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An SOE-Based Learning Framework Using
Multisource Big Data for Identifying

Urban Functional Zones
Ying Feng, Zhou Huang , Yaoli Wang, Lin Wan, Yu Liu , Yi Zhang, and Xv Shan

Abstract—Identifying urban functional zones is of great signif-
icance for understanding urban structure and urban planning.
The rapid growth and open accessibility of multisource big data,
including remote sensing imagery and social sensing data, lead to
a new way for dynamic identification of urban functional zones.
In this article, we propose an SOE (scene–object–economy) based
learning framework which integrates scene features from remote
sensing imagery, object features from building footprints, and
economy features from POIs (points of interest). From these three
perspectives, rich information hidden in urban zone is excavated for
function identification. Convolutional neural networks are used to
extract high-level scene information from remote sensing images
with different resolutions. Object features comprising a series of
building indicators are constructed by measuring the area, perime-
ter, floor number, and year of the building. Moreover, we extract
socioeconomic characteristics from POIs, which reflect different
types of human activities in the urban zone. Last, random forest is
used to identify functional zones based on SOE features. We apply
the SOE-based framework to Shenzhen datasets and achieve 90.8%
in accuracy with remote sensing images of 0.3-m spatial resolution.
The experimental results show that the predicting performance of
SOE-based framework is significantly better than other traditional
methods, and the quantitative contribution of SOE factors is also
revealed in determining functionality of urban zones.

Index Terms—Convolutional neural network (CNN),
multisource big data, remote sensing, scene-object-economy
(SOE), urban functional zone.
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I. INTRODUCTION

W ITH the accelerating process of urbanization and rapid
expansion of the scale of cities, a series of urban prob-

lems have appeared one after another, such as traffic congestion
and housing shortage. Especially for some provincial capitals
or metropolises, urban problems are particularly serious. Emer-
gence of these problems has a strong connection with the im-
proper regional planning within city. In detail, urban functional
zones are areas where a series of economic activities occur, such
as commerce, public, industry, and residence.

Identifying urban functional zones and understanding their
spatial distribution and interaction laws are of great significance
for supporting scientific planning. Traditionally, urban func-
tional zone identification relies on planning maps of land use
and questionnaire surveys. However, the survey-based method
is expensive. In addition to the manpower and time costs, the
reliability is also severely affected by subjective factors such
as time, location, and personal experience of the investigator.
Analyzing function regions with pictures or text asks for a
huge amount of data from various sources which is limited
by difficulties in the process of data acquisition. Moreover,
the information obtained from a single data source is limited
and not comprehensive. With development of remote sensing
technology and improvement of multisource data accessibility
in big data era, many researchers have used high-resolution
remote sensing imagery or social sensing data such as points of
interest (POIs), check-ins, and GPS trajectories to identify urban
functional zones and achieve good results [1]–[5]. Therefore,
how to integrate multisource big data to efficiently identify urban
functional zones has become one of the research hotspots.

High-resolution remote sensing images are rich in physical
representation information of landform and surface objects [6].
In recent years, in recognition of land use and land cover, the ex-
traction method based on high-resolution remote sensing images
have been widely used [7]–[11]. The analysis of urban land use is
often performed in three types of spatial units, i.e., pixel, object,
and scene. Pixel-based and object-based units are usually used
to evaluate land cover and land use [12]–[15]. Scene-based units
are usually used to identify urban functional zones and recognize
urban land use patterns [16], [17], which usually utilize road
networks to segment land for basic analysis units. Many studies
have applied scene-based classification methods such as Latent
Dirichlet Allocation (LDA) to extract physical features (such
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as spectrum, texture, and SIFT features of ground components)
from high-resolution remote sensing images [18]–[20]. How-
ever, it mines low-level semantic information of a parcel, ignor-
ing connection of spatial distribution between ground objects.
In high-density cities, many parcels might have the same phys-
ical properties but different functional properties. Some tradi-
tional classification methods are also difficult to combine classes
of land use with actual functional zones of the city. In fact, the
function of urban land is not only related to physical properties
of parcels, but also affected by human activities.

Fusion of remote sensing images with social sensing data is
a new alternative direction. Recent studies have shown that it
performs well in identifying urban functional zones and solving
high-density urban land use problems. With emergence of social
sensing data, such as POIs, taxi trajectories, mobile phone data,
social media data, and street view data, many new methods
have been developed to understand urban systems [21]–[25].
For example, by combing remote sensing images with mobile
phone positioning data, landscape and activities indicators were
calculated to clustering for functional zones [26]. LSTM is used
to extract characteristics of user’s time series signature data and
integrated satellite images for functional zones recognition [27].
Nighttime remote sensing images, satellite images, POIs, and
mobile phone data are combined to draw a nationwide land
use map [28]. Characteristics of human economic activities
are extracted from Tencent data, POIs. And texture, spectrum,
and scale invariant features are captured from remote sensing
images. They are minded for functional zones classification.
These widely used urban data can reflect changes in spatial
patterns in time, human mobility, materials, and information.
The above researches show that each type of geospatial data has
its own advantages. Fusing multi-source big data is a promising
solution for identifying urban land use. Nonetheless, the main
challenge is that existing researches lack depth and comprehen-
sive mining of scene, object, and socioeconomic features. And
there is no framework to make a quantitative analysis in the
contribution of features. In particular, fusion of remote sensing
imagery and socioeconomic data is common, but joint use of
three-dimensional (3-D) building data is ignored in feature min-
ing. In fact, understanding similarities and differences between
distribution patterns of 3-D buildings in urban zones is also of
great significance to functional differentiation [29].

