6624

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Spectral Shift Mitigation for Cross-Scene
Hyperspectral Imagery Classification
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and Ran Tao

Abstract—In cross-scene hyperspectral imagery (HSI) classifica-
tion, labeled samples are only available in source scene, and how to
properly reduce the spectral shift between source and target scenes
is a matter of concern. In this article, we investigate this issue by
considering the causes of the spectral shift and propose spectral
shift mitigation (SSM) that includes amplitude shift mitigation
(ASM) and adjacency effect mitigation (AEM). First, in ASM,
the amplitude shift between source and target scenes is reduced
by employing amplitude normalization on pixels of both source
and target scenes. Then, in AEM, the spectral variation of target
scene caused by adjacency effect is reduced by taking the weighted
average spectral vector of surrounding pixels of a query pixel as the
new spectral vector of the query pixel. Finally, a classifier trained by
labeled samples from source scene is used for target scene. Superior
classification performance on several cross-scene HSI data pairs
demonstrates the effectiveness of the proposed SSM.

Index Terms—Adjacency effect, amplitude normalization (SN),
amplitude shift, cross-scene hyperspectral imagery classification,
hyperspectral imagery (HSI).

I. INTRODUCTION

YPERSPECTRAL imagery (HSI) is an important source

for land use and land cover classification in pixel level
due to its abundant reflectance spectral information [1]-[13].
In HSI classification, to classify a scene correctly, sufficient
labeled samples in the same scene are generally required. How-
ever, it is impractical and uneconomic to label new samples
whenever classifying a new scene since labeling process is
labor-consuming and time-costing. Meanwhile, different scenes
may share same classes, and these labeled classes in source
scene may share similar properties with the same classes in
target scene. It is a nature to hope that the information from
labeled samples in source scene can be exploited in target scene.
This task is called cross-scene HSI classification, which aims to
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utilize the annotation information in source scene to help target
scene classification.

One may consider directly using the labeled spectral signa-
tures in source scene to train a classifier to classify target scene.
This is a straightforward choice as spectral features in source
and target scenes are in the same bands. However, spectral
signatures belonging to the same land cover class may vary
in different scenes, i.e., spectral shift. It is mainly caused by
atmospheric and illumination condition, sensor nonlinearity, ad-
jacency effect, seasonal variations, and variation in the material
with time [14]-[20].

The problem of cross-scene HSI classification can be con-
sidered to be in the field of domain adaptation. For domain
adaptation, many methods have been proposed in recent years
and can be divided into three categories: Statistical alignment,
subspace learning, and active learning. From the statistical
perspective, the spectral shift is alleviated by reducing distri-
bution difference between source and target scenes. To alle-
viate the distribution bias between source and target scenes,
the usual way is to minimize the discrepancy of the statistics
between source and target scenes. For the first-order statistic
alignment, maximum mean discrepancy (MMD) criterion is a
widely used technique [21]-[27]. Sun et al. [25] introduced
multiple-kernel learning to simultaneously minimize MMD and
the structural risk functional of support vector machines. Matasci
et al. [26] introduced transfer component analysis (TCA) and
semisupervised TCA [21] to cross-scene HSI classification and
obtained acceptable cross-scene classification performance. By
minimizing MMDs of marginal and conditional distributions
simultaneously, Sun et al. proposed joint distribution adaptation
(JDA) [24]. Peng et al. [28] proposed discriminative trans-
fer joint matching (TJM) by embedding label information in
TIM [29]. Xia et al. [27] proposed ensemble of TCA by incorpo-
rating TCA with a rotation-based ensemble strategy. For higher
order statistics, Sun et al. [30] proposed CORAL by aligning
correlation of source and target scenes. Ma et al. [31] proposed
a method called class centroid and covariance alignment, where
the first- and second-order statistics are aligned on a per-class
basis.

From the subspace learning perspective, source and target
scenes have a common subspace where labeled samples of
source scene are sufficiently informative to discriminate con-
cerned classes in target scene. Most subspace learning meth-
ods learn the common subspace by aligning the geometrical
structures of source and target scenes. Ye et al. [32] proposed
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multitask joint dictionary learning scheme to learn a common
dictionary for source and target scenes in feature extraction
level, and proposed a multitask sparse logistic regression (SRL)
in classifier level to further improve cross-scene classification
performance. Samat et al. [33] introduced geodesic flow kernel
(GFK) [34] to cross-scene HSI classification, where an infinite
number of subspaces that characterize changes from source
scene to target scene are integrated. By combining GFK with
multiple kernel learning and spatial features—extended multi-
attribute profiles (EMAPs), spectral-spatial multiple geodesic
flow kernel learning (S2-MGFKL) was proposed in [35]. Some
subspace learning methods are more complex. Stratified transfer
learning (STL) [36] learns the common subspace on a per-class
basis by exploiting the intraaffinity of classes basis, and the
strategy of major voting of different classifiers (KNN, SVM,
and random forest) is also utilized. By minimizing distribution
shift and subspace shift simultaneously, joint geometrical and
statistical alignment (JGSA) was proposed in [37]. Manifold
embedded distribution alignment (MEDA) was proposed to
learn the common subspace by incorporating manifold con-
straint into distribution alignment [38]. Ghifary et al. proposed
scatter component analysis (SCA) to learn the common subspace
by minimizing between-domain and within-class scatter, and
maximizing total scatter and between-class scatter simultane-
ously [39]. From the active learning perspective, based on the
classifier initially trained by labeled samples in source scene,
samples in target scene are selected iteratively as new train-
ing samples to improve cross-scene classification performance.
In [40], two strategies based on uncertainty and clustering of
the data space were introduced to perform sample selection
under their corresponding heuristics. In [41], two queries were
created. One is to select samples in target scene as new training
samples that minimize the difference between the largest and the
second largest class-conditional densities. The other is to delete
labeled samples in source scene that maximize the difference
between the initial class-conditional densities trained only by
labeled samples in source scene and the current class-conditional
densities.

