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Superpixel Generation for SAR Imagery Based on
Fast DBSCAN Clustering With Edge Penalty
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Abstract—In this article, we propose an adaptive superpixel
generation algorithm for synthetic aperture radar (SAR) imagery,
which is implemented based on fast density-based spatial clustering
of applications with noise (DBSCAN) clustering and superpixel
merging with edge penalty. The superpixel generation algorithm
consists of two stages, i.e., fast pixel clustering and superpixel
merging. In the clustering stage, we define a new adaptive pixel
dissimilarity measure for SAR image and then optimize the DB-
SCAN strategy, which considers the edge information and can
achieve rapid clustering. In the merging stage, based on the initial
superpixels, a new superpixel dissimilarity measure is defined,
which can merge the small local superpixels into their neighbor-
hood superpixels, making the final superpixel segmentation results
compact and regular. Experimental results on two simulated and
two real SAR images demonstrate that our method outperforms
the state-of-the-art superpixel generation methods in terms of both
efficiency and accuracy. The superpixel segmentation accuracy of
our method is 5–10% higher and the time cost is 10–40% lower
than other methods. Since the superpixel segmentation result can
be used as a preprocessing stage for the SAR data interpretation ap-
plications, superpixel-based and pixel-based classification results
with two real SAR images are also used for comparison, which can
validate the advantages of our proposed method.

Index Terms—Clustering, density-based spatial clustering of
applications with noise (DBSCAN), edge penalty, superpixel
generation, synthetic aperture radar (SAR) image.

I. INTRODUCTION

IN RECENT years, superpixel-based methods have attracted
increasing attention for synthetic aperture radar (SAR) image

interpretation for the reason that superpixels can better capture
the local image information than pixels, as well as reduce the
computational complexity of subsequent SAR image processing
tasks. Moreover, the superpixels are beneficial to the speckle
noise and artifact reduction for the SAR data. These various
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image degradation factors have a negative influence on remote
sensing data interpretation [1]. The superpixel is a group of pix-
els with similar attributes, which can be regarded as a processing
unit instead of pixels. The number of superpixels is much smaller
than the pixel number. Thus, the superpixel-based processing
methods would be more efficient than the pixel-based methods
for SAR images, especially for the large image scene. More
importantly, the superpixels can well adhere to the image bound-
aries, which can preserve the image details. Till now, superpixels
have been used for various SAR image applications such as
target detection [2], [3], segmentation [4] and classification [5],
etc.

Until now, most of the superpixel generation methods are
proposed for natural color images, such as the normalized cut
[6], turbopixels [7], simple linear iterative clustering (SLIC) [8],
linear spectral clustering (LSC) [9] and so on. Nevertheless,
these methods cannot be directly applied to SAR images for the
reason that the Euclidean distance used in these methods is not
suitable for SAR images due to the speckle noise. In addition, the
high dynamic range, layover, and sidelobe make the SAR image
scene quite complex, resulting in poor superpixel generation
performance using the aforementioned methods. To achieve the
superpixel generation for SAR images, several methods have
been proposed. Arisoy et al. [10] presented a mixture-based
superpixel generation method for SAR image, which takes the
amplitudes and pixel coordinates as features to finite mixture
models to cluster the pixels into superpixels. Jing et al. [11]
proposed an edge-aware (EA) superpixel generation for SAR
image by taking into consideration of the edge information.
Akyilmaz et al. [12] proposed a pixel similarity ratio (PSR) for
SAR images and then used it to label the pixels within the search
areas for generating superpixels on the basis of SLIC. Hu et al.
[13] proposed a superpixel generation for SAR imagery using
an edge-dominated (ED) local clustering, which is designed on
the basis of the SLIC approach. Zhang et al. [14] proposed a
fast multiscale superpixel segmentation method based on the
minimum spanning tree. Ghaffari et al. [15] proposed a weighted
conditional random fields algorithm based on a two-step super-
pixel generation method for SAR images where the intensity
heterogeneity due to speckle and backscattering is considered
for the superpixel segmentation. Wang et al. [16] developed a
superpixel segmentation approach and extended its application
on ship target detection for marine SAR images, which incor-
porated a Fisher vector (FV) to improve low contrast between
the ship targets and sea clutter, increasing the discrimination
accuracy. Shang et al. [17] proposed to use the SLIC algorithm
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to generate superpixels, and then used strong SAR image edges
as constraints to calculate the neighborhood weighted mean of
each superpixel to achieve the superpixel smoothing.

In recent years, there have been proposed some superpixel
generation methods based on deep learning models. Yang
et al. [18] incorporated the superpixel generation into deep
neural networks to achieve image segmentation. Lv et al. [19]
extracted the temporal change feature from superpixel with noise
suppression and then incorporated them with the auto contractive
autoencoder. In addition to the superpixel generation methods,
there are some superpixel-based or region-based classification
applications, such as the remote sensing imagery classification
[20]–[22], change detection [23], image denoising [24], etc.

Apart from the above superpixel generation methods for
single-polarization SAR images, there are also some superpixel
generation methods for fully polarimetric SAR images. Based on
the SLIC framework, Feng et al. [25], Song et al. [26], and Qin
et al. [5] proposed to use the symmetric revised Wishart distance,
Bartlett distance, and revised Wishart distance, respectively, to
replace the Euclidean distance in the original SLIC produce for
PolSAR image superpixel generation. Xiang et al. [4] proposed
an adaptive superpixel generation method for PolSAR images,
which can automatically control the balance between superpixel
shape and compactness. Wang et al. [6] tried to use the entropy
rate superpixel method in PolSAR image superpixel generation.
Liu et al. [2] introduced the normalized cuts approach into the
superpixel generation of PolSAR images based on the edge
maps. Lang et al. [27] proposed a generalized mean shift algo-
rithm and then extended it for PolSAR superpixel segmentation,
which can achieve fine segmentation results for PolSAR data.
Yin et al. [28] modified the SLIC clustering function to adapt
the characteristics of polarimetric statistical measures and then
proposed a superpixel segmentation method for PolSAR images.

