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Ensemble Encoder—Decoder Models for Predicting
Land Transformation

Pariya Pourmohammadi

Abstract—Land development is a dynamic and complex process
influenced by a system of interconnected driving variables. Pre-
dicting such a process is important in mitigating severe climate
situations and improving the resiliency of communities. Current
predictive models in land transformation have not paid a serious
attention to capturing and exploiting the interchannel relation-
ships. Moreover, these models often have problems with general-
ization, which results in poor performance during testing. In this
study, we use a novel multichannel data cube, constructed from
socioeconomic attributes, terrain characteristics, and landscape
traits, to predict land transformation in a watershed in the US.
In particular, we introduce methods for projecting impervious
land transformations using these data cubes, using 2-D and 3-D
convolutional neural networks (CNNs) and their ensembles. We
apply fusion at decision, score, and feature levels to improve the
generalization ability and robustness of the proposed predictive
models. Performance is assessed using the Dice coefficient, receiver
operating characteristic curves, data visualization, and running
time. Our study shows that the use of 2-D and 3-D CNN ensembles
improved the performance of the models in terms of model stability,
precision and recall, and Dice coefficient.

Index Terms—Convolutional neural networks (CNNs),
developed land expansion, evidence fusion, land transformation
prediction.

1. INTRODUCTION

AND development has substantial impacts on different
L aspects of both the local and global environmental con-
ditions. It can place a significant burden on the resources of
a given region [1]. The impact of developed and urbanized
lands on the global ecosystem and climate change has been
widely discussed [2]. In the past few years, the influence of
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urban footprint in the creation of urban heat island and the
global temperature has been a ubiquitous discussion among
environmental scientists. Furthermore, because of their popu-
lation density, developed regions are vulnerable in the event of
natural catastrophes, and this is a matter of concern for risk
management modelers [3]. Accordingly, accurate models for
projecting the complex process of land development [4]-[6] are
utilized in natural catastrophe risk modeling, and in management
and climate change modeling [3], [7], [8].

Improving prediction outcomes for such complex and dy-
namic processes requires models to learn the complexities of
land transformation and land development processes. Recent
advancements in machine learning and deep learning have
led to improvements in predictive land transformation models
(LTMs) [6], [9]-[12]. Neural networks, as universal function
approximators, have been applied in land change detection
(CD) and prediction, land cover classification, and object de-
tection [8], [13], [14]. In this work, our focus is on land change
prediction. We use the terms “land transformation” and “land
change” interchangeably to refer to land cover change. These
terms have been used previously in the literature [8] and for
similar problems. The proposed model uses the historic land
cover data to project these changes. We are interested in pre-
dicting impervious land, which, according to the National Land
Cover Dataset (NLCD) of the US, represents urban impervious
land cover, and the regions with human made structures [15].
The process of impervious land transformation is a complex and
dynamic procedure influenced by numerous underlying mech-
anisms [16], [17]. We use an ensemble approach to integrate
features and/or results from multiple models that are developed
in the prediction of the land transformation process.

Multispectral data cubes are used to model land transfor-
mation using both 2-D and 3-D convolutional neural networks
(CNNs); then, we incorporate ensemble classification methods
to establish stable and generalized models. Our results show
how these techniques enhance the model performance in pre-
dicting the land cover transformation. The results of previously
proposed models of deepLandU, deepLandS, and U-Net [11],
[18] are used as the baseline models. A major shortcoming of
the baseline models, as suggested in [18], is that these models
do not incorporate interchannel relationships. In addition, there
is need for these models to exhibit better generalization per-
formance [19]. Our suggested framework, based on ensemble
models, considers this drawback to improve model performance.
Akey contribution of this work is the use of anovel 3-D data cube
to represent various types of data related to land transformation.
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Another is the use of 2-D and 3-D CNN models to exploit
potential interchannel relationships in this data representation. A
third contribution is the ensemble model built on these 2-D and
3-D CNN models for improved generalization capability. Our
results show the significant improvement in model performance
in terms of model robustness and accuracy using the proposed
3-D convolutions, ensemble learning, and multilevel evidence
fusion.