In recent years, deep learning-based domain adaptation meth-
ods have been attracting a lot attention, and they combine the
techniques used in the traditional methods with deep artificial
neural networks. Deep adaptation network (DAN) used multiple
kernel MMD (MK-MMD) to align the deep features of source
and target domains [42]. By combining CORAL with neural
network, deep-CORAL was developed [30]. More recently, deep
subdomain adaption network (DSAN) was proposed by aligning
the newly defined subdomains with local MMD (LMMD), where
pseudosoft label information was utilized [43].

However, domain adaptation methods of distribution align-
ment, subspace learning, and active learning mentioned above
blindly align source and target domains without considering the
causes of the discrepancy between source and target domains.
This issue also arises in learning-based domain adaptation neural
networks mentioned above although deep features can be learned
from these networks. As a result, some problems may occur
in cross-scene HSI classification. For example, if no spectral
shift exists between source and target scenes, labeled samples in
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source scene can be well utilized to help target scene classifica-
tion, and any domain adaptation technique seems unnecessary.
However, if label distributions of source and target scenes are
completely different, the marginal distributions of source and
target scenes are naturally different. For widely MMD-based
methods, this discrepancy should be narrowed. As a result,
the marginal distributions of the transformed features in source
and target scenes become similar, but to do so the transformed
features of one class in source and target scenes become different
inevitably. Let us take a simple example: Scene A has 100 red
and 10 blue balls, while scene 13 has 10 red and 100 blue balls. To
make the marginal distribution of scene I3 similar to that of scene
A, a straightforward transformation is to take red balls in scene
B as “blue” while blue balls as “red.” Consequently, the intrinsic
colors of scene 53 have changed, i.e., the meanings of one color
(red or blue) in scenes A and B after transformation become
different. For cross-scene HSI classification, this transformation
induces new “spectral shift,” and thus, deteriorates cross-scene
HSI classification performance.

In this article, by tackling spectral shifts directly, which are
the causes of the discrepancy between source and target scenes,
a method called spectral shift mitigation (SSM) is developed,
including amplitude shift mitigation (ASM) and adjacency effect
mitigation (AEM). By conducting some spectral imaging exper-
iments on man-made materials, and studying some public HSI
datasets, itis observed that the shape of spectral curve of the same
class is stable but the amplitude varies considerably over scenes.
In ASM, amplitude normalization (AN) with that the spectral
vector is normalized to have unit /; -norm, is proposed to mitigate
the amplitude shift. Furthermore, since a hyperspectral sensor
gathers not only the directly reflective power from a query pixel
but also the indirectly diffuse powers from its adjacent pixels
in the scene, the spectral curve of the query pixel is affected by
these adjacent pixels, i.e., the spectral shift or variation caused
by adjacency effect [18]. This considerable variation of spectral
curves in target scene may degrade cross-scene classification
performance. In AEM, the weighted average spectral vector of
surrounding pixels to a query pixel with affinity coefficients as
their weights, is taken as the new spectral vector of the query
pixel.

The main contributions of this article are listed as fol-
lows: 1) By reducing spectral shifts directly, two strategies
are proposed to improve the performance of cross-scene HSI
classification. One strategy is to reduce the amplitude shift,
and the other is to reduce the spectral shift on target scene
caused by adjacency effect. 2) Based on the first proposed
strategy, ASM is developed to reduce amplitude shift that may
be a large spectral shift between source and target scenes.
3) Based on the second strategy, AEM is implemented on
target scene to reduce the spectral shift caused by adjacency
effect.

The remainder of this article is organized as follows. Section I1
shows the observation on some spectral imaging experiments
and public HSI datasets. Section III explicitly explains the
proposed SSM. Experimental results are shown in Section IV
to demonstrate the superior performance of SSM. In Section V,
we conclude this article.
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Fig. 1.

Pseudocolor maps, spectral curves without AN, amplitude histograms and spectral curves with AN for different man-made materials in different illumination

conditions: (a), (b), (c), (d) Reference panel illuminated by sunlight; (e), (f), (g), (h) Reference panel illuminated by halogen lamp; (i), (j), (k), (1) White paper
illuminated by sunlight; (m), (n), (0), (p) White paper illuminated by halogen lamp.

II. AMPLITUDE SHIFT IN HSI

In this section, we conduct experimental observations on four
HST datasets acquired by our group and on one public cross-
scene HSI data pair. From the experiments one can see that
the shape of spectral curve of one material is stable while the
amplitude varies dramatically over scenes. This phenomenon is
defined as amplitude shift.