Although the above methods can achieve superpixel genera-
tion for SAR and PolSAR images, there are some deficiencies.
On the one hand, some methods such as [10], [12] are designed
on the basis of SLIC algorithm. The main shortcoming is that
they only use the image intensity and location information as
features without considering the edge information to define the
dissimilarity measure, resulting in that the superpixels cannot
well adhere to the true object boundaries. Although the edge
information of SAR imagery is considered in some methods
[11], [13], they are not fully used for the dissimilarity measure.
The edge strength result is regarded as a guidance map for the
superpixel generation. In addition, the generated superpixels
cannot be well adaptive to the complex SAR image scene [14].
For instance, superpixels within homogeneous areas should be
regular and compact whereas in heterogeneous areas, they tend
to have different shapes to well adhere to the complex image
object boundaries. On the other hand, the method like [10] has
a high computational cost as a preprocessing method due to
the model parameter estimation. Therefore, it is necessary to
conduct an adaptive and fast superpixel generation method for
SAR image, which can be adaptive to the complex SAR image
scene.

To achieve the above expectation, we propose an adaptive
superpixel generation algorithm for SAR image based on the

density-based spatial clustering of applications with noise (DB-
SCAN) strategy, which is implemented based on fast clustering
and superpixel merging with edge penalty. In comparison with
other state-of-the-art methods, our proposed method has the
following contributions and advantages.

1) The edge strength map is obtained from SAR imagery by
using our previously proposed edge detector [29], which is
then considered in the definitions of pixel and superpixel
dissimilarity measure and DBSCAN optimization. Thus,
the proposed method can incorporate the edge information
into the superpixel generation, resulting in satisfactory
superpixels with good boundary adherence.

2) The local homogeneity measurement of SAR images is
taken into consideration for the definition of dissimilar-
ity measure, making the proposed superpixel generation
adaptive to the complex SAR image scene. Therefore,
the superpixels in homogeneous and heterogeneous areas
would change the shapes and compactness accordingly,
leading to a better preservation ability of SAR image
details.

3) Apart from the pixel dissimilarity, we also define a new su-
perpixel dissimilarity measure, which can merge the small
local superpixels into their neighborhood superpixels,
making the final superpixel segmentation results compact
and regular. Therefore, there are few over-segmentation
errors in the result of our method.

The rest of this article is organized as follows. Section II gives
the background and some related works of the proposed method.
Section III shows the detailed descriptions of the proposed
method, which consists of edge extraction, initial superpixel
generation, and superpixel merging. In Section IV, we provide
in-depth comparisons between the proposed algorithm and other
existing algorithms via detailed experiments using simulated
and real SAR datasets. The superpixel generation results of
different methods, as well as the superpixel-based applications,
are compared. In addition, the computational complexity anal-
ysis and time costs are also given. Section V concludes this
article with some remarks and directions for plausible future
research.

II. BACKGROUND AND RELATED WORKS

As we stated in the introduction section, superpixel generation
is popular and widely used in natural images, however, they
cannot be directly used for SAR images for the reason that SAR
images suffer from multiplicative speckle noise, relatively high
dynamic range, layover, and sidelobe, making the SAR image
scene quite complex. For one SAR image I , the multiplicative
speckle model can be generally depicted as

I = ΩR ·NS (1)

where I is the original SAR image intensity, ΩR is the backscat-
tering coefficient of the pixels, and NS is the speckle noise
within the SAR image, which is considered to obey a Gamma
distribution with unit mean [30].

The superpixel generation algorithm called SLIC [8] has been
widely used for natural images and performs satisfactorily in
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Fig. 1. Flowchart of the proposed superpixel generation algorithm.

terms of both boundary adherence and efficiency. Let S and K
be the image size and the number of superpixels, respectively.
The main stages of the standard SLIC method are depicted as
follows:

1) Initialization of the cluster centers. Set K initial cluster
centers on a regular grid, and then move these cluster
centers to the positions with the lowest gradients in a 3× 3
neighborhood;

2) Pixels local clustering. Assign each pixel to the closest
cluster center in a local search area by the k-means clus-
tering;

3) Update cluster centers. The cluster center is updated as the
mean of all pixels which belong to it;

4) Repeat the steps 2) and 3) until the termination condition
is achieved; and

5) Post-processing. The isolated regions are reassigned to
neighbor superpixels if the size of the isolated regions is
smaller than a threshold.

In the standard SLIC approach, the Euclidean distance is used
in the local k-means clustering, which is not suitable for the SAR
images with multiplicative noise [5], [31]. Although there are
some variants of the SLIC approach for SAR image superpixel
generation, there are some drawbacks. The edge information of
the SAR images is not fully considered. Moreover, the super-
pixel generation cannot be adaptive to the complex SAR image
content.

Not that the density-based clustering methods have the advan-
tages that they can find arbitrary shaped clusters in the dataset
and also insensitive to noise. In these methods, the clusters
are formed by merging dense areas separated by spares areas.
DBSCAN is one of the density-based clustering methods and
proposed for clustering large spatial databases with noise or
outliers. However, it is seldom used for superpixel generation.
Therefore, in this work, we adopt the DBSCAN clustering
method for SAR image superpixel generation, which also tries
to resolve the drawbacks that the superpixel generation is not
robust to the multiplicative speckle noise and is not adaptive to
the complex SAR image scene.

III. PROPOSED METHODOLOGY

In this section, we introduce the main components of our
proposed superpixel generation algorithm. It consists of two
stages, i.e., fast pixel clustering and superpixel merging, which
is designed based on the proposed pixel dissimilarity measure
and superpixel dissimilarity measure. The DBSCAN strategy is
optimized with the edge information which is extracted from
the SAR images. The flowchart of our proposed algorithm is
shown in Fig. 1 and the individual components are given in
detail in different subsections, as well as the implementations of
the algorithms.

A. Edge Information Extraction From SAR Image

There have been proposed several edge detection methods for
SAR images [32]–[34]. In this article, we adopt our previously
proposed edge detector with a recurrent guidance filter to extract
edge information from SAR images [29]. In this method, the
recurrent guidance filter contains two stages, where the first
stage is to use the Gaussian filter to remove texture and speckle,
increasing the edge information. After that, the filtered SAR
image is used for edge extraction to preserve the edges in an
iterative manner.

First, the Gaussian filter is used to suppress the texture infor-
mation and speckle within the SAR images, making the edges
be well preserved. This stage is beneficial to the SAR edge ex-
traction for the reason that the edges can be relatively enhanced.
After that, in the next iteration, the obtained Gaussian-filtered
image can be regarded as the new guidance image to filter the
input SAR image, resulting in that the guidance image being
iteratively updated. Therefore, when the iteration terminates, we
can obtain the final filtered image. It can be seen that this stage
is an iteration manner and the filter can be called a recurrent
guidance filter.

