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Framework for Unknown Airport Detection in
Broad Areas Supported by Deep Learning

and Geographic Analysis
Ning Li , Liang Cheng , Lingyong Huang, Chen Ji, Min Jing , Zhixin Duan, Jingjing Li, and Manchun Li

Abstract—Airports serve as important economic and military fa-
cilities, and thus, their spatial distribution can strongly impact peo-
ple’s lives and social economy. However, existing airport databases
have incomplete information and low accuracy rates owing to the
high cost associated with updates and lack of timely informa-
tion. Due to the complexity of broad-area scenes, the accuracy of
airport detection using only image recognition is extremely low.
This article proposes a framework for detecting unknown airport
distributions in a broad research area based on deep learning
and geographic analysis. First, we extracted correct points from
an existing airport database, and a positive and negative scene
classification model based on Google image data was trained to scan
and extract candidate airport regions. Next, the airport confidence
was evaluated to extract the positions of airports in the candidate
area. Simultaneously, geographical data such as road networks and
water systems were used to comprehensively analyze the detection
results. For the 21 9040.5 km2 (Jiangsu, Shanghai, Zhejiang) study
area, the recall rate of known airports of this framework was 96.4%,
and the airport integrity rate was 97.2%. The speed was approx-
imately 20 times faster than that of traditional visual searches.
Through systematic comparison, eight airports were newly dis-
covered; however, one established database airport was missing.
The results demonstrate that the proposed framework can validly
detect unknown airports with high accuracy in a broad area and
concurrently, expand the applications of deep learning, remote
sensing, and geography.

Index Terms—Broad area, candidate area extraction, deep
learning, geographic analysis, remote sensing, unknown airport
detection.
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I. INTRODUCTION

A S AN important piece of military and civil infrastructure,
airports play a vital role in aircraft landing, transportation,

and energy supply [1]. In recent years, airport detection has
gained increased attention and has become a topic of interest
in computer vision and remote sensing research [2]. A fast and
automatic airport detection method at regular intervals can be
highly useful because existing airport databases are incomplete
and have a high update cost [3]. Using high-resolution remote
sensing images to identify airport targets is of substantial im-
portance for obtaining airport information that is highly current
and has a strong integrity. Several previous studies have been
based on single images [1], [2], [4]–[7], including those on the
detection of some small objects [8], [9], but these methods are
not suitable for broad area searches. The broad area of research
that airport recognition scholars generally focus on is still based
on single images or a slightly larger range of spliced images,
which is different from the concept of large regional areas. Some
scholars have also used impervious surfaces to extract candidate
areas combined with aircraft identification to perform broad area
airport identification [3], but this is not applicable to airports
without aircraft. Because of the complex background and the
considerable work inherent in identifying broad areas, it is a
challenging task to discover complete airports in a broad area.

Many scholars have performed several constructive works
on broad area target detection [3], [10]–[13]. Zeng et al. [3]
used fine resolution observation and monitoring of global land
cover 10 [14] (FROM-GLC10) data to extract airport candidate
areas, and a Faster-RCNN aircraft detection framework [15] was
utilized to determine the airport location. In addition to using
remote sensing products for candidate areas, deep convolutional
neural networks (DCNNs) provide strong support for prelimi-
nary candidate area screening. Yuan et al. [10] introduced an
approach based on deep convolutional networks that effectively
delineated solar panels in aerial scenes. Marcum et al. [11]
combined RESNET 101 DCNN [16] with spatial clustering to
efficiently search for missile positions in the Southeastern China
Research Area; this method was 81 times more efficient than
traditional visual search. Yu et al. [12] divided target solar panels
to be extracted into positive and negative samples and adopted
the deep learning scene classification method for pre-extraction.
Scott et al. [13] used the trained DCNNs [16], [17] model to
classify objects of interest in a broad area and obtained accurate
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results. All the above methods have a positive effect on the ex-
traction of candidate regions for target detection in broad areas.