A. Amplitude Shift in Man-Made Materials

The four HSI datasets are reference panel by sunlight,
reference panel by halogen lamp, white paper by sunlight,
and white paper by halogen lamp. They are all acquired by

SOC-170 Hyperspectral Imaging System indoor (by halogen
lamp), or outdoor (by sunlight) by our group. Note that the
incident flux of sunlight or halogen lamp is guaranteed to
be almost invariant over all pixels. Reference panel is one
attachment to SOC-170, and white paper is the usual paper
for printing. They all consist of 656 x 520 pixels and 128
spectral bands covering 0.43-1.20 um. The pseudocolor im-
ages of the four datasets are shown in Fig. 1(a), (e), (i), (m),
respectively, and generated by the images of bands 13, 35,
and 64. The spectral curves of the four datasets are shown in
Fig. 1(b), (), (j), (n), respectively, where spectral curves of
100 random samples instead of all samples are depicted to save
storage.
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Since every part of reference panel (or white paper) is made of
the same elements, all pixels of reference panel (or white paper)
are considered as one material. However, from Fig. 1(a), (e), (i),
(m), the colors of pixels vary considerably, and pixels in different
colors seem to represent different materials. Furthermore, as
shown in Fig. 1(b), (f), (j), (n), the corresponding spectral curves
of pixels of reference panel or white paper vary dramatically,
and it is hard to recognize them as one material. Let us define
amplitude of a pixel as the integral (continuous spectral curve)
or sum (discrete spectral curve) of the spectral curve of a pixel.
Divided by their amplitudes, i.e., under AN as shown in Fig. 1(d),
(h), (D), (p), the spectral curves of all pixels in each dataset
become almost consistent and indistinguishable. This means that
the variation of the original spectral curve of one material can
be absorbed by AN. From the histograms generated by using all
pixels of the corresponding four datasets as shown in Fig. 1(c),
(2), (k), (0), the amplitudes of pixels vary considerably. This
shows that the shape of spectral curve of one material is nearly
invariant but the amplitude varies considerably. Moreover, from
Fig. 1(b), (), (j), (n), not only spectral curves but also amplitude
histograms of one material under different illumination condi-
tions (sunlight and halogen lamp) are noticeably different, but
with AN to reduce the amplitude shift, spectral curves of the
same material become similar. This means that the distributions
of amplitude of one material under different illumination con-
ditions may be different. This kind of spectral shift is defined as
amplitude shift. By reducing amplitude shift, we can not only
reduce the difference of pixels of one material under the same
illumination condition but also reduce the discrepancy of pixels
of the same material under different illumination conditions.
Therefore, reducing amplitude shift in source and target scenes
seems to be important for cross-scene HSI classification. Any
normalization that can reduce amplitude shift can help obtain
more invariant features. For example, besides AN, length nor-
malization (LN) that normalizes a spectral vector to have unit
l2-norm is a good normalization method for reducing amplitude
shift as well.

B. Amplitude Shift in Public HSI Datasets

In last subsection, man-made materials are studied to show
the amplitude shift of one material. Here, public HSI datasets
are studied to further confirm the observation. Houston data
pair is chosen and it consists of Houston2013 and Houston2018
datasets [44], [45]. Houston2013 was gathered by the CASI-
1500 sensor over the University of Houston campus and neigh-
boring areas in June 2012. It consists of 349 x 1905 pixels
with spatial resolution of 2.5 m and 144 spectral bands in the
wavelength range 0.38-1.05 ym. Houston2018 was captured by
the ITRES CASI-1500 sensor over the University of Houston
campus in February 2017. It consists of 601 x 2384 pixels with
spatial resolution of 1 m and 48 spectral bands in the wavelength
range 0.38 — 1.05 um. To make Houston2013 consistent with
Houston2018, seven classes are chosen, 48 bands are extracted,
and an overlapping area of 210 x 954 with Houston2018 is
selected. The labeled samples of Houston2013 and Houston2018
are shown in Table I.
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TABLE I
CLASS DISTRIBUTION OF SAMPLES FOR HOUSTON DATA PAIR
No. Class Name Houston2013  Houston2018

1 Grass healthy 345 1353
2 Grass stressed 365 4888
3 Trees 365 2766

4 Water 285 22
5 Residential buildings 319 5347
6 Non-Residential buildings 408 32459
7 Road 443 6365
Total 2530 53200

Considerable amplitude variation exists in one scene as de-
picted in Fig. 2(a). There are two kinds of spectral curves of
water in Houston2018 dataset, and they are appreciably dif-
ferent. From Fig. 2(b), after performing AN, their difference
is significantly narrowed. From Fig. 3(a), amplitude variation
is more considerable between different scenes. Mean spectral
curves of water in Houston2013 and Houston2018 datasets are
significantly different due to amplitude shift. After performing
AN, the difference is also narrowed visibly in Fig. 3(b). Com-
paring amplitude histograms of Houston2013 and Houston2018
datasets in Fig. 3(c) and (d), they are noticeably different. It can
be expected that better cross-scene classification performance
can be obtained when amplitude shift is alleviated.

C. Analysis of Amplitude Shift

Although many causes of spectral shift have been described in
the Introduction, the only cause that may be related to amplitude
shift is illumination condition, where amplitudes of sunlight in
different parts of one material are different. As is known, the
spectral curve of a pixel is reflectance curve. The reflectance R
is defined as the ratio of reflected flux F;. to incident flux F; to
the pixel [46], i.e.,

F.(4)
Fi(A)

R() = %))
where A is wavelength and R(4) is wavelength-related. It may be
impractical and uneconomic to measure incident flux F; of every
pixel. Generally, for convenience we may assume that incident
flux F; is invariant for every pixel. However, in fact, incident
flux F; may vary over pixels. Due to the neglect of variation
of incident flux to different pixels, the reflection curves of one
material may be different over pixels, resulting in amplitude
shift.