The recurrent guidance filter for each pixel in the SAR image
is given as [29]
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where J t(p) represents the filtered result of the pixel p in the
tth iteration. I(q) is the intensity of pixel q in the SAR image I .
The spatial and intensity weights are controlled by σs and σr.
N(p) is the set of neighboring pixels surrounding the pixel p.
GLRJt−1(p, q) indicates the dissimilarity between p and q in the
guidance image J t−1, which can be defined as [29]

GLRJt−1(p, q) = 2 ·M · ln J̄ t−1(p) + J̄ t−1(q)

2
√
J̄ t−1(p) · J̄ t−1(q)

(3)

whereM indicates the neighboring pixel number for each center
pixel. The Kp in (2) is defined as
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∑
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which is used for normalization. The recurrent guidance filter
in (2) is constructed on a joint bilateral filter and employed
iteratively, aiming to remove the nonedge information including
speckle and texture and preserve the edge information. Then
the edge detector with the Gaussian-shaped window is adopted
to extract the final edge strength map. The algorithm can be
implemented according to Algorithm 1. Further details can be
found in [29].

It is worth pointing out that in Algorithm 1, there are several
parameters that can influence the edge detection performance.
The parameters σs and σr can be set as 3 and 0.03, respectively.
It should be noted that these two parameters are not sensitive to
the SAR imagery. Therefore, it can be set the fixed values.Thlow

and Thhigh are used to determine the edge pixels from the edge
strength map, which can be set as 0.08 and 0.14, respectively.
They can be adjusted accordingly if necessary when dealing with
SAR images.

Fig. 2 gives the edge detection performance of the utilized
detector, where Fig. 2(a) is the original SAR image and Fig. 2(b)
is the edge strength map of the detector. Fig. 2(c) and (d) is the
edge map of the Gaussian-shaped window edge detector without
and with the recurrent guidance filter. It can be seen that by using
the recurrent guidance filter, the speckle noise can be suppressed
and the isolated pixels can be eliminated in the final edge map,
which can increase the edge detection accuracy.

B. Initial Superpixel Generation With Fast Clustering Stage

First of all, we aggregate pixels to get initial superpixels with
the fast clustering stage. DBSCAN is the pioneer of density-
based clustering techniques that can discover clusters of arbitrary
shape and also handle noise or outliers [35], [36]. Given a set of
feature points, DBSCAN can group the points that are closely
packed together (i.e., the points with many nearby neighbors).
In contrast, the outlier points stay alone in low-density regions
whose nearest neighbors are too far away from them. Moreover,
it can be extended to large datasets by reducing its time complex-
ity using spatial index structures. DBSCAN is one of the most

Fig. 2. Edge detection performance of the utilized detector. (a) Original SAR
image. (b) Edge strength map of the detector. (c) Edge map of Gaussian-shaped
window edge detector without considering the recurrent guidance filter. (d) Edge
map of the Gaussian-shaped window edge detector considering the recurrent
guidance filter.

common local clustering algorithms and popular algorithm in the
research of data mining field. It has the potential ability to fast
superpixel generation. However, the DBSCAN is not suitable
for pixel clustering in SAR images due to the speckle noise. In
this article, we define a new adaptive pixel dissimilarity measure
for the SAR image and then optimize the DBSCAN to achieve
rapid local pixel clustering.

For one SAR image, we define two sets that are named as
labeled set and candidate set. Then a top-left nonedge pixel is
assigned to a label as the first seed and added into the labeled
set. The reason is to avoid the local clustering around the SAR
image edge. The SAR image pixels can be divided into three
kinds, i.e., the seed, labeled, and unlabeled pixels.

For the seed pixel, we find its four neighbor pixels that are
unlabeled, then calculate the dissimilarity measures between the
neighbor pixel and the seed pixel. If the dissimilarity is less than
the threshold we defined, we give the neighbor pixels the same
label as the seed and update the labeled set. We then find all of
the unlabeled four neighbor pixels of each pixel in the newly
updated labeled set, then calculate the dissimilarity measures
between each unlabeled pixel and the seed. If the dissimilarity
is less than the threshold, the unlabeled pixels will be labeled as
the seed and the labeled set is updated. Note that this procedure
is iterated until the termination condition is satisfied.

Afterward, the labeled set will be replaced by a candidate set
and a new seed is selected with a conventional order from the
unlabeled and nonedge pixels. The above procedure is repeated
until all the pixels are labeled. Finally, initial superpixels are
generated after getting enough candidate sets with different la-
bels. Fig. 3 gives the illustration of the proposed pixel clustering,
where Fig. 3(a) illustrates the unlabeled neighbor pixels of the
seed pixel. The thick and thin edges between the seed and neigh-
bor pixels denote the large and small dissimilarities. Fig. 3(b)
gives the generation stage of the labeled set, i.e., the calculation
of the dissimilarity between unlabeled four neighbor pixels of
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Algorithm 1: The Edge Detector For SAR Images With
Recurrent Guidance Filter.

Input: SAR image, number of iterations itr, edge
extraction thresholds Thlow and Thhigh.

Output: Edge strength map and edge pixels.
1: for each iteration in itr do
2: The given SAR image is filtered by the recurrent

guidance filter with (2).
3: end for
4: In the filtered SAR image, for every pixel, do
5: the edge strength map can be calculated using the

Gaussian-shaped edge detector.
6: end for
7: Perform the non-maximum suppression (NMS) on the

edge strength map to get the maximum values which
form the candidate edge pixels.

8: for every pixel in the candidate pixels do
9: if edge strength is bigger than Thhigh then
10: this pixel is declared as strong edge pixels.
11: end if
12: end for
13: for other candidate pixels do
14: if edge strength is between Thlow and Thhigh then
15: this pixel can be labeled as edge pixels if there are

strong edge pixels surrounding them in four
neighborhoods.

16: end if
17: end for

Fig. 3. Illustration of the fast clustering. (a) Unlabeled neighbor pixels of the
seed pixel, where the thick and thin edges denote large and small dissimilarities.
(b) Calculation of the dissimilarity between unlabeled four neighbor pixels of
the labeled set and the seed. (c) Labeled set is replaced by the candidate set once
the termination condition is satisfied.

the labeled set and the seed. The unlabeled neighbor pixels will
change to labeled pixels once the dissimilarity measure is less
than the defined threshold. Fig. 3(c) shows the candidate set
result when the termination condition is satisfied, i.e., the size
of labeled set reaches to the predefined superpixel size. The
candidate set is regarded as the initial superpixel. Then the next
seed is selected to generate a new candidate set.