To fill research gap, we propose a scene–object–economy
(SOE)-based learning framework for recognizing urban func-
tional zones, which identifies functions in three dimensions,
i.e., scenes from remote sensing imagery, objects from build-
ing footprints, and socioeconomic characteristics from POIs.
There are three main parts of our contribution. First, SOE-based
framework not only detects hidden scene information from the
imagery, but also discloses connections and differences between
buildings based on objects in a zone. Our framework introduces
height of buildings in feature space, which is hard to obtain from
imagery analysis. Second, a novel ensemble learning model is
introduced to identify urban functional zones, combining DCNN
(deep convolutional neural network) with traditional classifier
models. Results show that prediction performance is greatly
improved if features extracted by SOE model are used. Third,

Fig. 1. Study area (Shenzhen city).

we further quantitatively compare weights of 3-D SOE features
in different function scenarios. In addition, our method has been
trained and tested in Beijing, achieving excellent performance.
Training based on Shenzhen, the model generalizes well in
Guangzhou.

II. STUDY AREA AND DATASETS

Our research area is Shenzhen, China, locating in southern
Guangdong and east bank of the Pearl River Estuary (Fig. 1).
By the end of 2019, the city has nine districts with a total area
of 1997.47 square kilometers. It has a permanent population
of 13.34 million, as the first total urbanized city in China. For
sustainable development of Shenzhen, reasonable planning of
urban functional zones should be taken into consideration. Four
types of functional zones are involved in the study: commerce,
public, industry, and residence. Among them, the commerce
includes buildings such as companies, shopping centers, office
buildings, and banks. The public includes public facilities, scien-
tific research and education, public services, and other buildings.
The industry includes buildings such as industrial parks and
warehousing. The residence includes buildings where people
live.

Road networks, high-resolution remote sensing images, POIs,
and building footprints are involved in study, as shown in Fig. 2.

Previous studies usually use road networks to divide cities
into several polygonal parcels as basic units [30]–[32]. Those
parcels are considered spatially independent, heterogeneous,
and highly pure. Parcels in EULUC-China map are segmented
using OSM road network [28], and we use them as basic units to
identify functional zones in Fig. 2(a). An overlay analysis is used
with parcels and Shenzhen’s land use map in 2019 provided by
Shenzhen Municipal Bureau of Planning and Natural Resources.
And a semi-supervised method is used to select parcels with a
purity higher than 0.6. It excludes examples of mixed functional
regions and obtains representative lands. In the end, a total of
1150 parcels are sampled: 165 for the commerce, 176 for the
public, 128 for the industry, and 681 for the residence.

We obtain high-resolution remote sensing imagery from
Google Earth for the year 2019 which have three bands and
two different spatial resolutions: 1.1 and 0.3 m.

Building footprints are obtained from Baidu Inc., 2019, con-
taining 635 177 buildings in Shenzhen. Area, length, floor, and
year of each building are measured to construct relevant features,
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Fig. 2. (a) Research units segmented by OpenStreetMap network, remote
sensing images, and building footprints in some sample units. (b) Kernel density
map generated by POIs in Shenzhen.

which show physical properties and similarity of buildings. And
they also reflect differences between four types of zones.

We collect POIs of Shenzhen from Baidu Map API, and obtain
1 044 411 in total, as shown in Fig. 2(b). POIs have been proven
to play an important role in functional zone recognition [33]–
[35]. It is not generated by physical information on land surface,
but attribute tags and geographic points by human economic
activities. To a certain extent, it reflects types of activities people
perform at specific place.

III. METHODOLOGY

A. Machine Learning Framework Based on SOE

Two types of data sources are involved in this article: image
data (remote sensing imagery) and nonimage data (building
footprints and POIs). Traditional models perform terribly in
dealing with this multimodal data fusing problem. For example,
convolutional neural networks (CNNs) have achieved excellent
results in image recognition tasks since they are good at extract-
ing image features. However, they perform purely in extracting
features from nonimage data. In this article, suitable methods are
used to separately process features. Classification is performed

Fig. 3. SOE-based framework, fusing remote sensing imagery, building foot-
prints, and POIs in classification of functional zones (commerce, residence,
industry, and public).

at the fusion stage. In this article, we propose a new framework
to extract features from different modal of data with different
extractors and fuse those features at classification stage. CNNs
are used to extract remote sensing image features. Statistical
methods are employed to measure building footprints and POIs
features. Then, they are combined for the final classification task.