However, the amplitude shift brought by the difference of
incident flux can be actually ignored in some situations. For
example, for remote sensing images, the incident flux to all
pixels can be regarded as equal since the source of incident
light is sunlight. Another example is the illumination condition
of the four HSI datasets gathered by our group. For every pixel,
the incident flux of sunlight or halogen lamp is guaranteed to be
almost invariant over pixels, but the phenomenon of amplitude
shift is still present in all four datasets. Therefore, a primary
cause for amplitude shift should be explored. This primary cause
is the geometrical structure of the surface of a material, and more
precisely, the smoothness of the surface.
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Spectral curves of water in Houston2018 dataset. (a) Spectral curves of water in original Houston2018 dataset. (b) Spectral curves of water with AN in

Houston2018 dataset. (c) Spectral curves of water with AN in Houston2018 dataset after performing AEM.
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Houston2018 datasets. (c), (d) Mean spectral curves of healthy grass without and with AN in Houston2013 and Houston2018 datasets. (e), (f) Amplitude histograms

of Houston2013 and Houston2018 datasets, respectively.

Suppose that there are two panels with the same material, but
the surface of one panel is smoother than that of the other. Since
the reflection of the smoother panel is closer to mirror reflection
while that of the rougher one is closer to diffuse reflection, the
average of image intensity of the smoother panel is greater than
that of the rougher one, though illuminated by the light of the
same amplitude. By (1), the reflectance of the smoother panel is
greater than that of the rougher one. Since they are made of the
same material, the ratio of reflectance of the smoother panel to
that of the rougher panel should be the relative smoothness of
the smoother panel to the rougher panel, and it is independent
of wavelength A. As a result, amplitude shift happens between
pixels of one class with different smoothness.

III. PROPOSED SSM FRAMEWORK

In this section, the motivation for the proposed SSM is intro-
duced. Then, the flowchart of the proposed SSM is described,
including ASM and AEM processes as shown Fig. 4.

A. Motivation

As pointed out in the Introduction, the difficulty of cross-
scene HSI classification lies in the spectral shift problem caused
by many factors. However, the spectral shift caused by atmo-
spheric and illumination condition, and sensor nonlinearity is
commonly alleviated in the preprocessing stage. The first step
is to perform radiometric correction for at-sensor reflectance.
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To correct for atmospheric degradations, illumination effects,
and sensor response differences, a scene-to-scene radiometric
normalization technique was proposed in [14]. BRDF effects
correction (BREFCOR) is another method for radiometric cor-
rection [47]. It improves the consistency of surface reflectance
products and is applicable for various kinds of imaging spec-
trometer systems and surface characteristics. In the second step,
at-sensor reflectance values should be converted to the bottom
of atmosphere reflectance values. This is commonly done by
some methods, such as ATCOR-4 [48] and MODTRAN [49].
In general, original HSI data gathered by sensors has been
already processed by some of these methods before it is used
in subsequent HSI-based tasks, including HSI classification. By
these methods, the discrepancy between source and target scenes
has been already reduced to some extent.

Although these methods have alleviated the spectral shift
caused by atmospheric and illumination condition, and sensor
nonlinearity in the preprocessing stage, one spectral shift, i.e.,
amplitude shift caused by the geometrical structure of surface,
has not been alleviated. As a result, the amplitude distributions
of source and target scenes are quite different. To improve
cross-scene HSI classification performance, amplitude shift has
to be alleviated. The proposed SSM is a method to mitigate the
amplitude shift caused by geometrical structure of surface, and
consequently the discrepancy between source and target scenes
is further reduced.

Furthermore, the spectral shift caused by adjacency effect
as explained in the Introduction should be mitigated as well
since considerable spectral variation of target scene may degrade
cross-scene classification performance. By reducing the spectral
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Flowchart of the proposed SSM framework, including ASM and AEM processes.

variation of one class over pixels in target scene, the proposed
SSM is a method to alleviate the spectral shift caused by adja-
cency effect so that better cross-scene classification performance
can be obtained.

B. Proposed SSM

HSI is a 3D tensor H € RTX”Xd, where R is the set of
real numbers that are larger than or equal to zero, m and n
are the height and width, respectively, and d is the number of
spectral bands. For pixel-wise hyperspectral classification, we
convert the 3D image into pixel-wise 2D matrix X = [x;] €
R‘f M withx; € ]Ri. In the last section, we described a spectral
shift—amplitude shift that the shape of hyperspectral curve of one
material is nearly invariant but the amplitude varies considerably.
Another spectral shift is that the spectral curve of a pixel of one
class is affected by nearby pixels of different classes in the scene,
i.e., the spectral shift caused by adjacency effect. The proposed
SSM that includes ASM and AEM processes is to mitigate the
two kinds of spectral shifts.