The dissimilarity measure between the unlabeled pixel and
seed plays a key role in superpixel generation. In this article, we
propose a new adaptive pixel dissimilarity measure considering
the edge penalty and SAR image homogeneity. The intensity
dissimilarity δ(i, j) of pixels i and j can be defined based on the
likelihood ratio test statistic using two patches Pi and Pj which

are centering the two pixels as

δ(i, j) = 2M · L · ln ĪPi + ĪPj

2
√
ĪPi · ĪPj

(5)

where ĪPi and ĪPj denote the average intensity of two patches.
M is the number of pixels in the patch, which is usually set
as 5× 5. L is the number of looks of the SAR images. Aside
from the intensity dissimilarity, pixels around the edges cannot
be easily clustered. Therefore, we incorporate an edge penalty
into the pixel dissimilarity as

σ(i, j) = δ(i, j) +
1

2
[ξ(i) + ξ(j)] (6)

where σ(i, j) denotes the pixel dissimilarity between i and j.
ξ(i) and ξ(j) are the edge strength of two pixels, which can be
obtained by the edge detector [29]. In this way, pixels with larger
edge strength will have larger dissimilarity, which avoids the
clustering. In addition, due to the seed selection procedure, i.e.,
nonedge pixel, the edge penalty between seeds, and other pixels
will be always effective. It is worth pointing out that for each
unlabeled pixel, whether it should be clustered by the seed not
only depends on the dissimilarity between them but also depends
on the dissimilarity between the pixel and its center pixel for the
reason that the unlabeled pixel is a neighbor of the center and the
center is already clustered by the seed. As shown in Fig. 3(b),
whether the rightmost unlabeled pixel can be clustered by the
seed not only depends on the dissimilarity between the unlabeled
pixel and the seed but also depends on the dissimilarity between
the unlabeled pixel and its center pixel, which is the labeled
neighbor pixel. Therefore, according to Fig. 3(b), we rewrite the
dissimilarity between the unlabeled pixel j and the seed i as

Ω(i, j) = σ(i, j) + |H(i)−H(j)| · σ(k, j) (7)

where Ω(i, j) denotes the adaptive dissimilarity measure.
σ(k, j) is the pixel dissimilarity between the center pixel k and
the unlabeled pixel j. H(i) and H(j) represent the homogeneity
of two pixels, which can be calculated by the coefficient of
variation of SAR image as

H(i) =
σM (i)

ĪM (i)
(8)

where σM (i) and ĪM (i) denote the standard deviation and mean
intensity of the local image region surrounding the pixel i,
respectively. It can be found that in (7), if the unlabeled pixel
locates in the heterogeneous areas, the homogeneity values of
different pixels are quite different, thus |H(i)−H(j)| will be
large and σ(k, j) plays a key role in Ω(i, j), resulting in that
pixels having high similarity with k are more likely clustered by
the seed. Therefore, the generated superpixels can well adhere
to image boundaries and preserve image details. In contrast, if
the unlabeled pixel locates in the homogeneous areas, Ω(i, j)
will be dominated by the σ(i, j). Thus, pixels that are similar to
the seed will be clustered, making the superpixel regular.

In terms of the terminate condition, the superpixel size no
more than the threshold S/K is selected, where S represents
the SAR image size and K denotes the number of superpixels
to be set. It can be seen that this condition is used to control
the size of initial superpixels. It is worth pointing out that
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the superpixel number K is the parameter that needs to be
set for the proposed algorithm. More superpixels can generate
more accurate segments, which can adhere well to the image
boundaries. However, more superpixels will lead to a relatively
high computation load for the following SAR data applications.
Therefore, the superpixel number K should be determined de-
pending on the SAR image size and the scene homogeneity.
Although the proposed clustering procedure seems like region
growing, the seed selection strategy and the terminate condition
make the clustering fast and different from the slow region grow-
ing. Another issue that should be discussed is the dissimilarity
threshold. Generally, two pixels are regarded as similar if their
pixel intensities are 80% similar and the homogeneity values are
almost the same. Note that it is an experience value and can be
accepted in real applications. Moreover, the edge strength values
of these two pixels are almost zero. Therefore, in this article, we
can derive the dissimilarity threshold according to (7). When the
homogeneity values are the same and the edge strength values
are zero, the dissimilarity Ω(i, j) between the unlabeled pixel j
and the seed iwill be only determined by the δ(i, j). If we assume
that two pixels are regarded as similar if their pixel intensities are
80% similar, then according to (5), the δ(i, j) can be calculated
as

δ(i, j) = 2 · 25 · L · ln ĪPi + 0.8 · ĪPi

2
√

ĪPi · 0.8 · ĪPi

= 50 · L · ln 1.8

2
√
0.8

= 0.31 · L. (9)

Therefore, the dissimilarity threshold in this article can be
derived as 0.31 · L to determine the clustering.

C. Merging Stage Between Initial Superpixels

After the fast clustering, the merging stage here is used to
merge the superpixels and eliminate small fragments, leading
to final superpixel results. If the number of pixels within one
initial superpixel is less than a threshold, we will merge it with
its neighbor initial superpixel which has the lowest dissimilarity.
After the merging stage, the final refined superpixels with the
regular shapes can be obtained. Here we propose a new super-
pixel dissimilarity as

Ω(SPm, SPn) = σ (SPm, SPn)

+
1

2
(ξ (SPm) + ξ (SPn))

+ |H (SPm)−H (SPn)| (10)

σ (SPm, SPn) = 2 ·min (size (SPm) , size (SPn))

· L · ln ĪSPm
+ ĪSPn

2
√

ĪSPm
· ĪSPn

(11)

where size (·) denotes the superpixel size. It can be seen from
(10) that this superpixel dissimilarity considers intensity, edge,
and homogeneity information. Thus, if two superpixels have
similar intensity values and low edge response, as well as similar
homogeneity will be easily merged. Regarding the superpixel

Algorithm 2: Superpixel Generation Based On Fast DB-
SCAN Clustering With Edge Penalty.

Input: SAR image with size S and number of looks L,
the number of superpixels K.

Output: Superpixel generation result.
Edge extraction stage:
1: Perform edge extraction from the SAR image using

the Algorithm 1.
Initialization stage:
2: The expected superpixel size is S/K. Calculate the

homogeneity of each pixel, which can be obtained by
the coefficient of variation of SAR image. Set initial
pixel label as 0. Set the label set Lset and candidate set
Cset empty.

