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Abstract—This article presents a label similarity probability
filter (LSPF) to make hyperspectral image postclassification. The
LSPF is inspired by the first law of geography and proposes a class
label probability function to quantify the probability of both cen-
tered and its neighboring pixels belonging to the same class. It first
classifies the hyperspectral data using the regular support vector
machine classifier. Then, it binarizes the posterior classification
result to obtain the binary label maps of each class. After that, it
traverses all spatial windows centered by each pixel and calculates
the cumulative probability of all pixels in each class. Finally, the
cumulative probabilities are used to make reclassification to obtain
the refined classification map. The experiments on Indian Pines,
Pavia University, and ZY1-02D Yellow River Estuary data show
that LSPF greatly improves the classification accuracy of spectral
signatures and outperforms other state-of-the-art spectral–spatial
methods.

Index Terms—Hyperspectral, label similarity probability filter
(LSPF), postclassification, spectral–spatial methods.

I. INTRODUCTION

HYPERSPECTRAL imaging sensor, as an advanced earth-
observation technique, can simultaneously capture hun-

dreds of narrow spectral bands that often range from visible
to shortwave infrared wavelength [1], [2]. Using slight spectral
divergences of different materials, the collected hyperspectral
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images can be applied to recognize diverse ground objects [3],
[4]. However, affected by local geographical, environmental
factors (e.g., topography, incident illumination, and atmospheric
effects), spectral signatures of the same ground objects have
clear variations across different spatial locations [5], which
brings out a big challenge for the accurate classification of hyper-
spectral data. Fortunately, the imagery property of hyperspectral
data contains enough spatial information and has been proven
to benefit the classification [6], [7]. Therefore, it has a great
future to combine the spatial and spectral information to boost
the pixelwise classification accuracy [8], [9].

During the past two decades, many spectral–spatial methods
have been presented, which can be grouped into three main
categories [10], [11], i.e., preprocessing-based [12], integrated
[13], and postprocessing-based methods [14], according to the
step where spatial information is plugged into the classifier.
Preprocessing-based methods extract spatial features from an
original image and then push them into a standard classifier [15].
The representative methods include three-dimensional (3-D)
Gabor filters [16] that extract suitable magnitude features, extend
morphology profiles [17] that make mathematical morphologi-
cal operations with structural elements in various sizes, attribute
profiles and extinct profiles that extract attribute morphological
characteristics [18], [19], and differential morphology profiles
[20] that depict the response of image structures related to
different scales and sizes of the structural elements. It is clearly
specified that the extracted spatial features highly determine the
behaviors of preprocessing-based methods [21]. The integrated
methods define a spatial descriptor by exploring the correlation
among nearby pixels within the same spatial neighborhood and
combine it with spectral signatures to formulate a spectral–
spatial classifier [22]. For example, a support vector machine
(SVM) with composite kernels (SVM-CK) [23] incorporates
both spectral and local spatial information into composite ker-
nels to boost the classification performance of SVM. The sparse
representation classifier integrates local spatial information by
exploring the dependencies among neighboring pixels within the
same spatial window [24]. However, the behaviors of integrated
methods are sensitive to parameter settings. A too small or too
large spatial neighborhood would degrade the characterization
accuracy of spatial information and deteriorate the classifica-
tion result [25]. Postprocessing-based methods implement a
defined spatial operator or filter to regularize a posteriori or
preobtained classification map [26]. For example, an adaptive
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weighted graph was used in a regression model to regularize pre-
obtained class-belonging probabilities from a collaborative rep-
resentation classifier [27]. The guiding images employ a guider
filter and bilateral filter (BF) to depict homogeneity disruption of
class labels to guide an edge-preserving classification from SVM
[28]. Markov random field assumes that the neighboring pixels
take the same class label with high probability and was used
to regularize a posteriori classification map from multinomial
logistic regression [29].