For the amplitude shift, if x; belongs to one class, X; = ax;
belongs to the same class with a constant a > 0 as the amplitude
shift coefficient. To reduce the amplitude shift for cross-scene
HSI classification, LN and AN can be applied as we shall see
below. Note that LN was used in some works of HSI classi-
fication [3], [5], where they obtained satisfying classification
performance, but its effect to reduce amplitude shift was not di-
rectly mentioned. AN is proposed here for the first time to reduce
amplitude shift for cross-scene HSI classification. Suppose the
normalized dataare Y = [y;] € RT*™" withy; € R¢.ForLN,
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Algorithm 1: Proposed SSM Algorithm.

Input: Source data S = {s;}[*., € R, target data
X ={x; };VZI € R?, neighborhood radius w, iterative
times n; of AEM on target scene.

Step 1: Performing AN according to (5) on pixels of
source and target scenes, and the results of source and
target scenes are 8’ = {s/;}_| € RY and
Y = {y;}}L, € RY, respectively;

Step 2: Initialing Z(¥ =Y = {y; }}*;;

Fori:=1ton,

Step4: Y = Z(-1);

Step 5: Z(V) = {z, }évzlis obtained according to (6)—(9);

End For;

Step 6: Z = Z(");

Output: The processed source and target data S” and Z,
respectively.

a spectral vector is normalized to have unit /5-norm, i.e.,

X; Xi

YT xills ~  ~ed ;
Zb:1‘xib|

where z;;, is the reflectance of band b. Clearly, after performing
LN, %X; as amplitude shift version of x; becomes

©))

A

X; Xi

X; - d .
H z||2 szl \l‘ib|2

yi=

ax;

Vb laza|?

X

7(1 =Y
V 2=t |l

where amplitude shift a is eliminated by LN. For AN, a spectral
vector is normalized to have unit [ -norm, i.e.,

3

o Xi o Xi
il S0 ||

Similar to LN, after performing AN, X; as amplitude shift
version of x; becomes

Vi 4

)A(i X

/ i
y.: — = -
BT SE I
ax;
T —d
> p—1 lazi]

__® s

Sl ©
where amplitude shift a is eliminated by AN as well. For the
amplitude shift mitigation, instead of the above LN and AN,
using other norms is fine too. However, from the following, we
will see that AN is unique for our proposed SSM algorithm.
Also note that the above LN and AN may apply not only to
nonnegative valued input x; but also to general complex-valued
input x;.
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For the adjacency effect, the spectral vector of a query pixel of
one class is affected by its surrounding pixels. These surrounding
pixels include pixels of the same class and pixels of different
classes. The pixels from different classes generate spectral shift
for the query pixel while the pixels from the same class help
reduce spectral shift. Obviously, to reduce the spectral shift
caused adjacency effect, the effect of pixels of the same class
should be augmented while that of different classes should be
reduced. One natural way to realize this is to take the average
spectral curve of the surrounding pixels of the same class as the
new spectral vector of the query pixel. However, this method
is unrealizable since the classes of the surrounding pixels are
not provided. One way to deal with this problem is to take the
weighted average spectral vector of all the surrounding pixels as
the new spectral vector of the query pixel, and the corresponding
weights are the affinity coefficients of the surrounding pixels
with the query pixel. This is based on the fact that adjacent pixels
with large affinity coefficients belong to the same class with high
probability. As a consequence, the effect of surrounding pixels
that are more likely to be in the same class with the query pixel
is augmented. In AEM, for a query pixel y;, the new spectral

vector is

Yi€Nw(y4)

z; = w;y; (6)

where V,,(y;) is a set of spatially adjacent pixels of y; with
neighborhood radius of w, and the weight or affinity coefficient
w; of y; belonging to N,,(y;) satisfies

J

and
1/dj
w; = ®)
! ZykENw(yi) 1/dk
with
d
dj = \[ Y lyiv — vl &)
b=1

From (6), z; is closer to the surrounding pixels with higher
affinity coefficients since they have more weights. Therefore,
AEM makes the query pixel closer to the surrounding pixels that
are more likely to be in the same class with query pixel. However,
a satisfying result may not be obtained by performing AEM for
one time. To reduce the spectral shift caused by adjacency effect
more effectively, we can perform AEM iteratively for n; times,
i.e., performing AEM again on the last result of AEM repeatedly
for n, times. Consequently, the query pixel is closer and closer
to the surrounding pixels that are more likely to be in the same
class during the iteration, and the effect of these surrounding
pixels is further augmented. To show the effect of AEM to reduce
the variation of target, spectral curves of water in Houston2018
dataset before and after performing AEM are depicted in Fig. 3
(b) and (c), respectively, where several curves cluster into one
curve, significantly reducing the variation of spectral curves of
water in Houston2018 dataset.
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From (8) and (9), if ASM is not implemented first, affinity
coefficients calculated by the original data cannot truly reflect
the affinities between the query pixel and its surrounding pixels
due to amplitude shift. Therefore, ASM has to be implemented
first to ensure a satisfying calculation in affinity coefficients. In
ASM, a suitable normalization method that incorporates AEM
needs to be considered. It is natural to require that the normalized
data after implementing AEM should still remain normalized.
For example, according to this requirement, length-normalized
data after implementing AEM should still have unit /5-norm.
However, according to the triangular inequality

lzilla =1 > wyjll
Vi €Nw(yi)
< D wllylle

V€N (yi)

ZZU)J‘:1

J

(10)

where the equality can be obtained only when for all vectors
y; in the neighborhood N,,(y;), all vectors w;y; have the
same direction. This clearly may not hold in general. Thus, LN
cannot meet the requirement. On the contrary, AN satisfies this
requirement naturally as the /1 -norm of the normalized data with
AN after implementing AEM is still unit, i.e.,

>

y;'GNw(Yi)

d
=2 X ww

b=1|y;€Nu(yi)

>

Vi €Nw(yi)
> wi=1
J

where the second equality is based on the fact wj, 1;, > 0.
Therefore, AN is a natural choice for ASM. In fact, from the
above analysis it is not hard to see that our newly proposed AN
is the only choice to keep the the unit norm after AEM among
other commonly used norms.