Initial superpixel generation stage:
3: while find a seed i, optimize the seed with the edge

strength, set i ∈ Lset, do
4: while the superpixel size is not larger than S/K, do
5: for each pixel j in Lset

6: for each pixel k neighboring to j
7: compute the adaptive dissimilarity measure Ω(i, j) for

the seed i and pixel k.
8: if Ω(i, j) < 0.31 · L then
9: set k ∈ Lset;
10: end if
11: end for
12: end for
13: set Cset = Lset;
14: end while
15: end while

Superpixel merging stage:
16: For each superpixel SPm, if its superpixel size is

less than 0.2× (S/K), then
17: for each superpixel SPn which is neighboring to

SPm, do
18: compute the superpixel dissimilarity Ω(SPm, SPn)

between SPm and SPn;
19: find the smallest Ω(SPm, SPn) among the neighbor

superpixels of SPm;
20: set the label of SPn as the label of SPm;
21: merge the two superpixels.
22: end for
23: end if

size threshold, it can be set as 0.2× (S/K), which is quite small
in comparison with the initial superpixel size.

The detailed implementation of the proposed superpixel gen-
eration algorithm is given in Algorithm 2.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we demonstrate the performance of our method
using two simulated and two real SAR datasets. Five representa-
tive methods, including the SLIC-PSR [12], the EA superpixel
generation [11], the ED local clustering [13], the FV-based
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Fig. 4. First simulated SAR image with Gamma speckle and the corresponding
ground truth. (a) Texture image. (b) Simulated SAR image with four-look
Gamma speckle. (c) Ground truth map.

Fig. 5. Second simulated SAR image with Gamma speckle and the
corresponding ground truth. (a) Texture image. (b) Simulated SAR image with
two-look Gamma speckle. (c) Ground truth map.

adaptive superpixel segmentation (FVASS) [16], and the su-
perpixel segmentation method of superpixel boundary-based
edge description algorithm (Sp-SpBED) [17] are selected for
comparison. Note that the EA and ED methods both consider
the edge information for superpixel generation but without con-
sidering the SAR image homogeneity. The edges are regarded
as constraints or guidance information for the following local
clustering. PSR is a generally superpixel method based on the
SLIC without considering the edge and homogeneity informa-
tion. FVASS is a superpixel generation method designed for
SAR marine images, which is further demonstrated by using ship
detection. The Sp-SpBED method calculates the neighborhood
weighted mean of each superpixel to achieve the final superpixel
smoothing, which can obtain accurate superpixels. Note that the
edge strength maps for EA, ED, and our method are all the same,
leading to a fair comparison on the superpixel generation. For
all the comparison methods, we select the optimal parameters
according to the corresponding references, which can achieve
the optimal superpixel segmentation results.

A. Superpixel Results of the Simulated SAR Dataset

Figs. 4 and 5 give the simulated SAR images and the corre-
sponding ground truth. Figs. 4(a) and 5(a) display the original
simulated texture images, where the image sizes are 512×479
and 800×800, respectively. It should be noted that the texture
images have clear boundaries, which would be beneficial to
analyze and evaluate the superpixel segmentation performance.
Figs. 4(b) and 5(b) show the simulated SAR image with four-
look and two-look Gamma speckle, respectively. In the simula-
tion, we generate four-look and two-look Gamma speckle-noise

Fig. 6. Selected patch from the simulated SAR images. (a) Homogeneous
area from the first simulated SAR image with four-look Gamma speckle.
(b) Heterogeneous area from the second simulated SAR image with two-look
Gamma speckle.

images and then multiply them with the texture images to obtain
the final simulated SAR images. Note that the speckle is more
serious with a lower number of looks of the Gamma speckle, as
shown in Fig. 6. It can be seen that the second simulated SAR
image has more serious multiplicative speckle noise than the
first simulated one. Figs. 4(c) and 5(c) illustrate the ground truth
maps of the corresponding SAR images, which are obtained
manually by several experts.

Fig. 7 gives the superpixel generation results of six meth-
ods for the first simulated SAR image with four-look Gamma
speckle, where the red boundary in the right part represents
the superpixel map, and the left part indicates the average
segmentation image. It can be found that in Fig. 7(a), the SLIC-
PSR method cannot well adhere to the SAR image boundaries.
Moreover, the generated superpixels are not homogeneous. In
contrast, the EA superpixel method and the ED local cluster-
ing method have better superpixel results with good boundary
adherence due to the edge information assistance, as shown in
Fig. 7(b) and (c). The method in Fig. 7(d) is designed based on
the SLIC and FVs, which considers the SAR image statistics
for the superpixel generation. Therefore, the result in Fig. 7(d)
can consider the SAR image gradient information without the
edge constraint thanks to the FV. The object boundaries can be
well preserved and the segmentation accuracy is fine. However,
this method is not robust to the speckle within the SAR image.
The method in Fig. 7(e) is a SLIC method with image boundary
assistance, which also shows good performance on SAR image
superpixel generation. Nevertheless, the edges between different
superpixels are not smooth due to the strong edge selection
within the Sp-SpBED method. Therefore, there are some errors
between the superpixels near the image boundaries. The result
in Fig. 7(f) is quite satisfactory, where the superpixels can
well adhere to image boundaries, moreover, the pixels within
superpixels are more homogeneous than other methods, thanks
to the homogeneity in the dissimilarity measure. In contrast,
the other methods may generate irregular superpixels due to
the speckle within the SAR image, leading to a large standard
deviation for the homogeneous areas in the final segmentation
result.

Fig. 8 shows the superpixel generation results of different
methods for the second simulated SAR image with a two-look
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Fig. 7. Superpixel generation results of the first simulated SAR image with six methods. (a) PSR. (b) EA. (c) ED. (d) FVASS. (e) Sp-SpBED. (f) Our proposed
method. The superpixel number is set to 2500 for all the results.

Fig. 8. Superpixel generation results of the second simulated SAR image with six methods. (a) PSR. (b) EA. (c) ED. (d) FVASS. (e) Sp-SpBED. (f) Our proposed
method. The superpixel number is set to 3500 for all the results.
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Fig. 9. Real SAR images and the corresponding ground truth. (a) and (c) CETC
X band data and MiniSAR Ka band data, respectively. (b) and (d) Corresponding
ground truth.