More specifically, we incorporate a third dimension in the
CNN models for analyzing land transformations. The for-
mulated models do not necessarily result in higher model
performance; however, they provide a compelling ground for
incorporating the intervariable relationships in the models. One
more implication of this contribution is that these models create
a schema for the datasets with higher temporal dimensions,
which opens up new perspectives for further improvements in
predictive models for land cover. Furthermore, we show how
structuring ensemble models based on evidence fusion at both
the score and label decision levels improve the overall model
performance. This serves to balance the tradeoff between model
bias and variance. Thus, another contribution of this work is the
introduction of an ensemble method for improved robustness in
land change prediction.

The rest of this article is organized as follows. In Section 1II,
we describe related efforts on machine learning models and the
application of CNNs in predicting land cover transformation.
Section III presents the data and the baseline models, 3-D convo-
lutional networks, evidence fusion and ensemble methods, and
the applied metrics for performance measurement. Section IV
presents the results. Section V concludes this article.

II. RELATED WORK

CNNs are a group of deep models, in which an order of
increasingly complex features is generated. These groups of
features are basically the outcome of sequences of trainable
filters and poolings in a defined window. In CNNs, predefined
kernels are used for convolving the features; predefined windows
are also used for poolings [20].

The past few years have seen rapid developments in deep
CNNs, with various applications in different disciplines [20],
[21]. These methods have become very popularinimage analysis
and classification. One of the major advances in this area was a
large deep CNN (AlexNet) proposed by Krizhevsky et al. [22],
which was able to classify samples from a large dataset of high-
resolution images. The dominance of accuracy of these models
in classification problems has led to the growing application of
CNNs.

Deep CNNs have also been widely applied in many areas
other than computer vision, for instance, in genomics sequence
studies, healthcare, speech recognition, geoscience, and earth
science [18], [23]-[26]. In remote sensing, various architectures
of neural networks models have been deployed to perform object
detection, CD [27], land cover classification, subpixel mapping
for land use applications [19], [28], and semantic segmentation
of the land [29], [30]. Shi ef al. [27] used convolutional block
attention modules and applied a deeply supervised attention
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metric-based network from CD on the CD dataset of Sun Yat-
Sen University. The CNN has also been used in developing
frameworks for subpixel mapping to extract information us-
ing super-resolution networks [19], [28]. U-Net, ResNet, and
AlexNet are some of the popular CNN models that have been
used for land classification [31], [32]. Hu et al. [13] and Castel-
luccio et al. [14] used AlexNet, VGG (from Visual Geometry
Group), Caffe, and PlaceNet to label patches of land images.
Kampffmeyer et al. [29] and Sherrah [30] applied the CNN and
a fully connected network to perform patch-based and pixelwise
segmentation. Kampffmeyer et al. [29] used these methods to
perform segmentation of true orthophoto images into six classes
of impervious surfaces, building, low vegetation, tree, car, and
clutter/background.

Although the CNN has been widely applied for different
tasks in land data analysis, there are limited applications of
deep learning in land change prediction. The LTM is one of the
well-known models that were developed to project land change
prediction; this model was based on a multilayer perceptron
network [8], [10]. The accuracy of this model depends on the
input of the number of transformed cells (PIDs), which is a
factor of population. Pourmohammadi et al. [18] introduced
deepLandU and deepLandS models and showed that these
models outperform the LTM. deepLandU and deepLandS are
shallow 2-D networks that are used for predicting the land
transformation. The number of filters in the convolutional layers
is different in these models. deepLandU has less trainable filters
and less poolings. The deepLandS model has a larger number of
filters, one more maxPooling and upsampling layer compared to
deepLandU, and also encompasses a dense layer. Results in [18]
demonstrated that although deepLandU is a shallower network,
it outperforms deepLandS. In both deepLand models, the first
two convolutional layers include 64 filters followed by average
pooling, and convolutional layers in the second and third parts
include 128 and 256 filters, respectively. The convolving filters
that were used in the first two convolutional layers were 5 x 5
kernels. In the first pooling layer, these networks applied average
pooling, while the remaining pooling layers were based on max
pooling.