After obtaining a candidate area, the airport location becomes
the basis and key to the final production of an airport database.
From the perspective of target detection, general airport facil-
ities include aircraft, runways, terminal buildings, and aprons.
Accordingly, previous studies have used aircraft [3], [18]–[26]
to identify airports; however, these methods do not consider the
absence of aircraft in an airport, resulting in airport detection
loss. There are also several studies that regarded an entire airport
or runway as a representative to locate other airports [2], [4]–[6],
[23], [27]–[35]. From the perspective of extracting airport fea-
ture levels, airport detection can be divided into two categories.
One is traditional methods [4]–[7], [18], [19], [22]–[24], [27],
[28], [30]–[32], [36], [37], which extract the low-level features
(visual saliency, line segment features, spectral features, textural
features, geometrical characteristics, multiple features, etc.) of
the airport in the image. The other is deep learning methods
[2], [3], [20], [21], [23], [25], [26], [29], [33], [34], [38], which
extract high-level features (deep convolution features). Although
some traditional methods [5], [6], [30] have demonstrated an
accurate performance, they are excessively time-consuming and
cannot support broad area identification work. Regarding deep
learning methods, the detection times of YOLO [39]–[41] and
SSD [42] based on deep learning target detection are lower than
those of Fast R-CNN [43] and Faster R-CNN [44], which are
more suitable for broad area detections.

Extracting airport locations from a large area will inevitably
lead to many false extractions. Zeng et al. [3] first restricted the
distribution of airports by their impervious surface characteris-
tics using FROM-GLC10 [14]. In addition to the constraints of
impervious surface characteristics, airport construction should
consider the accessibility analysis of roads [45], and different
roads have unique attributes owing to their varying functions.
For example, the properties of airport roads and general roads
in Open Street Map [46] (OSM) data differ, and general airport
roads or roads near the airport are classified as service properties.
Concurrently, Zeng et al. [3] also states that impervious surface
features constitute one of the important feature types of the
airport, so the distributions of the airports and water systems
are mutually exclusive. Overall, there is a spatial distribution
constraint relationship between the location of the airport and
certain geographic data.

In order to improve the accuracy of the existing methods and
the detection ability of features in broad areas, a framework
combining deep learning and geographic analysis is proposed in
this article: candidate area extraction with scene classification
in a broad area, airport positioning with confidence evaluation
on a small scale, and comprehensive judgment with geographic
analysis. The main contributions of this study are summarized
as follows.

1) For broad areas, we propose a framework for rapidly
mining unknown airports to form an airport database with
complete information and high accuracy.

2) Methods such as deep learning (scene classification and
object detection), feature fusion, and geographic analysis
are integrated to extract airports, which expands the appli-
cations of deep learning, remote sensing, and geography.

TABLE I
DATA MATERIALS OF THIS PAPER

The remainder of this article is organized as follows: Section II
briefly introduces the research area and materials and describes
the method and content of the airport detection framework in
detail. Results and discussion are given in Sections III and IV,
respectively. Finally, Section V concludes the article.

II. MATERIALS AND FRAMEWORK

A. Materials

Relevant experiments are conducted in Jiangsu, Shanghai,
and Zhejiang Provinces in China (see Fig. 1). The three regions
have areas of 107 200, 6340.5, and 105 500 km2, respectively,
and the total area of the studied regions is 219 040.5 km2.
As one of the most important developed economic zones in
China, Jiangsu, Shanghai, and Zhejiang have a higher density of
airport construction compared to other areas, and the framework
and models established are more robust. As summarized in
Table I, the airport data comprises public datasets as samples and
verification references and can be found in the public OurAir-
ports (OA) airport dataset.1 In addition, all the airport locations
obtained from the OA database in the study area are visually
verified. Initially, there are 35 OA locations in our study area,
which includes large airports, medium airports, small airports,
heliports, and closed airports. After verifying the correctness of
these points using Google imagery, finally, 28 points with evi-
dent runway characteristics as the correct data are selected. For
remote sensing image data, we download 17 levels of Google im-
age data in the study area, with 4 million tiles total and a total data
volume of 51G. The OSM data are extracted from OSM;2 roads,
and water (polyline, polygon) data are mainly used. GADM3

provides the administrative boundary data of the study area.

