction results has a
significant impact on the detection accuracy. Moreover, in these
methods, physical meaning of continuous spectral signatures is
ignored.

Some transformation-based methods, e.g., conventional
principal component analysis (CPCA) and temporal principal
component analysis (TPCA) [6], multivariate alteration
detection [7], and independent component analysis [8],
project the hyperspectral data into another feature space
to mark the changed pixels or areas. As an extension of
change vector analysis (CVA) [9], compressed change vector
analysis (C2VA) [10] was proposed, which projects multiband
information into 2-D polar representation, and distinguishes
changed objects by a distance metric. These methods make full
use of spectral information, but ignore adjacent pixels. To break
this constraint, Liu et al. proposed a multiscale morphological
compressed change vector analysis (M2C2VA) [11], where
spatial information is included by using morphological
processing. Subsequently, considering that unchanged pixels
should be spectrally invariant and varying slowly, Wu et al.
proposed a slow feature analysis (SFA) [12] method to transform
the dataset into a new feature space. However, in the process of
transformation, the structure of spectrum is inevitably destroyed.
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The classification-based methods [13]–[15] are mainly di-
vided into two categories, that is, postclassification method and
direct classification method. The postclassification method is a
relatively intuitive change detection algorithm, in which images
of different time series are classified separately, and then, classi-
fication results are compared and analyzed. Since these images
of different time series are classified separately, the influence of
atmosphere, sensors, seasons, and other environmental factors
on image acquisition can be eliminated. The direct classification
method is to stack multitemporal images together, and uses a
classifier to find changed categories. Because these methods
adopt classification as the basis, a high-precision geometric
registration between images is essential.

With the development of deep learning, deep learning-based
methods [4], [16] have also become a research hotspot topic.
Lyu et al. [17] proposed an end-to-end recurrent neural network
(RNN) to solve the multispectral image change detection, where
the RNN is a natural candidate to tackle the multitemporal
dataset in change detection tasks. Subsequently, to generate rich
spectral-spatial feature representations and effectively analyzes
temporal dependence in bitemporal images, a recurrent 3-D
fully convolutional neural network (ReCNN) [18] is used to
process hyperspectral change detection task. However, there
methods aim at generating a data-driven linear or nonlinear
transformation to obtain robust features for change detection.
Although they have achieved superior change detection results,
they are often overfit and only effective for specific detec-
tion scenarios. These models, which are driven by data, rely
on training datasets excessively, that is, the scale of training
database data and the accuracy of labels determine the stability
of these models. Therefore, these techniques are still under
developing.

In addition, some other methods, which mainly include
unmixing-based [3], [19], [20], low rank, sparse representation-
based [21], etc., have also achieved a good detection accuracy in
hyperspectral change detection. These hyperspectral change de-
tection methods are developed according to different purposes.
Although these hyperspectral change detection algorithms have
been widely used, there are still some problems, including
lacking of theoretical foundation and appropriate evaluation
standards, high sensitivity of data preprocessing, poor versatility
of the detection method, lacking of multisource data integration
analysis, low utilization of spatial information during detection,
etc. Therefore, how to increase the separability between changed
pixels and background and accurately identify changed types,
has become an important challenge in the current change detec-
tion task.

Traditional change detection methods treat hyperspectral im-
age as a 2-D matrix by reshaping the original image along the
spectral dimension. However, the actual hyperspectral image is
a 3-D cube and the flattening operation of the matrix loses inher-
ently spatial structure information. Therefore, in the processing
of hyperspectral images, it is crucial to adopt a more effective
representation method to cater for the structural characteristics
of hyperspectral data. Recently, tensor-based method has shown
potential to effectively represent the structural characteristics of
high-dimensional data, and has achieved remarkable results in

medical hyperspectral image classification [22], [23], infrared
small target detection [24], [25], anomaly detection [26], [27],
dimension reduction [28], [29], etc. Based on the tensor model
and multilinear algebra, it has been demonstrated that tensor
representation can simultaneously deal with the two spatial
dimensions and one spectral dimension of hyperspectral data
to achieve a satisfying performance.