The 2-D CNN is the prevalent model in most image-based
applications of the CNN. Yu et al. [26] used 2-D convolutional
layers to extract features in the spatial domain and constructed
a nonlinear architecture, where interspectral relationships are
fed into the model. They used their proposed model to classify
hyperspectral satellite image datasets. They further broadened
the scope of their work by introducing a 3-D neural network,
where the third dimension was deployed to ingrate interchannel
relationships [26]. Aside from the data manipulation, for some
applications, 3-D CNNs have shown improvements in the model
output. For instance, Ji et al. [20] proposed an application of 3-D
CNN s to extract spatiotemporal features from multiple frames.
They expanded the structure of their proposed network by ex-
ploring the model performance on variations of 3-D networks.
Tran et al. [33] trained their so-called C3D CNNss for the purpose
of action recognition. They studied variations of convolutional
kernel cubes and showed that a CNN of 3 x 3 x 3 kernels
outperformed the other models in their experiments.
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Fig. 1.

In this work, we apply variation of 3-D CNN models on the
spatiospectral data cubes to predict land development expansion.
We fuse different model structures to develop a predictive deep
learning model for land cover changes. Then, we integrate
different methods to improve the model generalization. These
methods include stacking the network weights in the training
process, creating linear and nonlinear combinations of model
scores, and deploying a voting ensemble on the model output. We
use deepLandU, deepLandS, and U-net as the baseline models
in this study.

III. METHODS

The basic approach used in this work is that the proposed
models will take data from a historical state of land in small
patches, represented as a multichannel data cube, as their input.
The output of each model is then a binary classification of the
land cover in each patch. For each patch, our classification of
interest is whether the patch belongs to developed land or to
undeveloped land. Fig. 1 presents a general schematic diagram
for the research methods. This framework first captures how
various types of information about the land cover are represented
in a multichannel spatiotemporal data cube. Then, the data cube
is passed to a deep learning framework for classification at the
pixel level, where the classification result implies whether each
cell will go through land development. The results are further
combined using various fusion techniques. In this section, we
described our data representation in Section III-A. The model
structures used in this study are explained in Section III-B.
We present our approach to evidence fusion and performance
measurement metrics in Sections III-C and III-D, respectively.

A. Database and Data Representation

The study area for this research is the Monongahela
watershed (HUC6-050200) that is located along the ridge of
the Appalachian Mountains in the U.S. (see Fig. 2). The data in

Eansembles

Proposed framework for data representation, spatiospectral data analysis, and evidence fusion for prediction of impervious/developed land expansion.

Fig. 2. Study area (showing the region in the Appalachian Mountain range in
the U.S.) and data representation using the spatiotemporal data cube (shown in
the cut-out).

this research are structured in such a way that each land char-
acteristic is considered as a different image channel. We used
multiple representations of landscape characteristics, geopolit-
ical boundaries, and demographic traits in the feature class. To
make a proper representation of these data attributes, the raster
maps are formatted, georeferenced, and then coregistered as a
multispectral data cube. A cross section of data cubes (which we
call patches) with dimensions of 32 x 32 x 71 was generated
from the study area.! Any of these patches is then considered as
one data sample.

We used distance to water, road, recreational sites, crop
land, oil and gas wells, mines, development, financial regions
along with, multiple density variables, geopolitics informa-
tion, terrain-related variables, and socioeconomic variables in
this study. Major demographic, socioeconomic, and land-cover-
related features were encompassed in the raster data layers;

! After changing the categorical variables to binary dummy variables, we
obtain a 71-D feature space.
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moreover, we used a digital elevation model as a graphical
representation of terrain. We used the data of 2001 and 2011
to be able to align the temporal data with other census-based
socioeconomic datasets in the study. We did not use any spectral
feature in this study, because many of the applied feature classes
were initially extracted from spectral images [15] and the applied
data represented enough input for this model [18].

In total, there were 21785 patches located within the study
area. We partitioned them as 66.6% for training and the rest
as test and validation data. The raster and rasterized datasets
that are used in this work are obtained from public national data
repositories, including the United States Geological Survey [15]
and TIGER shapefiles for U.S. Census [34]. The model was
trained on binary data of developed versus nondeveloped regions
using the NLCD of 2001 and on a set of variables; the test data
are the NLCD of 201 1. The class of developed land in this study
is defined based on low-, medium-, and high-intensity classes
of Anderson classes [35], which are used in classifications
of the NLCD. These classes of land have more than 20% of
imperviousness.