B. Framework

This article proposes a calculation framework for unknown
airport target detection in broad area scenarios that combines

1[Online]. Available: https://www.ourairports.com
2[Online]. Available: http://download.geofabrik.de/
3[Online]. Available:https://gadm.org/index.html

https://www.ourairports.com
http://download.geofabrik.de/
https://gadm.org/index.html
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Fig. 1. Experimental areas in eastern China, including Jiangsu, Shanghai, and Zhejiang.

deep learning and geographical analysis (see Fig. 2). The first
is the extraction of candidate areas for the detection of airport
targets, which is used as a target area screening task and can
greatly reduce the workload of identification tasks. In this step,
we apply the scene classification model and use the airport
pattern features with impervious surfaces and the non-airport
pattern features in the research area to obtain the airport-oriented
two-class classification model. Then, a “push-broom” search
on Google tiles of large area scenes is performed. After the
scene is classified and analyzed, an airport target candidate
area is obtained. The next part is the detection of target airport
features. The airport runways are taken as the main feature
and the aircraft as the auxiliary features to evaluate the airport
confidence supported by deep learning models while performing
a comprehensive judgment of the geographic information about
the candidate area. The geographic analysis constrains the direc-
tion results by extracting the main direction of the line segment
and applying OSM, coastline spatial distribution, geographic
threshold, etc., to calculate the geographic limit of the main
feature. Finally, the results are systematically verified to extract
the unknown airports in the broad research area.

1) Candidate Area Extraction: To obtain an effective sample
library, the public OA information is utilized as basic data, which
is visually judged for correctness in the images. The validated
data are used as the valid airport point data in the study area,
and part of it is extracted for the scene classification sample
base. In the visual extraction process, the runway is regarded

as the main feature of the airport. By judging whether the area
contains an airport runway and retaining the airport with runway
salient features, large airports, medium airports, small airports,
and closed airports are likely to be included in the verification
data. Moreover, the road network and water system in the OSM
data are calculated to generate geographical analysis, and this
process will be described in detail in the following chapters.

The extraction of candidate regions in a large space area is
one of our key goals. Airport tiles with a specific resolution are
distinguished from other features in the image. Our goal is to
achieve specific target detection in the research area. Therefore,
the two-classification method (see Fig. 3) is used to classify
different features in the research area. In the method proposed
in this article, the scene classification model is applied to classify
and predict Google image data. Furthermore, to reduce the area
of interest for target detection in a large area, factors such as
spatial scale are utilized to analyze and provide high-confidence
candidate areas for subsequent geoscience analysis and airport
detection. We utilize the binary classification method by se-
lecting the airport data with the correct points extracted in 2.1,
download the fixed range (0.04° × 0.04°).

Google 17-level (ground resolution of approximately 1 m) tile
images and divide the Google airport tiles into airport (airport)
and non-airport categories (non-airport), as shown in Fig. 3. The
airport category is considered as a positive sample for scene
classification, which mainly includes runway tile scenes and
other scenes with evident airport impervious surface features.
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Fig. 2. Framework for airport detection in a broad area.

For nonairport categories, considering that negative samples are
required to contain the global characteristics of the research area,
the entire research area is a negative sample candidate area. A
total of 4.4 percent of the data is selected as negative sample
data (no intersection with the positive sample). Concurrently, to
ensure that the negative and positive samples meet the balance
of the positive and negative sample data volume, we perform a
dilution of the selected negative sample, and data enhancement
and data balancing work are applied to the positive sample.

In order to obtain an effective scene classification model,
the RESNET DCNN pretrained model based on the ImageNet
large-scale sample dataset is applied as the basic classification
network. The RESNET network structure was proposed in

2015 and won first place in the ImageNet classification task
competition. Through transforming the output classification
layer of the model, the goal of classification and detection is
achieved. The purpose of using the pretraining model is to
make full use of the weight of the pretraining network, improve
classification accuracy, and increase the speed of model training.