We propose the concept of SOE and integrate multisource
data to fully extract spatially implied semantic information. The
SOE-based learning framework is shown in Fig. 3. Based on
object, physical properties of buildings are measured. Area,
perimeter, floor, year, and structure ratio are measured for dif-
ferences between buildings in a zone. It includes totally 17
characteristics, e.g., sum, average, standard deviation of five
attributes, as well as the density and number of buildings. So-
cioeconomic characteristics are extracted from POIs, composed
of 14 different indicators. Hidden spatial information in remote
sensing images is detected based on scene through CNNs. The
parameter of the penultimate fully connected layer is changed
to 64 for achieving balance between the number of features in
other two data sources. After fusing them, we obtain 95-length
feature vector. Six common classifiers including Random Forest
(RF), XGBoost, Naive Bayes, SVM, LSTM, and dense layer are
used to predict functional zones. The methodology flowchart is
illustrated in Fig. 4.

In addition, we also analyze if there exists certain relationship
between these three data sources. Analysis weights of different
features for classification task and output them, making clear
which data source has played a dominant role in classification.

B. Extracting Image Features

In our study, CNNs are utilized to extract features from
high-resolution remote sensing images. In recent years, it has
been confirmed that CNNs achieve excellent results in image
recognition, object detection, and other tasks in the field of
computer vision [36]–[39]. CNNs extract high-level hidden
features, which are different from low-level semantic features
such as texture, spectrum, and SIFT of scene’s topography.
Although we have no idea about meaning of features extracted
by CNNs, these advanced features can greatly improve accu-
racy of classification. In our work, several CNNs based neural
networks that have achieved good results in computer vision
tasks are selected for comparative experiments, such as VGG16,



FENG et al.: SOE-BASED LEARNING FRAMEWORK USING MULTISOURCE BIG DATA FOR IDENTIFYING URBAN FUNCTIONAL ZONES 7339

Fig. 4. Workflow of SOE-based methodology.

Fig. 5. Network structure of VGG16, the fully connected layer’s parameters
are modified to 64 and 4.

AlexNet, GoogLeNet, and ResNet [40]–[43]. These four CNNs
have their own characteristics. AlexNet, winner of the 2012
ImageNet competition, is a relatively shallow network. In the
2014 ImageNet Challenge, GoogLeNet won the first place and
VGG16 won the second place, both characterized by a deeper
level. However, GoogLeNet has fewer parameters, one-twelfth
of AlexNet. Unlike the three, ResNet has a deeper network layer
with residual blocks, reaching hundreds of layers.

VGG16 uses a uniform size of 3∗3 convolution kernel, sim-
plifying the neural network structure. It achieves a deeper level
and extracts more advanced features. In the experiment, in order
achieve a balance between the remote sensing imagery and other
data sources, the parameter of 4096 in the second fully connected
layer fc2 is changed to 64. The parameter of 1000 categories in
the third fully connected layer fc3 is also changed to 4 to match
our classification task. Then feature vector in fc2 is output after
training. The structure of network is shown in Fig. 5. ResNet50
contains 18 residual blocks. One residual block contains two 1∗1
and a 3∗3 convolution kernels. 1∗1 convolution kernel is only to
change the number of output channels. 3∗3 convolution kernel
may change the size of tensors, which is related to the parameter
stride. Last, the last fully connected layer parameter is modified
from 1000 to 4. In AlexNet and GoogleNet, same modifications
are made in layers.

In this stage, we use images as input of CNNs and softmax
conduct classification directly. Then, probability distribution of

Fig. 6. Remote sensing images with different resolutions: (a) 0.3 m resolution,
and (b) 1.1 m resolution.

four categories is obtained. With RF as final classifier, we also
compare performance of image features extracted by different
neural networks.

C. Training and Verification of CNN

In this article, remote sensing images with two resolutions
are used; one with a spatial resolution of 0.3 m and the other is
1.1 m. The imagery data are visualized in Fig. 6. Spatial coverage
areas, coordinate system, and other parameters of two data are
completely consistent. We use a 4:1 ratio to divide image data
randomly into training set and test set. For images in training
set, a series of data augmentation methods are adopted to avoid
overfitting in training of models. First, center crop is carried out
for the size of 224∗224, fitting input of network. Then, images
are flipped horizontally and vertically with a probability of 0.5,
which can expand richness of samples and avoid difference
caused by orientation. Next, brightness, contrast, saturation,
and hue are adjusted to meet different needs for scene under
different lighting. These four operations are all performed with
a probability of 0.5, where jitter value is randomly set from the
maximum to the minimum value of attributes in image pixel
array.

To train a network with strong generalization ability, a large
amount of data is required. In this article, for two kinds of remote
sensing images with different resolutions, training set has 918
samples and test set has 232 samples. In order to solve problem
that the amount of data is too small to fully train entire network,
transfer learning is adopted. Our dataset is used to fine-tune the
pretrained weights on ImageNet [44]. Model parameters need to
be updated iteratively for minimizing loss between predictions
and ground truth during feature extraction.

During training, we utilize three different ways: 1) training all
parameters of the neural network, 2) training parameters of high-
level neural layers, and 3) only training parameters of the fully
connected layer. Through experiments, the most suitable way
for training can be found out. For several CNNs, the parameter
of final fully connected layer is modified to 4.