The Monongahela watershed is located in the north central
part of West Virginia (WV) and has experienced the most pop-
ulation growth from 2010 to 2020 based on the latest census of
the counties in which the watershed intersects [34]. This region
of WV characterizes the Appalachian region’s composition of
many small rural towns (70 towns with less than 3000 people)
with a clustered corridor of metropolitan areas (three cities
with a population of 15000 or more). In terms of land cover
and use, it contains a distributed mix of built-up developed
areas, residential areas, and large expanses of unaltered natural
composition of forests, fields, and agriculture [15]. The area is
also mostly private land with few restrictions and lacks zoning
except in the downtown areas of the three largest cities. No one
industry or land cover or use dominates the area and, therefore,
provides the opportunity to study and model the potential change
as a good precursor for the larger Appalachian region. Moreover,
the variety of land development types in this region (from very
rural to urbanized developments) increases the complexity of
the land change prediction process. In such situations, the major
driving factors of change act locally. Thus, the models that
consider conditions in neighboring cells’ would have a better
capability in dealing with the varying local conditions. Besides
the urban—rural interactions and configurations in the study area,
dominance of nondeveloped regions (95.9% of region comprises
nondeveloped lands in 2001, the base year of the study) creates
highly imbalanced data. In assessment of the model performance
on class imbalanced data, it is crucial to use metrics that can
factor in such data imbalance into the evaluation. Considering
this, we used different metrics to measure the performance, so
the measures are less sensitive to the skewed and imbalanced
sample classes.

B. Model Structure

In this work, we use the spatiospectral data cubes and also
investigate the significance of 3-D convolutional networks in
capturing interchannel interactions and in evidence fusion using
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Fig.3. 2-Dversus 3-D convolutions. Here, 3-D convolution assumes a spectral
dimension of 3 for the kernel. The method of (2+1)D first applies 2-D convo-
lutions on each band; then, 1-D convolution is applied separately, along the
spectral dimension in the spatiospectral data cube. Lines with different colors
show the contribution of different spatiospectral bands in the 3-D convolution.
Our figure is motivated by the approach used in [20].

features and outputs from different models. Trainable image
filters, local neighborhood operations using convolutional filters,
and subsampling operations are applied in an alternating manner
on the original raw input data, resulting in an increasingly com-
plex hierarchy of feature maps. We use patches of size 32 x 32
because the model best responds to this patch size. The values at
a cell (pixel location) in the output image denote the probability
value for the developed land at the given cell. The probability
of 0.50 or higher represents a class value of 1 (developed land),
and lower values denote a class value of O (nondeveloped land).

1) Convolutional Neural Network: In 2-D convolutions, a
small rectangular or square window with weights is moved
around the image. The window (also called convolution kernel)
is centered around each point in the image, and the weights are
applied to the corresponding values in the original image. The
weighted values from each position within the window are now
added to obtain the final value for the center position. Thus,
2-D convolutions only account for spatial information in the
image. For 3-D convolutions, the window is now extended to
three dimensions (typically, using time for the third dimension).
This small 3-D window is now moved around positions in the
images, and the weights are applied as before, with final results
as the sum of the weighted values within the 3-D window. The
3-D convolution captures the temporal dynamics. Fig. 3 shows
the significant differences between 2-D and 3-D convolutions. In
either case, different results can be obtained by simply changing
the weights, window size, window shape, or how much overlap
is allowed when the window is moved.

Tran et al. [33] used an intermediate approach between 2-D
and full 3-D convolutions. They first performed 2-D convolu-
tions on each frame. Then, for each position in the resulting
2-D image, they formed a temporal sequence and then applied
1-D convolution on this temporal sequence. They showed that
this approach (called (2+1)-D) resulted in a better performance
than using full 3-D convolutions. In this work, we will replace
the temporal dimension used in video analysis with the spectral
dimension in our data cube. Thus, the single “spectral” bands in
our data cube will be analogous to individual frames in a video
sequence. The 3-D convolutions will, thus, capture the spectral
changes between bands in our spatiospectral data cube.
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bottom is the 2-D model with its layers as introduced in [11]. The same layers are used in the 3-D model.