Gamma speckle. From this figure, it can be seen that with the
increasing of speckle noise, most of the methods cannot well
generate satisfactory superpixels for the simulated SAR image.
For instance, in Fig. 8(a)–(e), there are many irregular super-
pixels within the homogeneous areas, indicating that the PSR,
ED, FVASS, and Sp-SpBED methods cannot adaptively gen-
erate superpixels for the homogeneous and heterogeneous SAR
scenes. Although the edges can be clearly preserved, the average
segmentation results have relatively high standard deviations,
degrading the superpixel segmentation accuracy. The result in
Fig. 8(b) is fine for the reason that the edge information assists
the superpixel generation. However, in contrast with the result
in Fig. 8(f), the edge preservation is not so good. The proposed
method can generate regular superpixels in the homogeneous
SAR areas and can well adhere to the object boundaries due to
the pixel dissimilarity and the superpixel dissimilarity, which
take the edge penalty into consideration.

B. Superpixel Results of the Real SAR Datasets

Fig. 9 presents two real SAR images acquired by different
sensors and the corresponding ground truth. Fig. 9(a) and (b)
shows a four-look X band image from the CETC airborne SAR
sensor of China and the ground truth, respectively. The image
resolution is 0.5 m and the size is 587× 690. Fig. 9(c) presents
a single-look miniSAR Ka band airborne SAR image, which
was acquired by the Sandia National Laboratories of USA and
contains different land covers. The image size is 706× 780 and
the image resolution is 0.1 m. Fig. 9(d) shows its corresponding
ground truth. It is worth pointing out that the ground truth images
are obtained manually by several experts. Fig. 10 depicts the
superpixel generation results of the CETC X band SAR image

with different methods, where the number of superpixels is set to
4000 for all the results. It can be found in Fig. 10(a) that although
the SLIC-PSR method can generate superpixels that can preserve
the SAR image details to some extent, the superpixels cannot
well adhere to the image boundaries, indicating that the SAR
edge information is not fully utilized in the superpixel genera-
tion. Furthermore, the texture details cannot be well preserved,
such as the yellow rectangular area. The results in Fig. 10(b)
and (c) are better than that in Fig. 10(a) for the reason that the
EA superpixel method and ED local clustering method both
consider the edge information, which can make the generated
superpixels well adhere to the image boundaries. It can be seen
from Fig. 10(c) that the edges are well preserved in the superpixel
map, leading to a better performance than that in Fig. 10(b). The
results in Fig. 10(d) and (e) are similar to those in Fig. 10(a)
since the FVASS and Sp-SpBED methods are also based on the
SILC strategy. Specifically, since the FV features are considered
in the superpixel generation, the segmentation performance is
satisfactory for the man-made structures. However, the textural
information within the homogeneous cannot be well preserved,
such as the area marked with a yellow rectangle. The Sp-SpBED
method has a similar performance with the FVASS approach,
where the man-made structures are well preserved whereas
the information in the homogeneous areas is missing in the
superpixel segmentation result. The result in Fig. 10(f) is the
best among different methods, thanks to the edge penalty and
the homogeneity in the dissimilarity measure. The superpixels
not only can adhere to image boundaries but also can preserve the
textural details, such as the yellow rectangular area in Fig. 10(f).
In contrast, the results of other methods are not satisfactory. For
example, the roads in the SAR image can be well segmented
with our method whereas are not well discriminated by other
comparison methods.

Fig. 11 shows the superpixel generation results of the Min-
iSAR Ka band data with different methods and the superpixel
number is set to 4000 for all the methods. What we can see from
Fig. 11 that although the six methods can generate satisfactory
superpixels for the Ka band SAR image, our proposed method
can better preserve the image details and texture information
than the other five methods, such as the yellow circular area in
Fig. 11(f). Moreover, we can also observe that the superpixels
of our method in homogeneous areas are quite regular and
homogeneous, which are the same as Fig. 11(a) and (b). In
contrast, the superpixels in Fig. 11(c) have irregular shapes to
achieve good edge preservation. The results in Fig. 11(d) and (e)
are slightly worse than other results due to the serious SAR
speckle noise. For instance, in the natural homogeneous areas,
the superpixels are quite irregular, indicating that the speckle
noise has a great influence on the superpixel segmentation. In
contrast, in the areas where the speckle is relatively weak, the
segmentation performance is fine. The reason is that the selected
features in the FVASS and Sp-SpBED methods cannot handle
the serious speckle within SAR images. The satisfactory result
in Fig. 11(f) indicates that the proposed

method considers the edge penalty and the homogeneity
in the fast clustering and superpixel merging. Therefore, the
superpixels can be adaptively generated in homogeneous and



ZHANG et al.: SUPERPIXEL GENERATION FOR SAR IMAGERY BASED ON FAST DBSCAN CLUSTERING WITH EDGE PENALTY 813

Fig. 10. Superpixel generation results of the CETC X band image with different methods. (a) PSR. (b) EA. (c) ED. (d) FVASS. (e) Sp-SpBED. (f) Our proposed
method. The superpixel number is set to 4000 for all the results.

Fig. 11. Superpixel generation results of the MiniSAR Ka band image with different methods. (a) PSR. (b) EA. (c) ED. (d) FVASS. (e) Sp-SpBED.
(f) Our proposed method. The superpixel number is set to 4000 for all the results.
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heterogeneous areas with good boundaries adherence. More-
over, the detailed information can be well preserved, which is
beneficial to the post applications of SAR data.

C. Quantitative Comparison of Different Methods

To further quantitatively evaluate the performance of dif-
ferent methods, the boundary recall (BR) [8] and the under-
segmentation error (UE) [8] are chosen as the standard metrics.
The BR is defined as the percentage of ground truth boundaries
recovered by the superpixel edges [16]. It should be noted
that higher BR values denote better boundary adherence for
the generated superpixels. The formula definition of the BR is
depicted as

BR =
1∣∣B(g)
∣∣ ∑
b∈B(g)

1

[(
min
a∈B(s)

√
(xa − xb)

2 + (ya − yb)
2

)
� ε

]
(12)

where B(g) and B(s) denote the boundary pixels in the ground
truth result and the generated superpixel segmentation result,
respectively. The operator 1[·] is 1 if the input parameter is true
and 0 if the input parameter is false. The symbol | · | indicates
the number of elements in an input set. (xa, ya) and (xb, yb)
are the pixel coordinates of the boundary pixels in the set B(s)

and B(g), respectively. The parameter ε represents the boundary
tolerance factor, which is generally set to 3 [16]. The UE is
another measure of boundary adherence, which evaluates the
conciseness of the generated superpixels. Let sl and gz be the
lth generated superpixel and zth ground truth segment in the
SAR image, respectively. Then the UE is expressed as

UE =
1

|I|

⎡
⎢⎣|

B(g)|∑
i=1

⎛
⎝ ∑

sj |sj∩gi>ϑ(sj)

|sj |
⎞
⎠− |I|

⎤
⎥⎦ (13)

where |I| denotes the number of pixels in SAR image I.
sj |sj ∩ gi means how many pixels from sj covered by the
boundary pixels of gi. The parameter ϑ(sj) indicates the toler-
ance factor, which is set to 3 percent of |sj | in our experiments to
account for ambiguities in the ground truth. It is worth pointing
out that superpixels that do not well fit the ground truth lead to
a high value of UE. Therefore, lower UE values represent better
superpixel segmentation results.