However, to the best of our knowledge, there are few existing
works on hyperspectral change detection using tensor represen-
tation. Zhao et al. introduced tensor into hyperspectral change
detection by using 4-D higher order singular value decom-
position (4D-HOSVD) [30], where bitemporal hyperspectral
images were stacked together as a 4-D dataset for processing, in
which change features were extracted by Tucker decomposition.
Subsequently, Huang et al. combined tensor with deep learning
to detect changed pixels or areas [31], where a tensor-based
information model of underlying features change in hyper-
spectral images was established. However, these methods stack
multitemporal images together for processing, which ignore the
influence caused by various acquisition conditions. The motiva-
tion of this research is to retain the intrinsic spectral structure
information for change detection from hyperspectral imagery.
Different from [30], in this work, an effective hyperspectral
change detection framework based on tensor decomposition and
reconstruction is designed, where Tucker decomposition and
high-order principal component (PC) extraction are adopted to
process bitemporal images. In the reconstruction processing,
the number of PCs is determined by the singular value energy
accumulation method in different factor matrices. By the tensor
theory, hyperspectral images can be represented as a third-order
tensor, which well exploit the 3-D spatial and spectral informa-
tion of multitemporal datasets.

The main contributions are summarized as follows.
1) Three-order Tucker decomposition is used to process

subsequent hyperspectral images analysis, where Tucker
decomposition and image reconstruction strategies are
adopted to obtain more robust multitemporal hyperspec-
tral datasets, and a singular value energy accumulation
method is designed to determine the number of PCs in
different factor matrices.

2) A new detector is developed to amplify the difference
of heterogeneous pixels by making full use of the local
spatial-spectral information of testing pixel, thereby im-
proving the detection accuracy.

3) In different data domains (original data and reconstructed
data), the difference between changed pixel pairs and
unchanged pixel pairs is calculated, where spectral angle is
used as metric to measure the degree of spectral difference.
It is verified that Tucker decomposition can suppress dif-
ference of unchanged pixel pairs and effectively amplify
difference of changed pixel pairs simultaneously.

The remainder of this article is organized as follows. In
Section II, a detailed description of the proposed framework is
presented. In Section III, five real datasets are utilized to verify
the proposed method, and the experiment results and parameters
are analyzed and discussed. Finally, Section IV concludes this
article.
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Fig. 1. Framework of proposed three-order Tucker decomposition-based hyperspectral change detection framework.

II. PROPOSED CHANGE DETECTION FRAMEWORK

Fig. 1 illustrates the flowchart of the proposed tensor-based
hyperspectral change detection framework, called tensor decom-
position and reconstruction detector (TDRD), which consists of
the following steps. First, tensor representation is adopted to
exploit structure information. Then, in order to eliminate the
influence of changed factors, Tucker decomposition that can
well exploit the 3-D spectral and spatial information of hyper-
spectral data is used to extract high-order PC information from
multitemporal dataset. Finally, a especially designed detector is
adopted to further improve the detection accuracy.

A. Three-Order Tensor Representation and Tucker
Decomposition

The spectral variation of unchanged pixels caused by various
factors is one of the main challenges of hyperspectral change
detection. Therefore, solely using spectral information cannot
effectively judge changed pixels or region. Taking into account
the similarity of unchanged pixels in bitemporal images, tensor
representation is adopted to incorporate 3-D spatial structure in-
formation of spectrum. Hyperspectral image can be represented
as a three-order tensor X ∈ RI1×I2×I3 , where I1, I2, and I3
represent the image rows, columns, and bands, which correspond
to the mode-1, model-2, and mode-3, respectively.