We expand the dimension of the convolutional layers and
poolings along the third dimension. By applying cubic con-
volutional filters, we aim to capture cross-variable relation-
ships. Fig. 4 shows the network architecture for our proposed
deep learning models using 3-D convolutions. The order of the
layers for the 3-D CNN was similar to that of deepLandU;
however, instead of 2-D convolutions and poolings, we used
3-D ones. The kernel size in the full 3-D model was 3 x 3 x 3
with stride of one. Except for the first convolutional layer that
had ReLU activation, in other convolutional layers, we used
LeakyReLU activation, and the activation function of last layer
was softmaz. After encoding the input cubes, we transposed
and upsampled the feature map back to 32 x 32. The kernel size
of the convolutional layer in this model convolves across three of
the channels. A variation of 3-D CNN kernels was also applied,
where we broke the 3-D kernels into a (2+1)-D kernel. In the
(2+1)-D CNN instead of applying full 3-D kernels with weights,
we used a combination of 1-D and 2-D kernels. This breakdown
considerably reduces the number of weights that need to be
fine-tuned and, hence, the computations required.

Model Parameters: In the proposed 3-D models, just like
2-D models of deepLandU and deepLandS (see [11]), we use
dropout at the final convolutional layer of the encoder, which
accelerates the training and prevents overfitting. The decoder
has more convolutional layers with more upsamplings. In all
the layers except the first two layers, LeakyReLU, which is a
version of rectified linear unit (ReLU) function, is used. The first
two layers use ReLU as the activation function.

a) Activation functions: In the applied models, we use two
activation functions of LeakyRe LU, which is applied after each
convolutional layer, and so ftmax that is used at the last layer of
each model for computing the class probability. LeakyReLU
minimizes the effect of the class imbalance data (see the follow-
ing equation)

x, ifx>0
ife <0

f(x) (D

ax,

where x is the value of the input for the function from the
convolutional layer and « is a coefficient for negative values of =
(we use a value of 0.05 for ). f(x) is the output of the activation
function which is passed to the next layer. At the last layer,
softmax function [see (2)] is used as the activation function.
Since our output in binary so ftmax returns a probability value
in the range of (0,1) per cell

e~

O'(Z_;) YK 1ezj
=

@)
where o (Z;) is the probability of the ith cell to be a hit, and cells
with values higher than 0.5 are labeled as developed lands, Z; is
the vector of model output from the last convolutional layer,
e is the exponential function of this vector, and e*/ is the
exponential function of the output vector for K classes, where
in our study we have only two classes, namely, developed land
and nondeveloped land.

b) Optimizer: We use the adaptive moment estimation
optimizer, which calculates the adaptive learning rates for each
parameter [36].

c) Loss function: The loss function for this model was
binary cross entropy, which computes the loss value as follows:

N

. 1 " .

L(y,9) = —% > lyilog(§:) + (1 —yi) log(1 — )] (3)
i=1

where ; is the estimated value per example, g is the true value,

and N is the number of samples.

C. Evidence Fusion

Training deep networks requires investment of time and re-
sources, yet there is no guarantee that the generalized error
is low for the test samples [37]. Ensemble models use the
outcomes coming from different networks and select the best.
Training multiple networks carries higher computational and
time expenses; nevertheless, the combination of results adds
to the bias, which balances the variance of only one trained
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network [37]. Through combining the predictions from multiple
models, ensembles reduce the variance and generalization error
of predictions. In this study, we used evidence fusion meth-
ods at decision, feature, and score levels to avoid overfitting
drawbacks of applying single networks and improve the model
performance.

1) Decision-Level Fusion (DF): We utilized DF using ma-
jority vote. This method is applied to identify the label of cell
c at patch p. The label of ¢;; in row % and column j is the most
frequent label from I = {I};,1%,,13;,.. ., []7}, where [}, is the
label from the ¢th model in row ¢ and column j, and lﬁj €{0,1}.

2) Score-Level Fusion (SF): We used two methods of aver-
aging and classification for conducting SF.

a) Averaging the scores: For cell x at patch k, we imple-
mented the following equation to compute the score of x:

_ Z:; 55;‘

m

Sij 4)
where s;; is the score of cell ¢ at row 7 and column j of patch k,
s;? y is the output score of the tth model at row ¢ and column j, and
m is the total number of models, whose results are considered
in this method.