The overall description of the proposed SSM is given as
Algorithm 1. First, ASM by AN is exerted on both source and
target scenes to reduce the spectral shift caused by amplitude
shift between source and target scenes. Then, AEM is performed
on target scene to further reduce the spectral shift caused by
adjacency effect. Finally, a classifier trained by labeled samples
in source scene is used for target scene classification.

||zill1 = || w5yl

w;lly;lh

Y

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the proposed SSM is utilized on two cross-
scene HSI data pairs to validate its effectiveness in cross-scene
HSI classification. First, these two HSI data pairs are intro-
duced, including Houston data pair, and Shanghai—-Hangzhou
data pair. Second, the impact of neighborhood radius w and
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TABLE II
CLASS DISTRIBUTION OF SAMPLES FOR SHANGHAI-HANGZHOU DATA PAIR

No. Class Name Shanghai  Hangzhou
1 Water 123123 18043
2 Land/Building 161689 77450
3 Plant 83188 40207
Total 368000 135700

iterative times n; of AEM on the cross-scene classification
performance is quantified by the classical SVM classifier [1].
For each data pair, one dataset can be used as source, and
the other can be used as target. Then, we have four cases
of cross-scene classification, i.e., Houston2013—Houston2018,
Houston2018—Houston2018, Shanghai — Hangzhou, and
Hangzhou — Shanghai. Finally, based on SVM classifier, ex-
periments of SSM on the four cases of cross-scene classifi-
cation are carried out in comparison with several traditional
and state-of-the-art algorithms for cross-scene classification,
including traditional SVM, CORAL [30], TCA [21], JDA [24],
JGSA [37], MEDA [38], SCA [39], STL [36], and DSAN [43].
The class-specific accuracy (CA), overall accuracy (OA), aver-
age accuracy, and Kappa coefficient are employed to evaluate
cross-scene classification performance.

A. Experimental Data

1) Houston Data Pair: The first cross-scene HSI data pair
is Houston data pair, including Houston2013 and Houston2018
datasets. The explicit introduction has been given in the previous
section, and their false-color images and ground truth maps
are given in Fig. 5, including the one-to-one correspondence
between false colors and classes.

2) Shanghai-Hangzhou Data Pair: The second cross-scene
HSI data pair is Shanghai—Hangzhou data pair, including Shang-
hai and Hangzhou dataset [32]. They both were captured by
the EO-1 Hyperion hyperspectral sensor [40]. Each of them
consists of 198 bands after removing bad bands. Shanghai
dataset was captured in April 2002 over Shanghai and consists of
1600 x 230 pixels. Hangzhou dataset was acquired in November
2002 over Hangzhou and consists of 590 x 230 pixels. Each
contains three classes, including water, land/building, and Plant.
The numbers of labeled samples in the two datasets are listed
in Table II, and their false-color images and ground truth maps
are given in Fig. 6, including the one-to-one correspondence
between false colors and classes.

B. Parameter Tuning

SSM is related to two parameters, i.e., neighborhood
radius w and iterative times n; of AEM. We conduct
the parameter tuning experiments on the four cases of
cross-scene classification, i.e., Houston2013—Houston2018,
Houston2018—Houston2018, Shanghai — Hangzhou, and
Hangzhou — Shanghai. For all cases, neighborhood radius w is
chosen fromset { 1,2, 3,4, 5, 6,7}, and the other parameter n; is
alsochosenfromset {1,2,3,4,5,6,7}. From Fig. 8, forall cases,
the cross-scene performance is acceptable for wide ranges of w
and n;. Compared with Shanghai—-Hangzhou datasets, Houston
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Unlabeled Grass healthy Grass stressed Tree

Fig. 5.
Groundtruth map of Houston2013. (d) Groundtruth map of Houston2018.

Residential Non-residential

Water building building Road

False-color images and groundtruth maps of Houston data pair. (a) False-color image of Houston2013. (b) False-color image of Houston2018. (c)

Water

Fig. 6.

Ground/Buiding

Plant

False-color images and groundtruth maps of Shanghai—-Hangzhou data pair. (a) False-color image of Shanghai dataset. (b) False-color image of Hangzhou

dataset. (c) Groundtruth map of Shanghai dataset; (d) Groundtruth map of Hangzhou dataset.

datasets are adaptive to relatively large neighborhood radius
and more iterative times of AEM. This is because that Houston
datasets as urban HSI datasets are more complex, and thus, can
benefit a lot from more iterative times of AEM and larger neigh-
borhood radius. After the fine-tuning of parameters {w, n; }, the
best parameters for four cases are chosen as {5, 7}, {5, 2}, {1,
2}, and {1, 2} in subsequent experiments, respectively.