D. Extraction of Building Features

Buildings and land parcels relate closely to each other. Usu-
ally, differences between physical properties of buildings can
reflect functional attributes of a zone.
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Area represents actual floor area of a building. We calculate
total area, average area, and standard deviation of area of all
buildings within zone. For commercial parcels, buildings vary
greatly in size, such as shopping malls occupy a large area but
office buildings occupy small area. However, the residential
parcel is often highly uniform, areas of buildings inside are
similar. So the standard deviation is relatively small. There are
differences in fluctuation range of the average area in different
functional zones.

Length of the building outline is represented by building
perimeter. This attribute measures to observe difference in length
between buildings in a zone. The sum of perimeters, average
perimeter, and standard deviation of perimeters of buildings are
calculated in parcels. These characteristics can better distinguish
the residence from zones in other types. The edge lengths
of residential buildings have a high degree of similarity and
conform to regular distribution.

Building structure ratio refers to the ratio of perimeter to
building area. Buildings with a larger perimeter of the same
area usually have more complex shape. The complexity of shape
facilitates distinction between regular rectangular buildings and
irregularly shaped buildings. For example, the commercial and
public usually have buildings with round and irregular polygonal
appearances, such as stadiums, shopping centers, etc. This is
helpful to distinguish residential buildings. We measure struc-
tural ratio of each building and calculate its sum, average, and
standard deviation.

Floor represents total number of floors of a building. This
indicator is introduced because buildings have different heights
to meet the needs of functional zones. Office buildings usually
locate in the center of zones and have up to 30 floors which dis-
tinguish greatly from ordinary residential buildings. Buildings
on the industry are different from other three in that their heights
are lower. Here, considering that buildings have different uses
and heights, the total floor, average floor, and standard deviation
are calculated.

Year refers to the time when a building was built. This attribute
can reflect newness of buildings in zones. For the industry,
the new and remote vacant land is constantly being built for
factories or warehousing logistics, and some of its buildings are
newer and uneven. The same problem exists in the commerce,
and there are inconsistencies in building years. However, the
residence is completely opposite, buildings of which varies little
in built years, so it is easier to distinguish them from other three.
The degree of heterogeneity in zones is measured with three
indicators: the sum of the construction years, average of the
years, and standard deviation of years in buildings.

The density and total number of buildings in parcels are
counted. Density can reflect sparseness of objects in a zone,
revealing distribution of buildings in land parcels.

Seventeen indicators are measured in a parcel. As shown in
Fig. 7, regulars are explored in three aspects, such as spatial
distribution of individuals, connection between individuals, and
relationship between individuals and scenes. First, spatial join
method in ArcGIS is deployed to connect buildings with the
intersecting parcel, obtaining all information of buildings within
a parcel. Then, indicators are calculated based on statistical

Fig. 7. Thematic maps of building footprints. (a) Area of buildings. (b)
Perimeter of buildings. (c) Height of buildings. (d) Year of buildings.

methods. Finally, the feature vector is generated to represent
building information.

E. Extraction of Socioeconomic Features

Types of functional zones are not only related to geography,
but also closely connected to a series of economic activities.
POIs are used to extract socioeconomic characteristics for en-
riching information about land parcels. First, beneficial for
classification, POIs are reclassified into 14 categories, includ-
ing public facilities, catering services, education and cultural
services, shopping services, companies and enterprises, medical
care services, accommodation services, commercial residences,
life services, landscapes, transportation facilities services, finan-
cial insurance services, sports and leisure services, government
agencies, and social organizations. Next, the spatial join method
in ArcGIS is implemented to connect POIs with its intersecting
parcel. Third, proportions of 14 types of indicators are calcu-
lated based on statistical methods, representing socioeconomic
characteristics of land parcels.

F. Classification and Verification of SOE Features at the
Fusion Stage

In this article, six different classifiers are utilized for the final
feature fusion and classification. Four categories of functional
zones are involved, including commerce, public, industry, and
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Fig. 8. Result of classification in functional zones with combining differ-
ent data sources. P (POIs), B (building footprints), P+B (POIs + building
footprints), 1.1 m (the remote sensing imagery with 1.1 m resolution), 0.3
m (the remote sensing imagery with 0.3 m resolution), P+B+1.1 m I (POIs
+ building footprints + the remote sensing imagery with 1.1 m resolution),
P+B+0.3 m I (POIs + building footprints + the remote sensing imagery with
0.3 m resolution).

residence. First of all, samples are preprocessed and labeled.
Based on Shenzhen’s land use map in 2019, a semi-supervised
method is used for labeling. Proportions of these four land use
are counted in a parcel. If the proportion of a certain land use is
greater than 0.6, it will be considered as a relatively pure land
and labeled with this particular land use. On the contrary, if
less than 0.6, it is considered as a mixed functional zone. These
samples are excluded. After screening a round of samples, we
perform manual selecting to check whether there is error in the
truth of land. Finally, the selected samples are divided randomly
into training set and test set at a ratio of 4:1.