In this article, we present a simple but effective filter named
label similarity probability filter (LSPF) to improve a posteriori
classification map on hyperspectral data. The LSPF is inspired
by the first law of geography and assumes that two spatially
closer pixels within a neighborhood have a higher probability of
taking the same class labels when compared against other pixels
that are further away. It defines the label similarity probability
(LSP) to quantify the correlations between the center pixel and
its neighbors within the same spatial window. Furthermore, it
filters the binary label maps using the LSPF to calculate the
cumulative probabilities of each pixel in all classes to refine the
preobtained class label.

When compared against other current postprocessing meth-
ods, our approaches favor three main scientific contributions.

1) Our LSPF has a different idea from current postprocessing
methods. The LSPF estimates the label probability of all
pixels in all the classes by using the spatial correlations
with surrounding pixels and then implements the prob-
ability data into the classifier to refine the preobtained
classification map.

2) Our LSP is the first explicit operator to adaptively depict
the class label similarity between the center pixel and its
surrounding pixels. The LSP improves from the Gaus-
sian distribution function but is different from and could
automatically consider different spatial heterogeneity of
ground objects in the local windows of hyperspectral data.

3) Our LSPF is easy to implement and has good performance
in refining the pixelwise classification map.

The rest of this article is arranged as follows. Section II
presents the methodology of our LSPF. Section III describes
the experimental results on three popular hyperspectral data.
Finally, Section IV gives the conclusion of this article.

II. LABEL SIMILARITY PROBABILITY FILTER

A. Our Motivation

Due to the spectral similarity of the ground objects, the
misclassification and omission of the labels usually cause serious
salt and pepper noisy labels, which has a serious impact on
hyperspectral mapping [30]. Fortunately, postprocessing meth-
ods can improve the accuracy of hyperspectral classification by
regularizing the prior labels [31]. However, the current postpro-
cessing methods improve the visualization results and accuracy
of the classified images, there are still many false labels [32]. The
reason is that these methods are not considered the spatial corre-
lation between the neighboring pixels, and more parameters also
make these methods less robust [33], [34]. Therefore, an adaptive
prior label probability statistical method is meaningful for the

refinement of prior labels to obtain the accurate classification
result [35].

When having the preclassification result from regular classi-
fiers, such as SVM, the classification map can be transformed
into a series of binary classification maps (i.e., a pixel that
belongs to the class c will have 1, otherwise have 0). The first
law of geography tells us that all pixels in the image scene are
spatially correlated to others else, and the closer pixels are to
one another, the more they are correlated. Accordingly, in some
sense, within a certain spatial window (e.g., 5 × 5, 7 × 7, or
others), the pixels that are closer to the center pixel can be
regarded to have a higher probability of taking the same class
label with it when compared with those that are further away.
In detail, within a certain spatial window of ground objects on
the hyperspectral data, the surrounding pixels are closer to the
center pixel; they are more likely to belong to the same classes
of ground objects, i.e., have a larger LSP with the center pixel
on the same class.

We assume that spatial correlations between the center pixel
and its surrounding ones follow the Gaussian probability distri-
bution. And then, the 2-D Gaussian function is implemented to
depict the LSPs in the local spatial window size. If the center
pixel has preobtained class label in class i, the LSP of the center
pixel on class i is 1, which is consistent with the reality. For the
surrounding pixels, the LSP on the ith class decreases with the
spatial distance from the center pixel. For each class, it is easy
to find that the LSFs of surrounding pixels are correlated with
two main factors: the spatial window size and the degradation
gradient with the changing distance. The spatial window size
determines the number of pixels that are correlated with the
center pixel. The degradation intensity of LSF is determined
by the spatial heterogeneity of ground objects within the same
spatial window. That is, a stronger spatial heterogeneity brings
about a larger degradation intensity and vice-versa. Using the
LSF and the preobtained binary classification map on each class,
we can obtain the accumulative probabilities of all the pixels
on all classes, where the location of a bigger entry indicates
that the pixel belongs to the corresponding class with a larger
possibility. Furthermore, using the regular SVM classifier, we
reclassified the accumulative probability data of all pixels into
different classes and obtained the refined classification map.