C. Cross-Scene Classification Performance

To validate the effectiveness of the proposed SSM, four
experments are conducted in comparison with the aforemen-
tioned methods. Four cases, i.e., Houston2013—Houston2018,
Houston2018—Houston2018, Shanghai — Hangzhou, and
Hangzhou — Shanghai, are listed in Tables III - VI, respectively.
The best results are shown in boldface. Since some algorithms

like TCA, JDA employ LN as preprocessing, we remain un-
changed as described in the original literatures. All methods use
SVM as their classifiers.

In all experiments, we can see that cross-scene classification
performance of SVM classifier trained directly by the labeled
data in source scene is poorer than most other algorithms.
This suggests that the discrepancy between source and tar-
get scene exists, and it deteriorates cross-scene classification
performance. Furthermore, compared with subspace learning
algorithms, distribution alignment algorithms are more stable.
This can be seen from Tables I1I-VI that distribution-alignment-
based algorithms CORAL, TCA, and JDA averagely outperform
JGSA, MEDA, SCA, and STL. This is because methods like
JGSA, MEDA, SCA, and STL are more complex and have
many hyperparameters to tune, and different hyperparameters
result in considerably different classification performance. As
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Fig.7. Parameter tuning of w and n for the proposed SSM in four experiments. (a) Houston2013—Houston2018. (b) Houston2018—Houston2013. (c) Shanghai
— Hangzhou. (d) Hangzhou — Shanghai.
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Fig. 8.  Cross-scene classification maps by different methods in Houston2013—Houston2018. (a) SVM (72.67%). (b) CORAL (78.27%). (c) TCA (81.76%). (d)
JDA (79.24%). (e) JGSA (69.35%). (f) MEDA (38.22%). (g) SCA (53.70%). (h) STL (69.77%). (i) DSAN (70.83%). (j) SSM (86.47%).
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TABLE III
CROSS-SCENE CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS ON THE CASE HOUSTON2013—HOUSTON2018

Method || SVM [1] | CORAL [30] | TCA [21] | JDA [24] | JGSA [37] | MEDA [38] | SCA [39] | STL [36] | DSAN [43] || SSM
Class] 98.37 99.48 98.82 98.52 99.11 78.86 98.60 86.55 63.78 87.66
Class2 75.43 84.41 78.36 87.87 28.09 76.10 89.30 92.78 71.01 92.35
Class3 19.85 57.52 67.17 55.39 69.70 63.20 28.81 52.49 74.55 59.83
Class4 100 100 100 100 100 100 100 100 100 100
Class5 46.81 74.42 74.02 73.97 77.43 85.60 79.52 69.70 56.39 78.75
Class6 90.37 89.83 86.97 89.88 71.96 13.63 39.45 67.84 76.69 91.02
Class7 19.47 22.26 66.91 29.02 74.31 75.02 78.40 65.88 52.77 76.51

OA 72.67 78.27 81.76 79.24 69.35 38.22 53.70 69.77 70.83 86.47

AA 64.33 75.42 81.75 76.38 74.37 70.34 73.44 76.46 70.74 83.73
Kappa 50.77 62.18 70.17 64.00 55.60 31.62 40.20 54.29 55.38 77.48

TABLE IV

CROSS-SCENE CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS ON THE CASE HOUSTON2018—HOUSTON2013

Method || SVM [1] | CORAL [30] | TCA [21] | JDA [24] | JGSA [37] | MEDA [38] | SCA [39] | STL [36] | DSAN [43] || SSM
Classl 0.00 95.65 96.52 93.04 84.93 100 99.13 98.84 91.30 96.81
Class2 16.99 87.12 92.60 92.88 98.08 55.34 98.63 90.41 98.36 97.81
Class3 99.18 97.26 97.26 97.26 94.79 51.23 92.60 62.47 96.44 98.90
Class4 90.88 95.79 95.79 95.79 93.68 82.11 93.33 95.79 10.53 98.60
Class5 94.98 89.34 91.22 91.54 81.82 75.24 60.82 71.47 65.83 93.73
Class6 66.67 64.22 70.34 67.89 73.77 71.32 99.51 72.06 98.04 74.51
Class7 97.07 100 100 100 100 99.77 0.45 100 100 100
OA 66.72 89.57 91.70 90.91 89.68 76.72 75.42 84.47 83.36 94.03
AA 66.54 89.91 91.96 91.20 89.58 76.43 77.78 84.43 80.07 94.34
Kappa 61.04 87.78 90.29 89.36 87.91 72.73 71.25 81.80 80.39 93.01
TABLE V
CROSS-SCENE CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS ON THE CASE SHANGHAI — HANGZHOU
Method || SVM [1] | CORAL [30] | TCA [21] | JDA [24] | JGSA [37] | MEDA [38] | SCA [39] | STL [36] | DSAN [43] || SSM
Class1 100 99.84 99.87 99.67 99.20 97.36 53.74 99.79 87.87 97.11
Class2 86.32 90.05 84.61 85.80 87.70 75.00 72.21 91.52 86.20 96.31
Class3 18.68 93.47 69.85 71.56 63.17 77.28 78.27 72.91 62.12 92.02
OA 68.10 92.37 82.27 83.43 81.96 78.65 71.55 87.11 79.29 95.15
AA 68.33 94.46 84.78 85.68 83.36 83.21 68.07 88.07 78.73 95.15
Kappa 40.57 86.91 69.21 71.12 68.22 63.94 52.15 77.22 63.16 91.44
TABLE VI
CROSS-SCENE CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS ON THE CASE HANGZHOU — SHANGHAI
Method || SVM [1] | CORAL [30] | TCA [21] | JDA [24] | JGSA [37] | MEDA [38] | SCA [39] | STL [36] | DSAN [43] || SSM
Classl 94.72 95.22 97.55 96.17 98.16 97.15 97.10 96.07 91.90 98.20
Class2 59.30 83.36 73.83 70.97 84.08 70.05 77.05 72.30 84.83 92.75
Class3 100 97.53 100 100 99.91 97.86 98.42 100 95.45 96.43
OA 80.35 90.53 87.68 85.96 92.37 85.40 88.64 86.51 89.60 95.41
AA 84.68 92.04 90.46 89.05 94.05 88.35 90.89 89.46 90.73 95.80
Kappa 71.17 85.58 81.55 79.04 88.40 78.18 82.88 79.83 84.08 92.92