Due to the influence of various factors (seasons, terrain,
weather conditions, solar altitude angle, etc.), spectral curves
of unchanged pixels in multitemporal have some differences. In

order to obtain more robust feature, Tucker decomposition [26],
[32] is employed to reconstruct multitemporal datasets. The
tensor X can be approximately denoted by

X ≈ G ×1 U ×2 V ×3 W (1)

where G ∈ RI1×I2×I3 is called the core tensor and its elements
denote the level of interaction between distinct components.
U ∈ RI1×I1 , V ∈ RI2×I2 , and W ∈ RI3×I3 are three factor
matrices, which can be regarded as the PCs in each mode. The
optimization problem is stated as

argmin
G,U ,V ,W

‖X − G ×1 U ×2 V ×3 W ‖F2

s.t.

⎧⎪⎪⎨
⎪⎪⎩

G ∈ RI1×I2×I3

U ∈ RI1×I1 ,V ∈ RI2×I2 ,W ∈ RI3×I3

UTU = I1,V
TV = I2,W

TW = I3.

(2)

Since U , V , and W are orthogonal to each other, and G is
obtained by

G ≈ X ×1 U ×2 V ×3 W . (3)

Therefore, the optimization problem in (2) is converted as

argmax
U ,V ,W

‖X ×1 U ×2 V ×3 W ‖F2

s.t.

⎧⎪⎪⎨
⎪⎪⎩

G ∈ RI1×I2×I3

U ∈ RI1×I1 ,V ∈ RI2×I2 ,W ∈ RI3×I3

UTU = I1,V
TV = I2,W

TW = I3.

(4)
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The aforementioned equation is usually solved by the alternat-
ing least-squares algorithm [32], [33], where each factor matrix
is obtained by eigenvalue decomposition when the other two
matrices are fixed.

B. High-Order PC Extraction and Image Reconstruction

Generally, Tucker decomposition can be regarded as high-
order principal component analysis (PCA) [34], [35], which
offers a straightforward approach of compression for preserving
the most significant information, with insignificant information
being truncated. By Tucker decomposition, a three-order tensor
matrix is decomposed into three factor matrices (U ,V , and W )
and a core tensor G, where the column of each factor matrix is
regarded as eigenvectors under mode-n (n= 1, 2, 3), ordered by
decreasing magnitude of corresponding eigenvalues. The larger
the eigenvalue is, the more information it retains [26]. Therefore,
significant information is obtained by truncating suitable r PCs.
Therefore, how to find an optimal r becomes the key challenges
to high-order PC extraction.

In this case, eigenvalues corresponding each factor matrices
are different, so the ability of capturing significant information
is also different. How to determine the number of ri (i =
1,2,3) for different factor matrices (U ,V , and W ) is crucial.
Unfortunately, there is no reliable way to automatically select
an optimal value for ri, so far. Therefore, the energy-cumulative
method that computes the sum of eigenvalues one by one until
the cumulative energy achieves a specified ratio η to all energy,
is adopted to obtain the optimal parameter.

In this article, this method is also employed to determine the
numbers of PCs in three factor matrices, described as follows.
The singular values of three factors matrices are obtained by
singular value decomposition operation. All the nonzero singu-
lar values are quite different and vary across several orders of
magnitude, which indicates that singular values have different
contributions to the factor matrix. Based on this phenomenon,
several singular values that contribute the most to the factor
matrix are selected. The number of selected singular values is
taken as the number of PC corresponding to the factor matrix.

In bitemporal dataset, the change of singular values is rel-
atively consistent, so three PC numbers corresponding three
unfold modes, respectively, are selected to reconstruct the image.
However, if this operation is required for every factor matrix, it
is undoubtedly complicated and time consuming. Therefore, a
strategy of automatically determining PC numbers through the
accumulation of singular values is used, where a rate η needs to
be determined by

η =

∑r
i=1 ai∑s
i=1 ai

(5)

where ai = [a1, a2, . . ., as] is the singular value of the factor
matrix, s is the number of all nonzero singular values, and r is
the selected PC numbers. Therefore, by setting the value of η,
the corresponding r in different factor matrices is automatically
determined. η is set empirically. Generally, more complex the
background, smaller the rate is.