B. Formulating the LSP for Each Class

The first law of geography indicates that the LSP decreases
with the increasing spatial distance between the center pixel and
its neighboring. Considering the simplicity and effectiveness of
2-D Gaussian distribution in a realistic world, we implement
the exponential function to model the LSP in the local spatial
window. The formulation is defined as

g (x, y) = e−(x
2+y2)/2σ2

(1)

where e is the natural constant, g(x, y) is the LSP between
the center pixel and its neighboring pixels in the same spatial
window, with that of the center pixel as 1. Here, (x, y) is the
local image coordinates against the center pixel determined by
the spatial window size d, and σ is the standard deviation that
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Fig. 1. LSP curves of the 5 × 5 spatial window with different σ.

determines the degradation gradients of LSP. For example, in
a 5 × 5 spatial window, both x and y range from −2 to 2
with a step interval of 1. The standard deviation σ determines
the degradation gradients of LSP from the centered pixel to its
nearby ones.

Considering the spatial heterogeneity of ground objects in
different local windows, the σ in each spatial window can be
adaptively estimated as

σ =
L

d2
σmax−min (2)

where L is the number of pixels that have the same preobtained
class label with the center pixel, and σmax−min is the interval
of standard deviation across the whole image, which can be
manually determined via cross validation. Fig. 1 illustrates the
LSP curve from different choices of σ. A small σ brings about
a steep LSP curve, indicating the stronger spatial heterogeneity
and greater divergences between the center pixel and its neigh-
bors.

C. Implementing the LSPF in All Classes

Furthermore, using the formulation of LSP in (1), in the spatial
window centered by the pixel (i, j), the LSPF for each class c
can be formulated as

fc (i, j) =
∑

Icij �Gij (3)

where fc(i, j) is the accumulative probability of the center
pixel (i, j) in class c, � is the componentwise product (i.e.,
Hadamard product),Gij = [g(x, y)] ∈ Rd×d is the LSP matrix
in the (i, j)th spatial window, with x and y changing from
−(d− 1)/2 to (d+ 1)/2. Icij = [Ic(x, y)] ∈ Rd×d is a Boolean
matrix from the preobtained classification map. Ic(x, y) = 1 if
the pixel (x, y) has the label c in the preobtained classification
map; otherwise, Ic(x, y) = 0. With the LSPF, the accumulative
probability vector of each pixel on each class c can be obtained.
Fig. 2 illustrates the procedure of LSPF in each class c.

D. Procedure of LSPF for Hyperspectral Postclassification

Fig. 3 shows the flowchart of LSPF for refining a preobtained
classification map of HSI data from SVM. The main procedure
includes the following four main steps.

1) Classifying spectral signatures using an SVM classifier:
With the randomly selected training samples, spectral

Fig. 2. Illustration of LSPF in each class c.

signatures are implemented to produce the initial classifi-
cation map from the SVM classifier.

2) Making binarization to the initial classification map: The
initial classification map is transformed into a series of
binary label maps, according to whether a pixel belongs
to the class cor not. That is, in the cth binary map, the pixels
have the class label c, which will be set to be 1, otherwise
0. For example, if there were 16 classes of ground objects
in the image scene, the preobtained classification map can
be divided into 16 layers of binary maps. In the layer of
class c, each pixel would be assigned 1 or 0 according to
whether its preobtained label belongs to the class c.

3) Implementing the LSPF of each class on all the pixels:
Using the LSPF, for each spatial window, the accumu-
lative probability fc(i, j) of pixel (i, j) on class c can
be calculated. After that, by traversing all the classes, the
accumulative probability dataF c (i, j) = [fc(i, j)]

C
c=1 of

all the pixels can be obtained, which formulates a 1× C
vectors on each pixel.