b) Learning-based SF: We used a random forest classifier
to classify the output scores of m models. Random forest is
capable of dealing with class imbalanced data, which is the
case for our dataset. Random forest deploys a random subset
of features and looks for the most discriminative threshold,
where these thresholds are randomly drawn for each feature
and the splitting rule sets the best of these randomly generated
thresholds. This causes a variance reduction for the model at the
expense of higher bias. We used extremely randomized trees,
which goes one step further than the regular random forest
method and allows a high level of randomness in splitting the
trees. This method requires adjustments in two parameters of
the number of trees (estimators) in the forest and maximum
depth of the trees. Large number of trees will be computationally
expensive and at some threshold changes in the number of trees
does not improve the results significantly. The number of trees
represents the size of the random subsets for the features that
are considered when splitting a node. The smaller this value, the
greater the variance reduction and bias increase. To find the best
values for the number of estimators and trees, we cross validated
the results. Such k-fold cross- validation is performed on sets of
s ={s!,s% 3, ...,5™}, where s’ is a set the score results ac-
quired from the ith model. And for set s in {s!, 52,53, ..., 5™},
the value of |s| is equal.

3) Feature-Level Fusion (FF): At the feature-level data fu-
sion, a pairwise merge of feature maps is conducted before
applying the so ftmax function at each epoch. A linear combina-
tion of the features from the last convolution layer is passed to the
activation function at the last layer. We used a sum operation of
weights, such that for models my, mo, ms, . .., m,, the stacked
weight is computed as

W = Xn:wi 5)
i=1
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Fig. 5. Sensitivity and specificity diagram.

where w; is the output weights of model ¢, n is the number of
featurewise fused models, and W is the total weight feature that
is passed to the so ftmax function. In this analysis, the value of
n is set to two. This procedure helps the models to essentially
get the weights fine-tuned over a linear combination of weights.

D. Performance Measurement

To evaluate the model performance, we used the methods that
avoid the problems of class imbalanced data. These methods
moderate or remove the impact of true negative (TN in Fig. 5) in
the assessment. Moreover, the time complexity of CNN model
run encouraged us to use time efficiency as a performance
measurement metric.

1) Area Under Receiver Operating Curve (AUROC): The
AUROC shows the tradeoff between true positive rate (TPR
or recall) and false positive rate (FPR) across different decision
thresholds (see the following equations):

TPR = LA (6)
" TP+FEN
FP
FPR= — . (7
FP + TN

AUROC is the probability that a classifier will rank a random
positive instance higher than a negative one [38]. This metric
is used for assessing the performance of binary classification
models. We used AUROC in [11] to measure the model perfor-
mance; however, we noticed that the AUROC value can be too
optimistic about the performance of our models. The reason is
the highly imbalanced datasets used in this study, in which an
excessive improvement in the number of false positives changes
the FPR negligibly. This happens because small TN value will
produce very high FPR, which will reduce the impact of FP
on the FPR [38]. Still we are interested in considering AUROC
to compare models; we also used precision and recall (TPR)
metrics in model evaluation [see (6) and (8)]

TP
TP + FP

2) Dice Coefficient: In semantic segmentation, the Dice sim-
ilarity coefficient approximates the similarity of positive labeled
cells to the positive ground truth [see (9)]. This similarity metric
has been widely used in evaluation of image segmentation
results. Since TN regions do not impact the magnitude of the
Dice coefficient, it is robust to class imbalance (see Fig. 5)

2x TP

Diee = o N & (1P 1 ) ©)

®)

precision =
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3) Time Complexity: A major drawback in application of
deep learning is the time complexity for training the features.
Runtime of these models depends on the number of trainable
parameters. In this research, we investigated the running time
of the models as a performance measurement. To verify that the
reported times are standardized, we used NVIDIA Tesla K80
GPU nodes on Pittsburgh Supercomputing Center Bridges for
all the reported times. Access to the GPUs was provided through
the Extreme Science and Engineering Discovery Environment
virtual system [39]. However, due to limitations in the access
time to Bridges GPUs, we used EC2 g3.16xlarge instances of
Amazon Web Services to run the models with high total time.

IV. RESULTS

The results of this study are based on 160 epochs per model.
We used the AUROC and the Dice coefficient in performance
measurement of training. Figs. 6 and 7 illustrate the Dice coef-
ficient value of training and validation. Fig. 6 shows that the
training process of 2-D fusion models have similar learning
trend, and the training Dice coefficient value of these models is
lower than that of other models. Figs. 6 and 7 also show similarity
in the Dice values in 3-D models. We tested the results of this
similarity in learning and fine-tuning trends by creating a Dice
similarity confusion matrix of the model outputs.