Different from PCA, Tucker decomposition [26], [35] can
effectively retain the spectral dimension. Simultaneously, other
impurity signal is eliminated, which is essential for multitempo-
ral images. By employing this operation, Tucker decomposition
provides simple compression to preserve ri PC for different
factor matrices, which makes the original unchanged spectral
signal in different time-series images suppressed, while the
changed spectral signal is amplified. The reconstructed X̃ has
the same spectral dimension as the X , which is obtained by

X̃ ≈ Gr ×1 U r1 ×2 V r2 ×3 W r3 (6)

where Gr = G(1 : r1, 1 : r2, 1 : r3), U r = U r(:, 1 : r1), V r =
V r(:, 1 : r2), and W r = W r(:, 1 : r3). ri is the PC number of
the different factor matrix, which is determined by the afore-
mentioned energy-cumulative method.

The PC numbers is determined automatically by setting em-
pirical parameters η, but this strategy will inevitably be accom-
panied by a slight loss of significant information. However, it
ensures that there is only one input parameter, which also further
improves the simplicity and applicability.

Completing the reconstruction operation, a reconstructed
tensor X̃ ∈ RI1×I2×I3 is obtained. After the same processing
of bitemporal datasets is completed, the newly reconstructed
datasets X̃T1

and X̃T2
corresponding to the scene at time T1 and

T2, respectively, are carried out to change detection.

C. Change Detection for Reconstruction Datasets

In the acquisition of multitemporal dataset, due to complex
environmental factors, it makes the spectral signals of unchanged
pixel pairs have certain differences, which is also one of the
main challenges in hyperspectral change detection. After tensor
processing, multitemporal dataset is reconstructed, and spectral
variation in unchanged pixel pairs becomes smaller, which is
more conducive to the fully mining of neighborhood information
of testing pixel. However, this change is difficult to be reflected
in traditional detectors, because various detection algorithms
are developed for different applications, which may not be
suitable for these datasets after tensor processing. Therefore,
it is necessary to develop a new detector that amplifies spectral
variation of changed pixel pairs and suppress unchanged pixel
pairs simultaneously.

In change detection, the difference in the digital number value
is most intuitive. As a simple detector, AD has achieved satis-
factory results in change detection, which adopts the analysis
of corresponding pixels one by one, but it is easily affected
by radiometric correction and geometric correction. Therefore,
considering local background pixels have a great influence on
the testing pixel, especially eight neighboring pixels around the
testing pixel, which are consistent in both spectral dimension
and spatial dimension, a newly designed detector is proposed
for change detection to further improve the detection accuracy
and robustness, which is expressed as

D(xi,yi) =

⎛
⎝ 8∑

j=1

I3∑
k=1

|yjk − xjk|
⎞
⎠ ·W (7)
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where I3 denotes the number of bands, xi and yi represent
testing pixel corresponding to the scene at time T1 and T2,
respectively, and xjk and yjk are pixel values corresponding
a single band in eight neighboring pixels.

The spectral angle reflects the degree of the similarity between
pixels. The smaller the spectral angle, the higher the similarity.
After tensor processing, spectral variation in unchanged pixel
pairs becomes smaller, and spectral variation in change pixel
pairs is amplified. Therefore, a spectral angle is an effective
measure to judge whether pixel pairs have changed or not. In
the designed detector, based on the core principle of the spectral
angle, a especially designed revised spectral angle weighted W
is adopted, which is expressed as

W = arctan

((
xiyi

‖xi‖‖yi‖
)2)

. (8)

In the revised spectral angle weighted W , both arctan(·) and
power operation are monotonically increasing function, which
are used to further amplify the spectral differences.

D. Spectral Analysis in Different Domains

Structural characteristics of hyperspectral data are effectively
represented by tensors. Spectral signatures of the same sub-
stance obtained in various time phases have similar structures
characteristics, which is helpful to improve the performance
of the detector. Therefore, the hyperspectral data after tensor
processing are more robust. To verify that the spectral difference
of unchanged pixel pairs is effectively suppressed, while the
differences of changed pixel pairs are further amplified, after
tensor manipulation of bitemporal hyperspectral datasets, the
spectral angle is used as a metric to analyze these differences.