Specifically, the two-classification framework is based on
the ResNet101 DCNN [16] pretraining model of the ImageNet
large-scale sample dataset as the basic classification network,
and it accesses the following four fully connected classification
layers (with the number of output categories in parentheses):
dense (512), dense (256), dense (64), and dense (2). In addition,
the dropout regularization method is adopted to constrain
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TABLE II
DATA AUGMENTATION FOR SCENE CLASSIFICATION

Fig. 3. Two-classification methods and samples. (a) Schematic diagram of
the two-classification model networks. The front end is the Resnet101 basic
network, and the back end is connected to the fully connected classification
layers. (b) Some examples of positive samples and the grid segmentation of the
study area to extract negative samples.

the parameters between every two classification layers. After
training, a two-class classification model for broad area scenes
is obtained and a “push-broom” search on approximately 4
million tiles is performed in the study area. If the classification
probability of a grid tile is greater than 0.5, it is considered an
airport scene; otherwise, it belongs to another nonairport scene.

For getting valid training data, the 28 verified airports are
selected in the study area. After screening, the tiles with im-
pervious surface characteristics of airports are taken as positive
samples, and a total of 1234 positive samples are found. To
consider the overall characteristics of the negative samples in the
study area, approximately 175 247 tiles with negative sample tile
data are randomly selected from the entire study area; they are
then used to characterize the scene characteristics in the study
area that do not correspond to those of airports. Considering the
balance of data volume between sample categories, copying,
noising, flipping, rotating, etc., are used to enhance the data of
the positive samples. The positive sample size is expanded from
1234 to 95 018, and the data volume of negative samples remains
unchanged. Concurrently, approximately 10% of both positive

Fig. 4. Eight-direction connectivity analysis. (a) Eight-direction connectivity.
(b) Spatial clustering and filtering after eight-direction connectivity analysis.

and negative samples are extracted as the dataset for verification.
The specific situation is summarized in Table II.

The tile classification probability is obtained by classifying
the tile scenes of a broad area, and the geographic coordinates of
each tile are further calculated to obtain a collection of points of
interest in the airport area. Considering that the spatial resolution
of the 17-level Google image is approximately 1 m, the Google
image tile pixels are 256∗256, and the shortest airport runway
length approximately generally about 500–1000 m, there is,
thus, an adjacency relationship between airport points; more
specifically, under normal circumstances, the airport points of
normal classification should be nonoutlier. According to the
airport construction specifications, the direction range of the
airport runway is [0360]. Using eight-direction connectivity
analysis (see Fig. 4), the interest areas with spatial proximity
relationships are connected to achieve geographic spatial clus-
tering of interest points in the airport area.

In the process of spatial clustering, it is also found that for tile
images with a resolution of approximately 1 m and 256∗256 pix-
els, the width of an isolated classification point is approximately
256 m, and the shortest runway length is generally between
500–1000 m; therefore, the number of correctly classified points
of interest obtained should be greater than or equal to 2 with the
airport runway classified by the grid scene. Next, patches with
more than two spatial connection points after cluster analysis
are selected to perform the preliminary extraction of airport
candidate areas.
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2) Airport Confidence Evaluation: The candidate area of
the airport target is obtained after performing the calculation
described above. As they are the most evident characteristics of
an airport, the runway and aircraft with considerable prominence
play an important role in airport detection [3], [47]. Airports with
runways may not have aircraft, but airports that have aircraft but
no runways are less common; therefore, the latter is regarded to
be of little significance, and runways are considered the main
feature and the aircraft are considered the auxiliary feature to
increase the airport confidence. As one of the representative
frameworks for target detection, YOLO [39]–[41] has a fast
detection speed and low background false detection rate. In
order to realize runway detection, YOLO-v3 [41] along with
a darknet-53 neural network is applied to construct the basic
framework, which is achieved in Ji et al. [47]. And then the
runway detection results are constrained by geographic analysis,
which will be detailed in the next section. After the analysis, the
aircraft detection model based on Faster R-CNN [3] is used for
airport detection as the detection of auxiliary features such as
aircraft improves airport confidence. We believe that the detected
airport has the highest probability of actually being an airport
if it has the above two features, followed by the airport in
which only the runway is detected, and the area in which only
aircraft were detected are not be counted. Obviously, airports
with high confidence have a greater probability of being used
and, therefore, are more important.