4) Classifying the cumulative probabilities using the regular
SVM classifier: Using the regular SVM classifier and a
small proportions of training pixels, the cumulative prob-
ability data of all pixels are implemented to train the SVM
classifier and obtain the reclassified map of ground objects
from hyperspectral data.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Hyperspectral Data

The Indian data: the data were downloaded from
the website of multispectral image data analysis system
at Purdue University (https://engineering.purdue.edu/∼biehl/
MultiSpec/aviris_documen-tation.html). The image scene was
taken by the AVIRIS sensor on June 12, 1992, that covers a
part of Indiana and contains 224 bands with 145 × 145 pixels,
and the spatial resolution and the spectral resolution are 20
m and 10 nm, respectively, and the spectral range is from
200–2400 nm. After removing the bands with severe water vapor
absorption, a total of 200 bands were used in experiments. The
data contain 16 types of ground objects (Corn-no till, Corn-min
till, Corn, Soybeans-no till, Soybeans-min till, Soybeans-clean
till, Alfalfa, Grass/pasture, Grass/tress, Grass/pasture-mowed,
Hay-windrowed, Oats, Wheat, Woods, Bldg-Grass-Tree-Drives,
Stone-steel towers).

https://engineering.purdue.edu/&sim;biehl/MultiSpec
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Fig. 3. Flowchart of LSPF for hyperspectral postclassification.

Fig. 4. Classification maps of Indian Pines dataset from different methods. (a) Ground truth. (b) SVM-SF (OA = 80.17%). (c) SLIC (OA = 95.90%). (d) EAP
(OA = 94.40%). (e) SVM-CK (OA = 96.46%). (f) BF (OA = 95.14%). (g) LSPF (OA = 97.33%).

The Pavia University data: the data were downloaded from
the Computational Intelligence Group from the Basque Uni-
versity (UPV/EHU) (http://www.ehu.es/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes). The image was ac-
quired by ROSIS sensors that cover the Pavia University area
and contain 115 bands with 610 × 340 pixels, and the spatial
resolution is 1.3 m. After removing the water vapor absorption
bands, 103 bands were used. The ground objects contain nine
types (Asphalt, Meadows, Metal, Gravel, Trees, Shadow, BS,
Bitumen, and Bricks).

The Yellow River Estuary data: the data were downloaded
from the Natural Resources Satellite Remote Sensing Cloud
Service Platform (http://sasclouds.com/chinese/normal/), cap-
tured by ZY-1-02D sensor launched by China and covers the
Yellow River Estuary area. The data were collected on June
28, 2019, including 166 bands with 30 m spatial resolution,
and spatial size of 1147 × 1600 pixels, with a spectral range
of 400–2500 nm and a spectral resolution of 20 nm. A total
of 47 bands of water vapor absorption were removed, and 119
bands were finally used in the experiment. The samples were
collected from the field and including 23 types of ground objects
(Reed, Spartina alterniflora, Salt filter tank, Evaporation pool,
Dry pond, Tamarisk, Salt marsh, Seepweed, River, Sea, Mud
flat, Tidal creek, Spare farmland, Ecological pond, Locust, Fish
pond, Swag, Building, Bare, Paddy fields, Crop1, Crop2, and
Crop3) [see Fig. 6(a)].

B. Parameter Tuning

The SVM classifier implements with the radial basis functions
(RBF) as the kernel function, and the variance parameter and the

penalization factor are obtained via cross validation [36]. Overall
accuracy (OA) [37], average accuracy (AA) [38], and Kappa
coefficient (KC) [39] are used to quantify the classification
accuracy. In the experiments, 10% labeled samples on each
class of Indian Pines, Pavia University, and Yellow River Estuary
dataset are randomly selected to train the SVM, and 90% labeled
samples are used for testing.

C. Classification Results of LSPF Versus Other Methods

This proposed LSPF is compared with five state-of-the-art
methods, including spectral characteristics-based methods: only
spectral features (SF) are used for classification by SVM (SVM-
SF) [40], preprocessing-based methods: extend attribute profile
(EAP) [41] and simple linear iterative clustering (SLIC) [42],
integrated-based methods: SVM-CK [43], and postprocessing-
based methods: BF [44].