As illustrated in Fig. 2, a changed pixel pair and a unchanged
pixel pair are randomly selected from Yancheng dataset as an
example to illustrate the spectral change before and after Tucker
decomposition and reconstruction processing, whereO1 andO2

represent the point selected at T1 time and T2 time in the original
dataset space, respectively. Similarly, C1 and C2 represent the
point selected at T1 time and T2 time in the tensor dataset space,
respectively.

As shown in Fig. 2(a), the two red curves (in the original
domain) become two black curves (in the tensor domain) after
tensor processing, and the spectral difference between bitempo-
ral is further narrowed. Obviously difference between red curves
and black curves can be observed when abscissa of spectral
curves is in the range of 75–85, and the trend of two black
curves is closer compared to two red curves, which reflects
that tensor processing can effectively suppress unchanged pixel
pair’s spectral variation in time-series images. On the contrary,
in Fig. 2(b), when abscissa of spectral curves is in the range
of 69–75, compared with two red spectral curves, the interval
between two black spectral curves is smaller, which further
confirms that after tensor processing, spectral variation of the
changed pixel pair is further amplified.

Table I lists spectral angle values of two pairs randomly
selected in the two domain. The spectral angle becomes smaller
when the unchanged pixel pair is projected to the tensor domain,

Fig. 2. Illustration of spectral change in Yancheng dataset. (a) Unchanged
point spectrum. (b) Changed point spectrum.

TABLE I
SPECTRAL ANGLE VALUES UNDER DIFFERENT DOMAIN (NORMALIZED)

TABLE II
ACCURACY COMPARISON UNDER DIFFERENT SAN FRANCISCO SCENES

(AUC VALUES %)

while the spectral angle of the changed pixel pair becomes larger.
It further verifies that tensor processing can remarkably improve
the separability of the changed and unchanged pixels.

E. Comparison With 2-D Low-Rank Recovery

In order to show the advantage over the 2-D low-rank recov-
ery, the two pairs of San Francisco datasets (will be introduced in
next Section III-B) containing speckle noise are used to analyze
the performance of the 3-D Tucker decomposition and 2-D
low-rank decomposition [i.e., robust PCA (RPCA)]. Table II lists
change detection results of San Francisco scenes after Tucker
decomposition and low-rank decomposition, where PCA [36],
[37] and RPCA [38], [39] are employed to obtain low-rank parts.
In PCA, the first three PCs that contain almost all the useful
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Fig. 3. Illustration of the Hermiston dataset. (a) Farmland on May 1, 2004.
(b) Farmland on May 8, 2007. (c) Ground-truth change map.

information are retained. In RPCA, the data are decomposed into
low-rank and sparse parts and the former one is used for change
detection via AD. As listed in Table II, the dataset obtained
by the 3-D low-rank decomposition has a better discrimination
ability for changed objects compared with the dataset obtained
by the 2-D decomposition. Furthermore, area under curve (AUC)
values of Tucker+AD is greater than PCA+AD and RPCA+AD,
while AUC values of the TDRD are greater than Tucker+AD,
which further confirms that three-order Tucker decomposition
has a greater contribution in a TDRD.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate performance of the proposed method, five bitem-
poral datasets are conducted to perform hyperspectral change
detection. It is worth noting that these datasets, which are widely
used in the field of hyperspectral changes, are obtained after
preprocessing including atmospheric correction, geometric, and
radiometric correction [18].

A. Hyperspectral Datasets

The first hyperspectral dataset is made of a pair of real
bitemporal hyperspectral images, collected from an irrigated
agricultural field in Hermiston City in Umatilla County, OR,
USA, which were acquired by the Hyperion sensor mounted
onboard the Earth Observing-1 (EO-1) satellite May 1, 2004
and May 8, 2007, respectively [40], [41]. The Hermiston images
have the size of390× 200pixels, and 242 spectral bands ranging
from 0.4–2.5 μm. These images have a spectral resolution of
10 nm and a spatial resolution of 30 m. The main change
on these datasets is farmland land-cover change, including the
transitions among crops, soil, water, and other land-cover types.
The change occurred in the cropland is mainly due to vegetation
water content affected by irrigation condition and the difference
in crop growth situation [41]. The scene and the ground-truth
map are shown in Fig. 3.