3) Comprehensive Geographic Analysis: Ensuring the cor-
rect detection of the main feature is crucial to the framework. The
results of airport detection often contain misclassified features
such as roads, water systems, canals, and farmland. These incor-
rect detection results will have a substantially negative effect on
the final detection accuracy, so the rationality of these results is
the focus. Considering that runways and certain ground objects
constitute mutually exclusive elements, there are constraints on
the relationships between them and their spatial distribution. For
example, the runway should not cross roads, rivers, coastlines,
etc. Based on these constraints on the spatial relationships be-
tween the runways and roads, water systems, and coastlines, this
rule is adopted to eliminated misclassified features among the
detected airports. This specific method of relying on limitations
of external features is referred to as external constraints. Also,
the line segments of the image corresponding to the runway
detection boxes are extracted and their main direction angles are
counted. The angle difference between the main direction and
the detected runway direction is calculated later, if the difference
between the two is excessively large, the detection result is
regarded as a detection error and ruled out. Next, in the detection
results, the runway detection box of unreasonable length also
needs to be removed. Finally, each airport has a certain range of
influence, more specifically, the distance between two airports
should not be excessively small. Otherwise, they will be regarded
as the same airport. Based on the above criteria, the results of
airport detection in the study area are extracted. These methods
of using limitations based on the airport itself are called internal
constraints.

In the runway detection results, the diagonal line in the
detection frame is regarded as the main runway, but the main

direction information of some images did not match the runway
direction in the detection. Based on this phenomenon, the LSD
[48] straight line detection algorithm in the Google images (level
17, and the ground resolution is about 1.2 m) is adopted to
detect straight line segments after which the main direction of the
detected line segments is obtained. To ensure correct detection,
the angle between the main direction and the diagonal direction
in the detection frame should not be excessively large. We extract
the main directions of 28 known airports and calculate the dif-
ference between the main directions and the runway directions.
It was found that the maximum difference between them is 8.5
degrees. Considering the robustness, a coefficient of 2.5 is used
to amplify the allowable difference between the main direction
and the airport runway direction, so the difference boundary
becomes 21.25 degrees. The recommended difference threshold
in this article is 20 degrees. Therefore, a box is eliminated if the
angle is greater than the threshold, otherwise, it is retained.

Similar to the main direction constraint relationship, when
using the spatial distribution relationship constraint, the diagonal
line in the detection frame is also used as the detection result.
The roads and water in the OSM data are computed to constrain
the detection results. Notably, a part of the airport road data is
reflected in the OSM road network data as the service attribute.
Therefore, when calculating the spatial relationship, roads that
do not contain the service attribute are utilized. Considering that
most of the study area is close to the sea and the coastline is also
easily misidentified; therefore, the coastline data from adminis-
trative boundaries are extracted and combined with OSM data
to provide a joint constraint.

In the runway detection results, there are also some unrea-
sonable runway lengths, so some side length constraint rules are
applied to eliminate them. Among the known runway detection
results of 28 airports, the shortest long edge is approximately
1543 m, and the shortest short edge is approximately 150 m.
Considering the existence of some small airports, the coefficient
2.5 is used to scale the long side, so the minimum threshold
for the long side is approximately 620 m, and the minimum
threshold for the short side is approximately 150 m.

For spatial fusion, in contrast to the aforementioned geo-
graphical constraints for individuals, some of the identified
runways are excessively close, so the runways in this situation
are spatially fused; more specifically, runways with a distance
less than a certain threshold are considered as belonging to the
same airport. We set this threshold at 4 km.

III. RESULTS

A. Candidate Area Extraction Results

We extracted 17 930 points from 4 million tiles in the study
area. After obtaining the classification information of the airport
scene in the study area, the geographic information of the airport
scene points in the study area was calculated. Considering
Google image resolution and airport runway length constraints,
an eight-direction connectivity analysis on the airport interest
points in the study area was performed to group adjacent interest
points to achieve spatial clustering of interest points. Finally,
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Fig. 5. Example results of scene classification and post-processing in Jiangsu,
Shanghai, and Zhejiang.

we aggregated 17 930 instances of point information into 9166
spatial groups.