After comparison experiments with five classifiers (i.e., XG-
Boost, Naive Bayes, SVM, LSTM, and dense layer), RF is
chosen as the final classifier at fusion stage, which has achieved
good results in a number of classification studies [45]–[47]. RF
uses multiple trees to train and predict samples, finally voting
for decision. A category with the most votes is a predicted
functionality.

IV. RESULTS AND DISCUSSION

A. Classification Results With Different SOE Features

We put forward SOE, combining concepts of scenes, objects,
economy, and digging deep into rich features of functional zones.
Remote sensing images can extract high-level semantic features
of regional spatial distribution based on scenes. Some open
source data can extract features of human economic activities.
They all reflect the use of functional zones from a certain
perspective. However, knowledge form topographic and human
beings in 2-D exists limit, but deployment of buildings reflects
functions in 3-D based on object. By changing the input of
SOE features, different results can be obtained based on our
framework, shown in Fig. 8. When using single POIs or building

TABLE I
CLASSIFICATION RESULTS FOR EACH CATEGORY AND RELATED METRICS

footprints, accuracy has reached 70%. However, there is an
imbalance between categories. For only POIs, Kappa is 0.476
and F1 score is 0.531. For building footprints, Kappa is 0.491
and F1 score is 0.561. For both, accuracy of the commerce and
public are relatively low. When POIs and building footprints are
integrated, accuracy of the commerce is increased about 11%,
and overall accuracy is increased about 4.3%; Kappa is 0.581 and
F1 score is 0.617. Relatively, remote sensing imagery achieves
best results in single-source classification. The accuracy of
remote sensing images with 1.1 m resolution reaches 86.21%,
with Kappa 0.76 and F1 score 0.781. However, accuracy of the
commerce and public are 20–30% lower compared with other
two types. For 0.3 m resolution images, overall accuracy has
increased by 3.44%, the commerce has increased by 9.09%,
and the public has increased by 11.67%. Kappa value is 0.829
and F1 score is 0.825. So we believe that when the resolution
is clearer than 1.1 m, there are limitations in optimization of
overall classification, but problem of category imbalance can be
resolved to a certain extent. When integrating POIs, building
footprints and remote sensing images with 0.3 m resolution,
difference of accuracy between categories have been greatly
improved. Among them, the commerce increases by 5.35%, the
public increases by 5.55%, the industry increases by 7.66%,
and overall accuracy is 90.95%. Kappa is 0.849 and F1 score
is 0.858. Classification results for each category are shown in
Table I. Therefore, fusion of multisource data based on SOE
can further improve classification, of which the map is shown in
Fig. 9.

Especially, we count differences of features based on building
level, including building area, perimeter, floor, year, and other
indicators, which always have been ignored in previous studies.
Based on scene, we count density and total number of buildings.
Functional zones in different types vary in characteristics, the
detail is in Fig. 10. Mean floor of the commerce, public, industry,
and residence are 10.83, 6.30, 5.43, and 7.67, respectively. This
reflects floors of the commerce and residence’s buildings are
relatively high, which have a certain deviation from public and
industry. And the standard deviation of floors in four categories
is 6.84, 2.65, 2.24, and 3.56. For example, the commerce may
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Fig. 9. Map of Shenzhen’s functional zones.

Fig. 10. Visualization of building features in different functional regions.

contain buildings with different uses such as supermarkets, shop-
ping centers, small shops, and office buildings. There are certain
restrictions on floors of supermarkets, shopping malls, generally
within seven floors. Even for some small shops, personal retail
stores, etc., floors are lower, controlled within two floors. But
office buildings are usually high, even reaching 30 floors. This
makes heights in a zone greater diversity.

The same situation also appears in area of buildings, which
depends on its purpose. Zones in other three types, all of which
are above 700 square meters, are much larger than the residence,
257.61 square meters. The area of a standard supermarket is
generally 500–1500 square meters. That is, the area of large
shopping malls and small retail stores, 20 square meters, may

TABLE II
RESULTS OF SORTING WEIGHTING FACTORS WHEN ONLY POIS IS USED

differ by dozens of times. The residence often contains buildings,
regularly distributed, neatly arranged, having the same purpose.
So the standard deviation of its characteristic is relatively small.

Four categories zones are about 2003, 2006, 2007, and 2004
in mean year. Buildings on industrial land are built in a relatively
new year. The mean perimeter of residential buildings, 68.98 m,
is quite different from other three categories with 110.55, 109.37,
and 97.58. The perimeter of residential buildings is smaller than
other three types, but individuals change little. But for mean
structure ratio, the order from largest to smallest is the residence,
industry, public, and commerce. This reflects complexity of
building shape; commercial buildings often have special shapes.
According to statistics, there are the largest number of industrial
buildings and the smallest number of commercial buildings in a
zone. Therefore, we suggest that buildings should be taken into
consideration in future functional region recognition based on
these differences.