The second dataset including two hyperspectral bitemporal
images was obtained by EO-1 Hyperion sensor, which were
collected over a wetland agricultural area in Yancheng city,

Fig. 4. Illustration of the Yancheng dataset. (a) Farmland on May 3, 2006. (b)
Farmland on April 23, 2007. (c) Ground-truth change map.

Fig. 5. Illustration of the River dataset. (a) River scene on May 3, 2013. (b)
River scene on December 31, 2013. (c) Ground-truth change map.

Jiangsu Province, China, on May 3, 2006 and April 23, 2007,
respectively [18]. Subset images with 420× 140 pixels and
154 spectral bands were used after removing noisy and water-
absorption bands. The images and the ground-truth map are
illustrated in Fig. 4.

The third dataset collected in Jiangsu Province, China, on May
3, 2013 and December 31, 2013, respectively, is the river scene,
which contains two hyperspectral images for change detection.
The sensor used is the EO-1 Hyperion, with a spectral range of
0.4–2.5 μm, a spectral resolution of 10 nm, a spatial resolution
of 30 m, and a total of 242 spectral bands. The size of the image
is 463 × 241 pixels, and 198 bands are used. The main change
type is disappearance of the substance in the river [16], [40].
The images and the ground-truth map are illustrated in Fig. 5.

B. PolSAR Datasets

The fourth and fifth datasets are two pairs of single-look
quad-polarimetric SAR images acquired by the UAVSAR air-
borne sensor in L-band over an urban area in San Francisco
city on September 18, 2009, and May 11, 2015, respectively.
These datasets are named San Francisco1 and San Francisco2,
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Fig. 6. Illustration of the San Francisco dataset. (a) Pauli image of San
Francisco dataset1 on September 18, 2009. (b) Pauli image on May 11, 2015.
(c) Ground-truth change map. (d) Pauli image of on September 18, 2009. (e)
Pauli image on May 11, 2015. (f) Ground-truth change map.

Fig. 7. AUC values under differentη in various datasets. (a) Hermiston dataset.
(b) Yancheng dataset. (c) River. (d) San Francisco1 dataset. (e) San Francisco2
dataset.

respectively. The size of San Francisco1 dataset is 200× 200
pixels with 138 bands, and the size of San Francisco2 dataset is
100× 100 pixels with 138 bands. The spatial resolution of two
pairs PolSAR datasets are both 30 m. The detailed description
can be found in [40] and [42].

C. Parameters Setting

In order to validate the proposed TDRD effectively, results
derived by the proposed method are compared with those
derived by eight other methods, including AD [5], absolute
average difference (AAD) [43], [44], subspace-based change
detection (SCD) [45], local SCD (LSCD) [45], adaptive SCD
(ASCD) [45], ED [5], 4D-HOSVD [30], and M2C2VA [11].

For the proposed TDRD, the performance is relatively sen-
sitive to the number of PCs. After a wealth of experimental
analysis, it is found that the case ofη not less than 0.75 is the basic
condition to ensure the tensor operation in these datasets. Fig. 7
displays the influence of η on AUC values. When η changes,
the detection result also changes, and the optimal η is different.

TABLE III
OPTIMAL PARAMETERS OF VARIOUS METHODS IN DIFFERENT DATASETS

A general conclusion is that when η reaches a certain value
(between 0.9 and 1), the change of detection accuracy gradually
becomes insignificant with further increase of η.

In these contrast methods such as LSCD and ASCD, their per-
formance is sensitive to varying window sizes (ω). For window
size, in LSCD and ASCD, by changing ω from 3 to 15, detection
performance under different window sizes is collected, and then,
the optimal parameter is selected [46]. The optimal parameters
are listed in Table III. It is worth noting that in 4D-HOSVD
and M2C2VA, after obtaining change features, the K-means
algorithm is used to identify changed pixels, while the clustering
center of K-means is random, yielding inferior performance in
these datasets. Therefore, to better excavate the superiority of
detectors, instead of K-means, AD is used to perform change
detection.