For the spatial group obtained by spatial clustering, if there
were no adjacent points of interest around a certain point of
interest, an isolated point was formed. For such situations, the
spatial range could not cover a complete airport range and was
instead removed. After filtering the 9166 spatial groups for
isolation condition determination, 1284 spatial groups remained.
Fig. 5 shows the example results of several airports after scene
classification and post-processing.

B. Airport Detection and Geographic Analysis Results

After the runway detection model was performed on the 1284
spatial groups, the results with scores greater than the threshold
(0.59 recommended) were saved, and 354 detection boxes were
ultimately obtained as low confidence airports. Based on the
above spatial distribution constraints, main direction constraints,
side length constraints, and spatial fusion, a total of 52 airport
points from 354 runways were extracted. Subsequently, 23 out
of 52 low-confidence airports were detected with aircraft, which
were updated as high-confidence airports.

Fig. 6 shows the recalls of known airports; a total of 27 were
recalled, and one was lost.

C. Systematic Validation

The above calculation framework was used for unknown
airport target detection in the entire 21 9040.5 km2 study area
(Jiangsu, Shanghai, and Zhejiang) by combining deep learning
and comprehensive geographic analysis; as a result, 52 airport
points with different confidence candidate areas were obtained
(see Fig. 7). Through systematic verification, eight airports
were “newly discovered,” 35 of the 52 blocks were correctly
identified, 27 were recalled and 1 was lost from known air-
ports, while 36 airports were obtained manually in the study
area. Among the 35 correctly identified results, there were 23
high-confidence airports, among which 3 were newly discovered
airports, and there were 12 low-confidence airports, of which 5
were newly discovered airports. The known airport recall rate of
these models and framework was 96.4%, and the airport integrity

Fig. 6. Detection results of known airports.

Fig. 7. Framework results and newly discovered airport images.

rate (integrity rate is calculated as the ratio of the number of
airports under this framework to the number of airports searched
visually) was 97.2%; the speed was approximately 20 times
faster than that of a traditional visual search. However, an airport
discovered near a known airport was judged as belonging to the
same candidate area if the distance between the two was less than
the threshold. Finally, a relatively complete and correct airport
point database for the study area was obtained. The specific
situation is summarized in Fig. 7, and the newly discovered
airport images are tagged.
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TABLE III
RUNNING EFFICIENCY STATISTICS

D. Running Efficiency Statistics

In Table III, we have calculated the running efficiency of
the framework in this article and compared the results of direct
runway detection in the study area and those of traditional visual
searches. The results show that the combined methods utilized
in this framework are superior to direct runway detection and
traditional visual search. Although traditional visual searches
are guaranteed to find all airports, they can be extremely time-
consuming.

IV. DISCUSSION

A. Performance of the Models in This Framework

For the scene classification model in the candidate area ex-
traction, the network structure of the ImageNet pretrained model
was frozen, and the newly added layers were trained in the early
20 epochs of training. At this stage, the learning rate was set
to 0.001. In the later stage of training, the learning rate was
adjusted to 0.00005 while the frozen network was thawed and
the training continued. Finally, we trained 36 epochs to obtain
the scene classification model of the study area; its training loss,
training accuracy, verification loss, and verification accuracy
were 0.0301, 0.9920, 0.0351, and 0.9888, respectively. The
dropout regularization parameter was set to 0.5 for the entire
training process.

TABLE IV
PERFORMANCE OF THE MODELS

A total of 22 674 tiles were selected as testing samples.
Of those, 15 513 negative samples were within the study area
and 93 positive samples were around the study area, which
were increased to 7161 according to the augmentation meth-
ods mentioned in the framework. After sample testing, 15 438
negative samples are correctly classified and 5775 positive
samples are correctly classified; therefore, the overall accuracy
was 93.6% and the recall rate of the runway tiles was 98.7%.
The performance of the runway detection model and aircraft
detection model are shown in Table IV according to [3] and
[47], respectively.