The pairwise Dice coefficient of model outputs (excluding
the score and feature fusion results) (see Fig. 8) shows that
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Fig.8. Pairwise Dice coefficient of model predictions (M 1): deepLandS, (M2):
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2-D FF(1&2), (M7): 2-D FF(2&3), (M8): 2-D FF(1&3), and (M9): 3-D Fusion.

the results of deepLand-U, deepLand-S, and 2-D FF models
confirm each other. On the other hand, the results of 3-D models,
U-net, and 3-D FF models have a low level of agreement with
the other models. This confusion matrix brings a legitimate
description on the bias—variance balance of the fusion models.
It shows that since 2-D models of deepLand-U and deepLand-S
generate similar results, fusing these models at the feature level
would still lead to similar results. On the other hand, U-Net
and deepLand-U have lower similarity, and the fusion of these
two models represents much higher accuracy. But, this is not
the case for 3-D and (2+1)-D models, which represent 73.59%
Dice similarity. Feature fusion of these two models in 160
epochs represents a lower Dice coefficient value compared to
independent implementation of these models. Table I indicates
that the precision value has increased in 3-D FF results, but
recall has decreased, which means that the false negative labels
are higher in the fusion of 3-D and (2+1)-D models.

The results of SF indicate the highest Dice similarity and
precision values among all the results. After conducting fivefold
cross validation for the random forest models, the RF classifier
has been trained with 1000 estimators and 41 trees. This model
outperformed all other models in the study. The model results
of SF-RF show that this model is capable of predicting both
positive and negative classes at high accuracy, and it has the
lowest difference between precision and recall values. The data
used in this work are class imbalanced, and as discussed in
Section III-D, we can also observe that all the models exhibit
higher AUROC in both training and validation compared to
the Dice values (see Table I). This indicates that the nature of the
data, with majority of 0 values, has a significant impact on the
optimistic AUROC values, where the Dice coefficient disregards
the high TN values and demonstrates lower accuracy measures.

Running time of the models shows that the time expenses
correlate with the number of trainable parameters (see Table II).
Also, adding a dimension to the convolutional kernel window
and poolings has considerable impacts on the required time for
training the models. As mentioned, variation of 3-D network
requires less time for training; still this runtime is much higher
than time expenses of 2-D CNN model training.
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TABLE I
COMPARISON OF THE MODEL ACCURACY RESULTS

Training Validation

1D Model AUROC Dice AUROC  Precision  Recall Dice
1 deepLandS 0.9884 0.9098 0.9884 0.7785 0.7110  0.7175
2 deepLandU 0.9866 0.7565 0.9866 0.8350 0.6293  0.6617
3 U-Net 0.9811 0.9264 0.9820 0.5807 0.6321  0.5392
4 3D deepLand 0.9846 0.7528 0.9846 0.6886 0.6222  0.5508
5 (2+1)D deepLand 0.9785 0.7438 0.9785 0.6554 0.6380 0.5313
6 2D FF(1&2) 0.9877 0.5342 0.9877 0.8104 0.7970  0.7729
7 2D FF(2&3) 0.9758 0.5461 0.9758 0.7407 0.7767  0.7123
8 2D FF(1&3) 0.9741 0.5383 0.9742 0.7557 0.7013  0.6762
9 3D FF 0.9849 0.7449 0.9848 0.7506 0.4740 0.5134
10 SF-averaging 0.9979 0.8822 0.9940 0.8283 0.7293  0.7755
11 SF-RF 0.9853 0.8083 0.9927 0.8011 0.8130  0.8070
12 LF-voting | 0.9986 0.8470 | 0.9941 0.8244 0.6963  0.7548

The highest scores in each column are highlighted.Notations: FF(1&2): Feature fusion of deepLandS and deepLandU; FF(2&3):
Feature fusion of deepLandU and U-Net; and FF(1&3): Feature fusion of deepLandS and U-Net.