a consequence, the cross-scene classification performance by
these methods are unstable. Among distribution-alignment-
based methods, CORAL is the most stable since it has no
hyperparameter. Deep learning-based method, i.e., DSAN, is
only comparative to some subspace learning algorithms. One
possible reason for this is that pseudo soft label information in
DSAN is calculated by a temporary classifier in each iteration
and may be not reliable for target domain, which results in
unreliable classification performance. Moreover, the cross-scene
classification performance of the proposed SSM is the best
in terms of OA, AA, and Kappa in all four cases of cross-
scene classification and outperforms the second best one by
approximately 4.7% in Houston2013—Houston2018, 2.3% in

Houston2018—Houston2013, 2.8% in Shanghai — Hangzhou,
and 3% in Hangzhou — Shanghai in terms of OA. In terms
of AA and Kappa, the proposed SSM also performs better
than all other state-of-the-art methods in all four cases. This
shows that good cross-scene classification performance can be
achieved by tackling spectral shifts directly, and demonstrates
the effectiveness of the proposed SSM.

To visually demonstrate the effectiveness of the proposed
SSM, classification maps of all the aforementioned methods are
illustrated in Figs. 8 —11. Obviously, the proposed SSM produces
the most accurate and the spatially smoothest classification maps
with less mislabeled pixels, which are consistent with the results
listed in Tables III-VI.
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Fig. 9. Cross-scene classification maps by different methods in Houston2018—Houston2013. (a) SVM (66.72%). (b) CORAL (89.57%). (c) TCA (91.70%).
(d) JDA (90.91%). (e) IGSA (89.68%). (f) MEDA (76.72%). (g) SCA (75.42%). (h) STL (84.47%). (i) DSAN (83.36%). (j) SSM (94.03%).

Fig. 10.  Cross-scene classification maps by different methods in Shanghai — Hangzhou. (a) SVM (68.10%). (b) CORAL (92.37%). (c) TCA (82.27%). (d) JDA
(83.43%). (e) JGSA (81.96%). (f) MEDA (78.65%). (g) SCA (71.55%). (h) STL (87.11%). (i) DSAN (79.29%). (j) SSM (95.15%).
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Cross-scene classification maps by different methods in Hangzhou — Shanghai. (a) SVM (80.35%). (b) CORAL (90.53%). (c) TCA (87.68%). (d) JIDA

(85.96%). (e) JGSA (92.37%). (f) MEDA (85.40%). (g) SCA (88.64%). (h) STL (86.51%). (i) DSAN (89.60%). (j) SSM (95.41%).

TABLE VII
COMPUTATION TIME (IN SECONDS) OBTAINED THROUGH DIFFERENT
METHODS IN HOUSTON2013—HOUSTON2018

Method | Computation Time(s)
CORAL 1.2
TCA 6
JDA 18
JGSA 80.5
MEDA 450
SCA 50.3
STL 11.5
DSAN 21.0
SSM 13.5

To illustrate the computational complexity of the proposed
SSM compared to other methods for cross-scene HSI classifica-
tion, Table VII lists the computation time of several methods in
Houston2013—Houston2018 by using MATLAB on an Intel(R)
Core(TM) i5-7300HQ central processing unit with 8 GB of
RAM. For the proposed SSM, the computation time is the
execution time of AN and AEM with neighborhood radius of 5
for one time. As shown in Table VII, among all the methods for
cross HSI classification, MEDA costs the longest time, followed
by JGSA, which costs 80.5 s. The computation time of the
remaining methods is below 60 s. CORAL takes only 1.2 s.
Deep learning-based method DSAN costs 21 s which is the test
time, but its training time takes hours. The proposed SSM costs
only 13.5 s, which shows the efficiency of the proposed SSM.
The computation time of the proposed SSM mainly lies on the

execution of AEM. For less neighborhood radius, it costs less
time.

V. CONCLUSION

In this article, a simple preprocessing method called SSM
has been proposed for cross-scene HSI classification, including
ASM and AEM. ASM is to reduce the spectral shift caused by
amplitude shift, i.e., the shape of spectral curve of one material is
stable while the amplitude varies considerably. AEM is to reduce
the spectral shift in target scene caused by adjacency effect, i.e.,
the spectral curve of a pixel of one class is affected by nearby
pixels of different classes in the scene. Experiments on four
cases generated by two cross-scene HSI data pairs have shown
that the proposed SSM outperforms the existing state-of-the-art
methods for cross-scene classification, and thus its effectiveness
has been demonstrated.
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