In order to demonstrate the robustness of different methods
to the multiplicative speckle, we quantitatively evaluate the
superpixel generation results of different methods for the two
simulated SAR images with different number of looks Gamma
speckle. The BR and UE curves are shown in Fig. 12, where
the first row of Fig. 12 depicts the BR and UE results of the
first simulated SAR image with four-look Gamma speckle. The
second row of Fig. 12 denotes the BR and UE results of the
second simulated SAR image with two-look Gamma speckle,
which has more serious speckle in comparison with the four-look
Gamma speckle. The superpixel number is changed from 1000
to 3000 with step 500 for all the results. It can be seen that
although the speckle of SAR image increases, our method still

Fig. 12. BR and UE curves with different superpixel numbers of different
methods for the two simulated SAR images. The first row denotes the BR (a)
and UE (b) results of the first simulated SAR image with four-look Gamma
speckle. The second row denotes the BR (c) and UE (d) results of the second
simulated SAR image with two-look Gamma speckle.

has relatively high BR values and low UE values, demonstrating
the robustness of the proposed method to the speckle noise.
Although there exists a light decrease of the BR value and in-
crease of the UE value for our method when the speckle becomes
more serious, the superpixel segmentation performance is still
satisfactory with BR above 0.9 and UE below 0.4 when the
superpixel number exceeds 2000. In contrast, the BR values of
the other five methods are lower, especially the PSR, FVASS,
and Sp-SpBED methods when the superpixel number is less than
2000.

In order to further evaluate the superpixel generation perfor-
mance of different methods with regard to various levels of
speckle noise, the simulated SAR images with one-look and
six-look Gamma speckle are utilized to compute the BR and
UE values of different methods. The number of superpixels is
set to 2000. Table I gives the BR and UE values of different
methods for the two simulated SAR images with one-look
and six-look gamma speckle, respectively. From this table, it
can be found that our proposed method has a much stronger
ability against the SAR image speckle in comparison with other
methods. The BR values of our proposed superpixel generation
method are all above 0.9 even for the SAR images with serious
one-look Gamma speckle, indicating that the proposed method
is robust to SAR image speckle. In contrast, the BR values of
other methods change accordingly with the different levels of
speckle, indicating that these methods would be influenced by
the speckle. Moreover, the UE values of our proposed method are
much lower than other methods for different SAR images, which
benefit from the edge information and homogeneity contained
in the pixel and superpixel dissimilarity of our method.

Fig. 13 gives the quantitative evaluation measures of different
methods for the two real SAR images, where the first row denotes
the BR and UE curves for the CETC X band SAR image and
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TABLE I
BR AND UE VALUES OF DIFFERENT METHODS FOR THE TWO SIMULATED SAR IMAGES WITH ONE-LOOK AND SIX-LOOK GAMMA SPECKLE

Fig. 13. BR and UE curves with different superpixel numbers of different
methods for the two real SAR images. The first row denotes the (a) BR and
(b) UE results of the CETC X band SAR image. The second row denotes the
(c) BR and (d) UE results of the MiniSAR Ka band SAR image.

the second row shows the BR and UE results for the MiniSAR
Ka band SAR image. The superpixel number is changed from
2500 to 4500 with step 500 for all the results. From Fig. 13
we can observe that our proposed method has higher BR values
and lower UE values in comparison with other state-of-the-art
methods, indicating that for real SAR images, the generated
superpixels not only can well adhere to the image boundaries
but also can obtain accurate segments with homogeneous in-
side pixels. Therefore, the superpixel segmentation results are
beneficial to the further SAR image applications, such as the
image classification task, which will be conducted and analyzed
in Section IV-F.

D. In-Depth Analysis for the Individual Components of the
Proposed Method

Note that the pixel dissimilarity measure in our proposed
method plays a key role in the superpixel segmentation, we
should pay more attention to the individual contributions of
different parts of the dissimilarity measure, i.e., the intensity
dissimilarity, edge penalty, and homogeneity measure. In Sec-
tion III-B, we give the expressions for each component of the

Fig. 14. BR and UE values of our method with different components under
different superpixel numbers for the two real SAR images. The first row denotes
the BR (a) and UE (b) results of the CETC X band SAR image. The second row
denotes the BR (c) and UE (d) results of the MiniSAR Ka band SAR image.

pixel dissimilarity and discuss the corresponding contributions.
In this section, we further analyze the superpixel generation
performance of different parts using the quantitative evaluation
measures.

To illustrate the individual contribution of three parts of the
pixel dissimilarity, we design three compared pixel dissimilar-
ity measures which are intensity dissimilarity & edge penalty
(namely IE), intensity dissimilarity & homogeneity measure
(namely IM), and edge penalty & homogeneity measure (namely
EM). Then we replace the proposed pixel dissimilarity measure
in our method with the above three pixel dissimilarities to obtain
three variants of our method for comparison. In order to discuss
the superpixel generation performance with different superpixel
number for the two real SAR images, the numbers 2500, 3000,
3500, 4000 are chosen for comparison.

Fig. 14 gives the BR and UE values of our method with
different components under different superpixel numbers for the
two real SAR images. The first row of Fig. 14 shows the BR and
UE results of the CETC X band SAR image while the second row
denotes the results of the MiniSAR Ka band SAR image. From
Fig. 14(a) and (c), it can be found that without the homogeneity
measure in the pixel dissimilarity, the superpixel segmentation
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TABLE II
TIME COSTS OF DIFFERENT METHODS (SECONDS)

performance of our method has a slight decrease. In contrast,
there exists a large decrease when the pixel dissimilarity only
considers the edge penalty and homogeneity measure, indicating
that the intensity dissimilarity plays a key role in the final pixel
dissimilarity

for superpixel segmentation. When the edge penalty is omit-
ted, the BR values of generated superpixels are much smaller in
comparison with the originally proposed method. Therefore, it
can be concluded that the edge penalty is quite essential to the
superpixel generation, especially in terms of the image object
boundary adherence.