D. Results and Discussion

Taking Yancheng dataset as an example, detection results of
various algorithms are shown in Figs. 8 and 9. In Fig. 8, binary
detection results are illustrated when the false alarm rate reaches
0.25, where the proposed TDRD achieves better detection result.
It is further confirmed that compared with other detectors, the
proposed TDRD has a stronger suppression ability to unchanged
pixels and a better discrimination ability to changed pixels.
Similarly, from the specific change detection rate (CDR) of
various algorithms as listed in Table IV, the same conclusion can
be drawn. When the false alarm rate reaches 0.25, the TDRD has
better detection than others. In Fig. 9, 3-D detection results of
various algorithms are more intuitive. In Fig. 9(d)–(f), it is clearly
observed that SCD, LSCD, and ASCD suppresses unchanged
and changed pixels simultaneously. Therefore, the height of
the detected changed pixels in 3-D results is lower than that
of other algorithms. Fig. 9(i) shows better detection than other
algorithms, but still cannot offer obvious distinction.

To compare the performance of different methods, receiver
operating characteristic (ROC) curve, AUC [47], and statistical
separability analysis, also known as boxplot [48], are utilized
for performance assessment. The statistical separability analysis
is used to reflect the distribution characteristics and compare
distribution characteristics of multiple groups of data. Essen-
tially, the separability analysis is a statistical distribution map
of detection results corresponding to changed and unchanged
pixels. In statistical separability analysis, the upper and lower
boundaries of boxes are 75% and 25% of statistical interval,
respectively, while the 0%–25% and 75%–100% intervals are
represented by dotted lines. Red box represents changed pixels
and green box represents unchanged pixels, where the interval
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Fig. 8. Illustration of binary detection results when the false alarm rate reaches 0.25 in the Yancheng dataset. CDR: (a) AD:0.945. (b) ED:0.948. (c) AAD:0.768.
(d) SCD:0.954. (e) LSCD:0.860. (f) ASCD:0.943. (g) 4D-HOSVD:0.945. (h) M2C2VA:0.969. (i) TDRD:0.973. (j) Ground truth.

Fig. 9. Illustration of 3-D detection results in the Yancheng dataset. (a) AD. (b) ED. (c) AAD. (d) SCD. (e) LSCD. (f) ASCD. (g) 4D-HOSVD. (h) M2C2VA. (i)
TDRD. (j) Ground truth.

Fig. 10. Illustration of detection results. (a) Statistical separability analysis of Hermiston dataset. (b) Statistical separability analysis of Yancheng dataset. (c)
Statistical separability analysis of River dataset. (d) ROC curves of Hermiston dataset. (e) ROC curves of Yancheng dataset. (f) ROC curves of River dataset.
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TABLE IV
CHANGED DETECTION RATE ON YANCHENG DATASET WHEN FALSE ALARM RATE REACHES 0.25

between red box and green box represents the separability. The
height of the green box represents the suppression degree of
these methods to unchanged pixels. Generally, the lower the
green box height is, the stronger the unchanged pixel suppression
is, which also translates into a better separation between changed
and unchanged pixels.