B. Evaluating the Factor Contribution of Different
Data Sources

Different features are combined by RF for both classification
and factor contribution evaluation. Only using POIs can achieve
accuracy of 71.9%. The weights of features in classification are
illustrated in Table II. Shopping services, attractions, commer-
cial, and residential dual-purpose blocks have a greater contri-
bution to classification. The shopping services include large su-
permarkets, shopping malls, characteristic commercial streets,
etc., which can infer that the zone is likely to be the commerce.
However, some convenience stores, personal supplies stores,
cosmetics stores, etc. are included, opened near residential
communities. Commercial and residential dual-purpose blocks
include office buildings, travel agencies, and talent markets,
favoring business and finance. However, it also includes beauty
salons, telecommunications business halls, lottery sales points,
and residence. These are biased toward the residential land.
These POIs indicators can provide information for different cat-
egories of urban zones, so lack of uniqueness leads to relatively
low accuracy.

Only using building footprints, accuracy can reach 71.5%.
Weights of 17 indicators are listed in Table III. The standard
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TABLE III
RESULTS OF SORTING WEIGHTING FACTORS WHEN ONLY BUILDING

FOOTPRINTS IS USED

TABLE IV
TOP 10 OF WEIGHTING FACTORS WHEN USING POIS AND

BUILDING FOOTPRINTS

deviation of area plays the most important role, and its weight is
0.1417. Moreover, the density and standard deviation of floors
also contribute a lot, which are 0.0914 and 0.0727, respectively.
Results indicate that the introduced height of buildings plays
an important role in classification. Similarly, spatial patterns of
buildings in different functional zones are quite different, which
make the standard deviation of building as a decisive factor in
classification.

The accuracy obtains 76.2%, with combining POIs and build-
ing footprints data. And we find that addition of buildings based
on POIs is benefit to identification of the commerce and industry,
which improves 27.27%, 11.54%. Factor weights have changed
slightly and are shown in Table IV. The standard deviation of
area still plays the largest role. Because from the architectural
point of view, the commerce and industry usually have larger ar-
eas, which makes standard deviation of area the largest. And the
shopping services also have a certain influence. Among the top
ten features of importance, there are five building indicators and
5 POIs indicators. POIs are mainly biased toward the commerce,
the public, and the residence and with low spatial coverage of the
industry. Among building features, area, density, and floor still
contribute the most, while standard deviation, mean of area, and
height best reflect differences of architectural style in a zone.

Furthermore, when remote sensing image features are added,
factor weights change a lot. Results reveal that image features
play a decisive role in classification. The total weight proportion

Fig. 11. Results of CNNs with different training ways.

reaches about 0.92. That indicates DCNN-based image features
provide rich and diverse information about urban zones. This is
in line with our expectations. When only remote sensing images
are used, accuracy of 89.65% is achieved. However, it is no doubt
that POIs and buildings also play a greater auxiliary role. Using
single data source, even the remote sensing imagery cannot
solve problem of uneven accuracy between categories. Addition
of POIs and buildings not only improves accuracy, but also
reduces the gap between categories. The commerce increases
by 6.05%, the public increases by 5.55%, the industry increases
by 7.69%, and the residence reduces by 2.19%. The gap between
categories has decreased, of which accuracy reaches more than
80%. Therefore, we believe that based on SOE framework,
integrating features of each dimension is a feasible way to
effectively identify functional zones.

C. Identification Effects With Remote Sensing Images of
Different Resolutions

The CNN are trained in different ways with images of 0.3 m
resolution. The results obtained by using softmax layer are
displayed in Fig. 11. Training with parameters of different
neural layer, outputs are slightly different. Generally speaking,
there is such a phenomenon that the method of all-parameters
training is better than the partial neural layers and the nearly
fully connected layer. The accuracy of partial neural layers and
the fully connected layer are within the range of 2%. However,
the training effect of all-parameters is quite different from the
previous two ways. The gap can even reach up to 9%. AlexNet,
VGG16, ResNet, and GoogLeNet are optimized when all layers
are opened for training, of which results are 88.36%, 89.66%,
82.33%, and 84.48%. Four CNNs are utilized for recognition
of functional zones. As shown in Fig. 11, it is observed that
there are certain differences between effects of CNNs. VGG16
achieves the best result of 89.66%, which is 7.33% better than
ResNet, 5.18% better than GoogleNet, and 1.3% better than
AlexNet. Therefore, training all-parameters with VGG16 can
achieve relatively optimal results.
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Fig. 12. Comparison of different resolution images. (a) Commerce. (b) Public.
(c) Industry. (d) Residence.

We think that an improvement of VGG16 over AlexNet is
to use continuous 3 ×x 3 convolution kernel instead of larger
convolution kernel. So convolution kernels of the same size
can be used repeatedly to extract more complex and expressive
features in functional regions. And the deeper layers of neural
network or the more complex model is no better in our task. It
may have the problem that gradient dispersion and loss cannot
converge, such as GoogleNet and ResNet. Identifying urban
functional regions for us, the result show that VGG16 has more
advantages.