TABLE II
COMPARISON OF THE TIME REQUIRED FOR THE MODEL RUNS

Time  Time Number
Model Per Per of Trainable

Step Epoch  Parameters
deepLandS 6ms 86s 17,630,913
deepLandU 4ms 64s 10,772,997
U-Net Sms 65s 30,764,805
3D deepLand 42ms  606s 32,190,981
(2+1)D deepLand  28ms  398s 12,208,927
2D FF(1&2) 9ms 123s 28,403,910
2D FF(2&3) 1lms  164s 48,395,718
2D FF(1&3) 12ms  171s 41,537,802
3D Fusion 69ms  988s 44,399,908

Fig. 9. Location of the patches.

An illustration of the results in four different patches (see
Fig. 9) is represented in Fig. 10. These four patches show model
prediction on the test dataset in four areas. We selected these
patches such that they represent model prediction in geographic
regions of different developed land density and urbanization
level. The first patch is located in Pittsburgh, PA metropolitan

urban area, which according to US census datain 2010 has a pop-
ulation of more than 2 300 000. Patch 2 is in Morgantown, WV
metropolitan area, a college town with a population of 137 251.
Two other patches are selected from rural regions.Fig. 10 shows
a visualization of model performance in predicting land devel-
opment in both rural and urban areas. Fig. 10 shows that the
performance of models for different forms of development in
rural and urban areas varies. Visualized results of first five mod-
els show that these models predict denser land development area
than the ground truth, and they were not capable of teasing out
the state of adjacent cells. So, their prediction, mostly in urban
areas, creates aggregated new developments. Visualization of
2-D FF (1&2) shows that in patch 1 (P1)—more urbanized
regions—the results are akin to the ground truth. However, in
patches 2—4, the results of this model are not as promising as
SF-RF model. SF-RF demonstrates promising results at different
levels of development density. Visualization of SF-RF in all
patches exhibits similar results to the ground truth. Since the
whole study area is a combination of different levels of land
development with dominance of rural areas, the generalization
of the model results in different types of regions becomes a
critical consideration in overall model performance.

V. CONCLUSION

The results of this study imply that evidence fusion at decision
and score levels improves the model performance. With FF,
the model output shows some improvement in the results after
stacking the weights in some of the models. 3-D FF results did
not show much of improvements in the output; this is, in fact,
the result of the number of parameters that need to be fine-tuned
at this level of fusion. We suggest more consideration on the
learning rate parameter and the number of epochs, which could
improve the output of these models. Due to time constraints
for access to computational facilities, we did not explore an
extensive range of parameter values. This could be done as
part of future work in this area. Cross-channel relationships
impact the output of the 3-D CNN models. Hence, to some
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Fig. 10. Model prediction in four patches; each patch column includes the
labeled results. See Fig. 9 for patch locations.

extent, the order of the channels could impact the outcome of the
3-D CNN models. This question could be further investigated,
for instance, by considering the different permutations of the
feature space and the accompanying data management issues
this will raise. Thus, additional research is needed to better
understand how the interaction between the spectral bands can
affect the results. On the other hand, FF of 2-D CNNs indicates
higher performance measurement on validation data compared
to training. The results of this research also indicate that the
SF-RF model, which is an ensemble model with ransom forest
classifier applied to the score outputs, has promising perfor-
mance in different geographic regions with various forms of land
development. This idea could be further elaborated by applying
similar methods to other geographic regions and different classes
of land cover.
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TABLE III
FUSION RESULTS WITH AND WITHOUT 3-D MODELS

Model Dice
Averaging  0.7755
With 3D Models SF-RF 0.8070
Voting 0.7548
Averaging  0.7601
Without 3D Models  SF-RF 0.8013
Voting 0.7234

Although 3-D CNN models did not show very high accuracy
on their own (see Table 1), still the results of these models can be
investigated in terms of their role in casting good votes and bal-
ancing the scores using decision fusion or score fusion. We used
the output of 2-D models to conduct DF and SF (see Table III).
The results in Table IIT imply that fusion with 3-D models leads
to a higher accuracy when compared to fusion results without
the 3-D models. This suggests that we can improve the overall
results by incorporating the results from 3-D models, even when
using only 3-D models independently may not always lead to
the highest accuracy.

For future work, we suggest the application of spectral re-
mote sensing images along with other land characteristics. We
anticipate that including spectral images directly as part of the
input data would allow the model to more effectively capture
cross-spectral interactions in modeling the land transformation
process.
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