As shown in Fig. 10(a)–(c), red and green boxes represent
range of changed and unchanged pixels, respectively. The in-
terval between red and green boxes represents the separability
between changed and unchanged pixels. The height of the box
represents suppression degree. Generally, lower the green box
height is, stronger the unchanged pixel suppression is, which is
also conducive to separating changed pixels from unchanged
ones. In Fig. 10(a), the separability of Hermiston dataset is
displayed, where the interval between red and green boxes of
AD, 4D-HOSVD, and TDRD are obviously larger than other
methods, which shows that these methods can separate changed
pixels from unchanged pixels more effectively. Although the
height of green boxes is lower in AAD and ASCD, which
indicates that these methods can suppress unchanged pixels well,
the interval between red and green boxes is smaller, which means
that these methods cannot separate changed pixels. Similarly, for
the Yancheng dataset shown in Fig. 10(b), the interval between
red and green boxes of the proposed TDRD is obviously larger
than other methods, which indicates that the TDRD can achieve
change detection more effectively. In the ASCD, the height of
the green box is significantly lower than others, which means
that it has unchanged pixels better suppressed compared with
other methods. However, its performance is poor, because it has
poor ability of suppression and separation of changed pixels.
In Fig. 10(c), the separability of River dataset is displayed,
where the ASCD can suppress unchanged pixels well, but cannot
separate changed pixels from unchanged pixels, while AD,
4D-HOSVD, M2C2VA, and TDRD can separate changed pixels
from unchanged pixels more effectively.

In Hermiston dataset, ROC curves of different detection meth-
ods are illustrated in Fig. 10(d). It is easy to find that when
the false alarm rate reaches about 0.25, the black ROC curve
representing TDRD is obviously on the upper left corner, which
reflects that the performance of the TDRD is better than other
methods. In Yancheng dataset, as shown in Fig. 10(e), compared
with other detection methods, the curve of the TDRD is obvious
on the upper left corner, which confirms its effectiveness. In
the River dataset, as shown Fig. 10(f), the same conclusion is
obtained. The black curve representing the TDRD is slightly
closer to the upper left corner than M2C2VA when the false
alarm rate reaches about 0.2, which indicates that the TDRD has
better detection performance than M2C2VA and other methods.
Similarly, for the two pairs of SAR datasets as shown in Figs. 11
and 12, separability analysis and ROC curves are displayed.
In Figs. 11(a) and 12(a), both changed and unchanged pixels

Fig. 11. ROC curves of different methods in the San Francisco1 dataset. (a)
Statistical separability analysis. (b) ROC curves.

are severely suppressed in the ASCD, while changed pixels are
well separated in the TDRD, compared with other detectors.
Similarly, as shown in Figs. 11(b) and 12(b), the conclusion
is that the TDRD has better detection performance than other
methods.

Tables V and VI provide AUC values and computational cost
of various detection methods, respectively. The detection results
of the proposed TDRD are better than other methods for these
datasets. By analyzing, it is further confirmed that the proposed
TDRD is more effective than other traditional change detection
methods, which shows that tensor can effectively improve the
change detection ability. All the experiments are conducted on
windows 10 with a 64-bit operating system. The processor of the
system is Intel Core i7-8700 CPU with 3.20 GHz with 16 GB
of main memory. As shown in Table VI, compared with other
methods, the computational cost of the TDRD is high, especially
for Hermiston dataset. The reason is that Tucker decomposition
is time consuming.
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TABLE V
ACCURACY COMPARISON OF BINARY CD ON DIFFERENT DATASETS (AUC VALUES %)

TABLE VI
EXECUTION TIME OF VARIOUS METHODS USING DIFFERENT EXPERIMENTAL DATASETS (UNIT: SECONDS)

Fig. 12. ROC curves of different methods in the San Francisco2 dataset. (a)
Statistical separability analysis. (b) ROC curves.

IV. CONCLUSION

In this article, a novel three-order Tucker decomposition
and reconstruction-based change detection framework was de-
signed, where Tucker decomposition and image reconstruction
strategies were used to remove impurity signals in hyperspec-
tral change detection. In the image reconstruction processing,
PC numbers of various factor matrixes are determined by the
singular value energy accumulation strategy. Meanwhile, a new

detector was especially designed to detect changed pixels. Be-
sides, spectral differences of unchanged pixel pairs and changed
pixel pairs in different domains were analyzed. Low-rank de-
composition and Tucker decomposition were also discussed,
which further verify that tensor processing can better suppress
unchanged pixel pairs, meanwhile amplify the difference of
changed pixel pairs. The experiments results confirmed that the
proposed method outperformed the traditional change detection
methods. However, the computational cost of the proposed
method is high, which will be the focus of our future work.
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