The impact of different resolution images for classification
is also explored. The above optimal training way is applied
to experiments on remote sensing images with resolutions of
0.3 and 1.1 m. In the case of different resolutions, the same
functional region contains different pixels. From a visual point of
view, differences are obvious. For example, the commerce with
0.3 m resolution contains 627 324 pixels, which is clearer than
the 1.1 m resolution containing 39 560 pixels in Fig. 12(a). The
public has 865 700 pixels with 0.3 m resolution, 54 175 pixels
with 1.1 m resolution in Fig. 12(b). The industry involves 4 297
161 pixels with 0.3 m resolution, 267 795 pixels with 1.1 m
resolution in Fig. 12(c). And the residence includes 607 185
pixels in 0.3 m resolution, 38 048 pixels in 1.1 m resolutions in
Fig. 12(d). More pixels the image contains, the clearer it will be.
Pixels of remote sensing images with 0.3 m resolution are about
16 times of 1.1 m resolution. The outline of buildings and plots
are more detailed. These two image data are used for training.

Prediction results are illustrated in Fig. 13. Training with 1.1 m
resolution remote sensing images, VGG16 with softmax layer
reaches accuracy of 88.3%, including the commerce 81.8%,
public 63.8%, industry 88.5%, and residence 96.3%. Except
for the public accounts for about 60%, other three categories
have reached more than 80%. In general category of the public,
it contains more complex types, such as hospitals, scientific
research institutions, schools, public services, etc. So buildings
with different uses have no uniform style, irregular distribution,
and similar characteristics. But using images with 0.3 m reso-
lution, total accuracy gets 90.9%, with the commerce 81.8%,
the public 80.5%, the industry 88.5%, and the residence 96.3%.
Especially for the public, accuracy increases about 17%, com-
pared with the previous one. This indicates that identification

Fig. 13. Classification results with remote sensing images of 1.1 m and 0.3 m.

of the public parcels are more dependent on microscopic scene
features. Accuracy of the residence is significantly higher than
other types, illustrating that characteristics of residential parcels
are more prominent and consistent. Results reveal that the
higher resolution of image data, the better performance in CNNs
classification. We speculate that CNN extracts more advanced
features for the public in higher resolution images, which can
be distinguished from other types. It seems that high-resolution
images still play a significant role in recognition tasks. Even if
the overall accuracy is limited in certain, it can reduce differences
between different categories.

D. Identification Effects With Different Classifiers at the
Fusion Stage

The article proposes the ensemble framework to identify func-
tional zones. In order to verify optimal of our model selection,
different classifiers are used for supplementary experiments, in-
cluding XGBoost, SVM, Naive Bayes, LSTM, and dense layer.
They are roughly divided into four types, including decision
tree fusion, optimal plane segmentation, probability statistics,
and neural network. And results are illustrated in Fig. 14. It is
observed that the ensemble learning model based on decision
tree has achieved better results. The accuracy of RF reaches
90.94% and XGBoost obtains 89.22%, much higher than other
types classifiers. The model based on decision tree is to select
an optimal eigenvalue for division. RF and XGBoost perform
better, which also suggests features of functional zones with a
high dimension are quite different in four types. Classification
results of SVM, LSTM, and dense layer are all around 60%.
But Naive Bayes based on probability statistics only achieves
an accuracy of 48%. SVM combines multiple binary classifiers
when dealing with multiple classification problems. This re-
quires pairwise combination of samples in different categories.
For example, when the commerce is classified with mixed data
in other three types, there is no obvious optimal plane for seg-
mentation. Characteristics of them are similar in some respects.
It is expected that LSTM is often used for time series data, while
dense layer is suitable for data with more feature dimensions.
Naive Bayes assumes that attributes are independent of each
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Fig. 14. Results by different classifiers.

Fig. 15. Result of different method.

other. But there is a greater correlation between features of SOE
dimensions. Moreover, our data lacks a prior probability, leading
to a decrease in accuracy.

E. Comparison With Traditional Approaches

Two traditional models widely used in land use mapping are
compared with our framework, LDA and K-means. Unlike mod-
els introduced above, both of them are based on unsupervised.
Using two models with our data, we conduct four groups of
experiments: 1) single POIs, 2) single building footprints, 3)
combining POIs and building footprints, 4) combining POIs,
building footprints, and remote sensing images. In Fig. 15, the
result show that 1) only using POIs, LDA achieves accuracy of
59.48% and K-means achieves 56.70%, 2) only using building
footprints, LDA gets 39.13% and K-means gets 46.61%, 3)

combining POIs with building footprints, LDA and K-means
obtain 53.91%, 53.04%, 4) LDA and K-means are 76.26%,
56.87% based on SOE features, lower than our framework with
90.94% accuracy. And it seems that they cannot extract features
of POIs and buildings well. After comparison, we believe that
our framework based SOE is more suitable and has achieved
good results.

In the experiment, parcels of Shenzhen in EULUC-China map
are used as research unit. For Level I (residence, entertainment,
transportation (not participate in verification), industry, and of-
fice) classification, Peng Gong used samples with more than 70%
of the dominant land use to train and verify, achieving accuracy
of 58.9% [28]. In our study of identifying Shenzhen functional
zones, samples with more than 60% of the dominant land use
are employed for training and verification. The result reaches
accuracy of 90.94%. This shows that the ensemble framework
we proposed can effectively extract features of functional zones
for classification.