B. Airport Loss and Errors

Twenty-eight airports with evident runways in the study area
were obtained from the public database of OA; however, only
27 known airports were ultimately recalled, and one was lost in
Shanghai. In the “missing” airport, the position of the runway
box was easily recognized while performing runway detection.
However, the “secondary” roads near the airport (considered
“secondary” based on the accuracy of the data) caused the
road network and the actual roads to have a large difference
in geographic location when the road network in the OSM
data was used for spatial distribution constraints. Thus, the
runway crossed the road, and the airport was mistakenly lost. We
also found that general misidentification mainly included water
canals, rivers, roads, etc. The Jiangsu-Zhejiang region has been
known as the “land of fish and rice” since ancient times, and
its irrigation canals, rivers, roads, and other economic factors
have been relatively developed. However, this kind of data is
excessively detailed. The width of the general irrigation channel
is only approximately 1 m; thus, it cannot be easily reflected in
the OSM data. Moreover, some river elements are not complete
in the OSM data, and thus, the results cannot be constrained for
the missing data.

In summary, several detection errors were caused by the
specific development of the study area and the quality of data. If
the refined data of the study area can be obtained, the detection
accuracy will improve.

C. Geoscience Restraint Ability

This section focuses on the analysis of the constraint ability
of different geographic data or geographic thresholds on the
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Fig. 8. Constraint abilities of different methods.

Fig. 9. Result changes under different steps.

detection results. The sequences of different steps did not af-
fect the results, ultimately, the restraint ability of the different
methods is what is important. As shown in Fig. 8, the constraints
are expressed under the results of different geographic analysis
calculation methods: after only the main direction constraint
was applied, the remaining runway results numbered 263; the
resulting numbers solely constrained by the road space distri-
bution, the water system’s spatial distribution, the coastline’s
spatial distribution, the side length, and spatial fusion were 192,
279, 310, 175, and 281, respectively.

A progressive method was taken to constrain the runway
results and different constraint methods overlapped. Based on
the steps in this study, the changes in the number of remaining
runways, the recall rate of known airports, and the accuracy
of extracted results are shown in Fig. 9. The final systematic
verification is to ensure the absolute correctness of the extraction
results.

D. Geographical Differences With Scene Classification Model

Owing to the influences of various economic, cultural, ge-
ographical, and other comprehensive factors, different regions
exhibit unique surface differences, and their airport construction
and development levels are also highly variant, as shown in

Fig. 10. Results of the proposed scene classification model in 19 counties of
Japan.

Fig. 8. To study the prediction ability of the scene classifica-
tion model in other regions, we conducted scene classification
experiments on 19 counties of Japan (as shown in Fig. 10). In
the OA database, there are 52 airports with evident runways in
the studied regions of Japan.

Fig. 10 demonstrates that some airports were correctly clas-
sified, which meant that the scene classification model first
trained within the study area of this research had a certain
positive effect on detection accuracy in other areas. However,
some airport scenes were not correctly identified, which caused
several potential airports to be lost, while others were incorrectly
identified. We posit that the accuracy will positively correlate
with surface differences owing to different factors such as geog-
raphy, economy, and culture. In using the proposed framework,
the applicability of the model between different regions must
comprehensively consider the differences between regions, and
the quantitative expression of these differences requires further
study.

V. CONCLUSION

We proposed a framework for unknown airport detection in
broad area scenes. The framework combined with deep learning
and geographic analysis calculations formed a relatively com-
plete and current database of airports in the research area. The
proposed framework improved the discovery rate of airports
with varying confidence in the target area, which, in turn, ex-
panded the known airport database and broadened the potential
applications of deep learning in the field of remote sensing. In
future research, we will use our methodology to perform airport
detections globally.
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The accuracy of the framework is easily constrained by geo-
graphic data. Relatively high-quality data and models are the
keys to achieving a high-precision framework. Concurrently,
model migration in different regions is affected by the surface
coverage, and we believe that the main reasons for this phe-
nomenon are the influences of geography, economy, and cultural
factors. Determining how to divide the geographic space, how
to build the most universal model possible, and studying the
generalization ability of data and models are all topics in need
of further study.

In general, the proposed framework can improve airport detec-
tion rates in a broad area and the quality and quantity of existing
data. In addition, it provides technical ideas for searching for
other large targets in broad areas and has a certain reference
value.
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