We used cross validation to select the proper parameters of
various methods in this experiment. For EAP, the selection of
the number of principal components and the area threshold are
two important parameters, which are set to 3 and [50, 170, 360,
650, 960, 1370, 1850, 2400] in all datasets, respectively [45]. For
SLIC, the size of superpixel and the selection of regularization
parameters directly affect the classification performance and are
set to 5 and 0.01 in the Indian Pines data, 7 and 1.5 in the Pavia
University data, and 9 and 0.08 in the Yellow River Estuary data,
respectively [46]. For SVM-CK, average SF and RBF functions
are used to construct the composite kernel, and the patch size
is set to 9 in all datasets [47]. In BF, the local spatial window
size and weight for all datasets are set to 4 and 0.2, respectively
[48]. For LSPF, the optimal spatial window size (d) and the

http://www.ehu.es/ccwintco/index.php/Hyper
http://sasclouds.com/chinese/normal/
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Fig. 5. Classification image of Pavia University data from different methods. (a) Ground truth. (b) SVM-SF (OA = 88.09%). (c) SLIC (OA = 93.10%). (d) EAP
(OA = 94.98%). (e) SVM-CK (OA = 93.68%). (f) BF (OA = 95.50%). (g) LSPF (OA = 97.62%).

Fig. 6. Classification image of Yellow River Estuary dataset from different methods. (a) Sample distribution map. (b) SVM-SF (OA = 83.62%). (c) SLIC
(OA = 72.08%). (d) EAP (OCA = 94.62%). (e) SVM-CK (OA = 86.70%). (f) BF (OA = 85.77%). (g) LSPF (OCA = 93.10%).

interval of standard deviation (σ) are 13 and 6 in all datasets,
respectively.

1) Indian Pines Data: Table I presents the classification ac-
curacy of different methods in the Indian Pines dataset. Our
LSPF achieves the best classification accuracy in Corn-notill,
Corn-mintill, Corn, Grass-pasture, Soybean-notill, Soybean-
min, and Bldg/Grass. The accuracy of other objects is higher
than 80%, and the best OA, AA, and KC are achieved, which
shows that LSPF has comparative performance compared with
other benchmark methods. SLIC and EAP are the second, and
the classification accuracy of all ground objects is higher than
80%. SVM-CK obtains poor accuracy in Oats, and other ground

objects achieve higher accuracy. BF obtains the worst classi-
fication accuracy in Grass-past-mov and Oats, and SVM-SF
achieves the worst accuracy evaluation result in almost all
ground objects. Moreover, Fig. 4 illustrates the classification
maps. SVM-SF achieves the worst visualization effect and re-
sults in a lot of noisy labels. SLIC, EAP, and SVM-CK have poor
edge classification behaviors of ground objects. For example,
Corn-mintill is misclassified with Soybean-notil in SLIC, the
edge of Grass-pasture is misclassified with Soybean-notil in
EAP, Oats is wrongly classified as Corn-mintil in SVM-CK,
and the edges of Corn-notil and Soybean-clean are misclassified
with Soybean-mintil in all these methods. Compared with other



6902 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
CLASSIFICATION ACCURACY OF INDIAN PINES DATASET FROM DIFFERENT METHODS (%)

TABLE II
CLASSIFICATION ACCURACY OF PAVIA UNIVERSITY DATA FROM DIFFERENT METHODS (%)

methods, the visualization behavior of BF is better, and there is
a small number of errors at the edge of Soybean-mintil. LSPF
achieves the best visualization results of all.

2) Pavia University Data: Table Ⅱ presents the quantitative
evaluation results of different methods on the Pavia University
data. Our LSPF is still superior to all benchmark methods
and has the best classification accuracy in Corn-notill, Corn-
mintill, Corn, Grass-pasture, Soybean-notill, Soybean-min, and
Bldg/Grass; the classification accuracy of other ground objects
is higher than 90%, and the best OA, AA, and KC are obtained.
SLIC and EAP are raking the second, their classification ac-
curacies of all ground objects are higher than 85%, and OA,
AA, and KC are higher than 90%. SVM-CK obtains lower
accuracy in Oats. But the classification accuracy of other ground
objects, OA, AA, and KC are higher than 90%, which still has
comparative performance. BF obtains the worst classification
accuracy in Grass-past-mov and Oats, SVM-SF has the worst
classification behaviors, and almost all ground objects have
the lowest classification accuracy. The classification results of
the Pavia University dataset are shown in Fig. 5; SLIC and
BF achieve better visualization results. However, there are still
obvious misclassifications between Bare soil and Meadows, and
Gravel and self-blocking bricks. EPA and SVM-CK are the
second, and there are obvious noise spots in Bare soil. SVM-SF

has the worst visualization results and many noise spots exist
in Bare Soil and Meadows. Compared with these benchmark
methods, LSPF obtains the best visualization results.