Fig. 14(b) and (d) shows the UE results of two real SAR
images, which reflect the region segmentation performance of
the superpixels. From these two subfigures, we can observe that
among the three components of the pixel dissimilarity, intensity
dissimilarity is the most important factor in superpixel segmenta-
tion. Both the edge penalty and homogeneity measure contribute
to the superpixel generation, especially the edge penalty, making
the superpixels well adhere to the image boundaries and can
obtain accurate segments for SAR images.

E. Computational Complexity Analysis

Considering that the proposed method mainly focuses on the
fast clustering and merging for superpixel generation, here we
only discuss the computational complexity of these two stages.
The complexity of our proposed superpixel generation method
is O(K) for the reason that there does not exist any iteration
process. Unlike the SLIC-based superpixel generation methods
[12], [13] and the mixture-based method [11], the computational
complexity of our proposed method only depends on the super-
pixel number, which is faster than most of the state-of-the-art
superpixel algorithms.

The time costs of different methods for the two real SAR
datasets are given in Table II. All the methods are implemented
with MATLAB on a PC with 3.8 GHz i7 CPU. It is worth
pointing out that the time costs are the total time spent by all
methods. From this table, we can find that the proposed method
can achieve fast superpixel generation even though with the
consideration of edge extraction stage, which benefits from the

Fig. 15. Confusion matrix map of the classification result with the pixel-based
K-Means classifier.

fast clustering and merging strategy. In contrast, the EA super-
pixel and ED local clustering methods are slower, especially the
latter method which performs iterative clustering for superpixel
generation. The SLIC-PSR method also can quickly generate
superpixels for the reason that there is no edge extraction stage
in this method. However, the superpixel generation performance
is not satisfactory. For the FVASS method, the computational
complexity is relatively higher than other methods due to the
feature analysis and computation. The Sp-SpBED method is
similar to the PSR method, which is also designed on the basis
of SLIC. Therefore, the computation is also efficient. From
this table, it can be concluded that our proposed method can
obtain satisfactory superpixel generation results for SAR images
with relatively low computation cost in comparison with other
state-of-the-art methods, which is quite beneficial to the post
applications of SAR data.

F. Discussions on the SAR Image Applications Based on
Superpixels

As stated in the previous sections, the generated superpixels
are beneficial to the SAR image applications such as image clas-
sification and target detection, etc. To further demonstrate the
advantages of superpixels on the SAR image interpretation, in
this section, we conducted unsupervised image classification for
the SAR images with pixels and superpixels, respectively. The
MiniSAR Ka band image is selected as the test data and K-Means
classifier is adopted as the classification method. The SAR image
is classified for four unknown clusters, which are recognized
and then labeled using the reference Google Earth map. The
four classes are identified as Water, Buildings, Bare soil, and
Vegetation. For superpixel-based classification with different
superpixel generation methods, the numbers of superpixels are
all set to 4000. Fig. 15 shows the confusion matrix map of the
pixel-based K-Means classifier for the MiniSAR image, where
the rows represent classified results and the columns represent
true classes. In order to analyze the classification accuracy,
quantitative analysis is made through two parameters, namely
overall accuracy and Kappa coefficient [20], which indicate
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Fig. 16. Confusion matrix map of the superpixel-based classification with our
proposed superpixel generation method

TABLE III
CLASSIFICATION ACCURACY OF THE SUPERPIXEL-BASED CLASSIFICATION

WITH OTHER SUPERPIXEL GENERATION METHODS

better classification results with higher values. Fig. 16 depicts
the confusion matrix map of the superpixel-based K-Means
classifier for the MiniSAR image, where the superpixels are
regarded as processing units instead of pixels for classification.
The superpixels are generated by our proposed method. Table III
shows the five final overall classification accuracy results of
other superpixel-based K-Means classifiers, where the super-
pixels are generated by using the PSR, EA, ED, FVASS, and
Sp-SpBED, respectively.

From Figs. 15 and 16, we can find that with the assistance
of superpixels, the confusion errors between forests and build-
ings are significantly reduced, leading to the improvement of
classification accuracy. The reason is that the backscattering
of buildings and forests in the Ka band SAR image is quite
similar, which easily results in classification confusion with the
pixel-based classifier. In contrast, the superpixel-based classi-
fier can consider the neighborhood information around pixels,
as well as the local geometrical information. Therefore, the
classification accuracy can be improved. From Table III it can
be seen that all the superpixel-based classification results have
relatively higher accuracy and Kappa values than the pixel-based
classification, demonstrating the advantages of superpixels in
the SAR image classification task. It is also worth pointing out
that the superpixel-based classification performance depends on
the superpixel quality. Therefore, satisfactory superpixels with
good boundary adherence and local homogeneity would achieve
a fine image classification result.

The number of generated superpixels can also influence the
classification performance, especially the efficiency. With the

TABLE IV
CLASSIFICATION ACCURACY AND EFFICIENCY OF THE PROPOSED

SUPERPIXEL-BASED CLASSIFICATION WITH DIFFERENT NUMBER

OF SUPERPIXELS

increase of superpixels, the image boundary can be well pre-
served. Nevertheless, there may be some over-segmentation
errors, leading to classification confusion. More importantly,
more superpixels would decrease the classification efficiency.
Table IV gives the classification accuracy and efficiency of
our proposed superpixel-based classification with a different
number of superpixels. It can be found that when the superpixels
increase from 2000 to 6000, the classification accuracy in-
creases. However, when the superpixel number exceeds 6000,
the overall accuracy does not have a large change. In contrast,
the time costs are monotonically increasing with more superpix-
els. Therefore, it is not necessary that more superpixels would
achieve better classification. Note that the selection of superpixel
numbers in the classification depends on the complexity of the
SAR image scene, as stated in the former sections in this article.

V. CONCLUSION

We propose an adaptive superpixel generation algorithm for
SAR image in this article, which is implemented based on fast
clustering and merging with edge penalty. An adaptive pixel
dissimilarity measure and a superpixel dissimilarity measure
are defined to achieve rapid clustering and small local super-
pixels merging, respectively. Experimental results demonstrate
the priority of our proposed method, which can achieve fast and
accurate superpixel generation for SAR images. Moreover, the
unsupervised classification results also validate the advantages
of superpixels, which can improve the classification accuracy,
as well as the efficiency.
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