F. Generalization to Other Cities

In order to evaluate applicability of our method, we conduct
additional experiments in Beijing and Guangzhou.

For Beijing, 1535 samples are obtained by using semi-
supervised sampling method. And training set and test set are
also divided by a ratio of 4:1. For training set, a series of feature
extraction methods are used to obtain images, buildings, POIs
features, and then RF is used to classify vector features. Among
304 functional regions in test set, 42 commercial financial re-
gions, 59 public facilities regions, 19 industrial storage regions,
and 184 residential regions are included. In test set, the overall
accuracy rate reaches 86.51%, 69.04% for commerce, 76.27%
for public, 52.63% for industry, and 97.28% for residence. This
confirms that our method is also applicable to other cities. The
result of Beijing is little lower than that of Shenzhen because
different cities have its own styles and land forms. There are great
differences in distribution of their internal functional regions.

For Guangzhou, we validate the model trained in Shenzhen
with multisource big data. Similarly, through semi-supervision,
we select plots with dominant land accounting for more than
0.6. We utilize 758 functional regions, including 67 commercial
regions, 130 public facilities regions, 145 industrial storage re-
gions, and 416 residential regions. The result shows that overall
accuracy rate of functional regions is 86.41%, including 77.61%
for commercial, 76.92% for public, 83.44% for industrial, and
91.82% for residential. Considering there is no continuity in
space of test samples, we show results in an area where samples
are densely distributed in Fig. 16. These functional regions are
concentrated in Haizhu district and Tianhe district. Fig. 16(a) is
the prediction type of functional region and Fig. 16(b) is the real
type of functional regions. Through comparison, it is found that
classification error in the public functional regions is obvious. As
mentioned above, the public includes many subcategories, such
as educational institutions, parks, government agencies, service
buildings, and facilities. So it is more challenging but the overall
performance is good.
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Fig. 16. Comparison of predicted values and the truth of some functional
regions in Guangzhou. (a) Prediction values. (b) Ground truth.

Based on training on one city, it is applied to another city,
showing the generalization ability of our model. The fusion
method of SOE based to identify functional regions can effec-
tively combine connections between scene, object, and econ-
omy, and deeply mine rich features.

V. CONCLUSION

Identifying urban functional zones plays a significant role in
urban planning, designing, and managing. It is very important to
find an efficient method replacing traditional survey approaches.
The emergency of big data provides a new perspective for
solving this problem. In recent years, fusion of multisource big
data has become a research trend in recognition of functional
zones to improve accuracy. Some studies integrate remote sens-
ing data with socioeconomic features, combining topographic
information and human activity characteristics. However, few
experiments have considered characteristics of buildings. Our
research integrates remote sensing, building footprints, and so-
cioeconomic data based on the concept of SOE, conducting spa-
tial information mining from three perspectives: scenes, objects,
and economic. The height is first introduced to supplement 3-D
information of buildings. This can make up for the insufficiency
of extracting features from plane and analyzing architectural
rules of building floors in functional zone. As expected, the
height of buildings varies greatly to meet needs of uses. Mining
more dimensional features can enrich information of parcels. In
addition, an ensemble learning framework is proposed to better

integrate SOE features. This is inseparable from selection of
methods and fusion of features, both of which are conducive
to the classification accuracy. Results show that our framework
VGG16+RF is an excellent combination. It achieves the best
results in a series of supplementary experiments, with an ac-
curacy of 90.94%. Other types of classifiers such as LSTM,
dense layer, SVM, and Naive Bayes are inferior for this task.
We believe that features of functional regions have a threshold
for node segmentation, so it is more suitable for decision tree
type classifiers.

In fusion of multisource data, VGG16 extracts semantic in-
formation from remote sensing images and 64-D features in the
penultimate fully connected layer are as output vector. In more
detail, three different ways are tried to train the neural network.
Training of all parameters in network can better fit our data. And
results show that the higher the resolution, the better the clas-
sification performance. In addition, 17 building indicators and
14 socioeconomic characteristics are constructed. RF is used to
automatically combine features for the final classification. In the
research, different data sources are combined for experiments,
which prove that the integration based on SOE is more helpful
for identification of functional zones.

More importantly, contributing factors of different source
data and differences in distribution patterns of buildings have
been analyzed. Results show that remote sensing images play a
decisive factor in classification. High-level features extracted by
CNNs are extremely discriminative. On the influence of image
resolution, we find that higher image resolution will lead to better
performance. It is undeniable that area and height of buildings
are also differential, which provides us with ideas for exploring
their laws. Experimental results in Beijing and Guangzhou show
great potential of our method.

In future research, improvements will be made in following
aspects. First, identification of mixed regions will be consid-
ered. We will expand samples of mixed functions for further
experiment. Second, the classification system of function region
will be refined. Public category can be subdivided into research
institutions, schools, hospitals, public facilities, institutions, etc.
The refined land use data should be collected to complete
labeling of parcels and expand the sample size of each parcel
type. Third, the scope of current research will be expanded.
And SOE-based methodology will be applied to more cities.
Subsequently, differences in distribution patterns between cities
can be deeper explored and application scenarios of model
migration between cities will be developed.
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