3) Yellow River Estuary Data: Fig. 6 shows the classification
results of the Yellow River Estuary data. SLIC and BF have
better visualization results. However, the serious misclassifica-
tions always exist. SVM-SF and SVM-CK have poor visual-
ization effects and a lot of noise spots. Compared with other
benchmark methods, EAP obtains a better visualization effect,
and our method is the best. The accuracy evaluation results
of various methods are also shown in Table III. SLIC has the
lowest classification accuracy in almost all features and the worst
OA, AA, and KC. SVM-SF, SVM-CK, and BF are followed,
except for Reed, Tamarisk, Mud flat, Tidal creek, Locust, Fish
pond, Swag, Crop1, and Crop2; the classification accuracy of
other features and AA are higher than 80%, and OA and KC
are greater than 90%. EPA is the best among all benchmark
methods. Except Tidal Creek, the classification accuracy of
other ground objects is higher than 85%, and OA, AA, and
KC are higher than 90%. Our method achieves the best clas-
sification results compared with these benchmark methods and
obtains the highest classification accuracy in Spartina alterni-
flora, Evaporation pool, Tamarisk, Seepweed, River, Sea, Spare
farmland, Ecological pond, Locust, Fish pond, Bare, Paddy
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TABLE III
CLASSIFICATION ACCURACY OF YELLOW RIVER ESTUARY DATA FROM DIFFERENT METHODS (%)

Fig. 7. Impacts of (a) spatial window size d and (b) standard deviation σ in LSPF.

fields, Crop1, Crop2, and OA, AA, and KC, which are higher
than 90%.

D. Impacts From Two Key Parameters in LSPF

In this section, we investigate the influences of tradeoff pa-
rameters, d and σ, on the performance of the proposed method.
The results on Indian Pines, Pavia University, and Yellow River
Estuary data are shown in Fig. 7, where d varies from 3 to 17 with
step 2 in power. It can be observed that except for Yellow River
Estuary data, superior indices are produced and the variations of
all evaluation indices are obvious when d is from 3 to 11, and the
changing trends are flat for a larger d. The OA increases rapidly
first and then becomes flatten with the increasing d. Considering
the overall results, we recommend d to be over 10 in realistic
applications.

Moreover, we set the range of standard deviation within
[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 5,
10, 15, 20, 30, 40, 50] to investigate the optimal σ. Superior
behaviors are obvious in Indian Pines and Pavia University
dataset when σ is very large, but the change is small in the
Yellow River Estuary dataset. Although there are fluctuations,
the overall trend increases with the increase of σ, the fluctuation
gradually decreases, and the curve tends to be flat whenσ reaches
5. Therefore, a moderate σ around 6 is recommended to be
implemented in realistic datasets.

IV. CONCLUSION

In this article, a novel LSPF postprocessing-based method was
proposed to improve the classification accuracy of hyperspectral
image. The LSPF implements the LSP into all neighboring pixels
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within the same spatial window and estimates the cumulative
probability of all pixels in each class to refine its preobtained
classification map. The experimental results on three hyper-
spectral datasets demonstrate that the LSPF effectively improves
the prior label information and achieves the best classification
accuracy compared with the other five state-of-the-art methods.
Particularly, it could promote about 10% of AA in the regular
SVM classifications. In realistic applications, a moderate spatial
window over 10 and a moderate standard deviation around five
are recommended to use for guaranteeing good performance of
LSPF in hyperspectral postclassification.
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