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Abstract—Building extraction plays an important role in high-
resolution remote sensing image processing, which can be used as
the basis for urban planning and demographic analysis. In recent
years, many powerful general semantic segmentation models have
emerged, but these models often perform poorly when transferred
to remote sensing images because of the characteristics of remote
sensing images. To this end, we propose a new deep learning
network called Selective Nonlocal ResUNeXt++ (SNLRUX++) for
building extraction. First, the cascaded multiscale feature fusion is
proposed to transform the high-performance image classification
network ResNeXt into the segmentation network ResUNeXt++.
Second, selective nonlocal operation is designed to establish long-
range dependencies while avoiding introducing excessive noise and
computational effort. Finally, multiscale prediction is applied as
deep supervision to accelerate training and convergence, and im-
proves prediction performance of objects at different scales. The
experimental results on two different remote sensing image datasets
show the effectiveness and generalization ability of the proposed
method.

Index Terms—Building extraction, convolution neural network,
deep learning, high-resolution image, remote sensing.

I. INTRODUCTION

W ITH the rapid development of remote sensing tech-
nology, the amount of high-resolution remote sensing

image data has been increasing. On the one hand, the maturity of
aerospace technology has made it easier to acquire large-scale,
high-quality remote sensing images. On the other hand, with
the development of imaging technology, the spatial resolution,
spectral resolution, and temporal resolution of remote sensing
images have been greatly improved. The increase in the quantity
and quality of remote sensing images has made it possible to
form and improve the Earth observation system, and to con-
tinuously monitor the earth’s surface through remote sensing.
At present, remote sensing technology has been widely used in
industry, agriculture, military, economy, and other fields. For
example, resource exploration [1], crop classification [2], pest
monitoring [3], military target detection [4], urban planning [5],
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land use analysis [6], and disaster warning [7]. With the increase
of remote sensing image data volume and resolution, the demand
for remote sensing image processing and information extraction
technology is also growing.

Building extraction is one of the important tasks of remote
sensing image segmentation. In recent years, there are an in-
creasing number of models that use deep learning methods for
semantic segmentation. Mainstream deep learning segmentation
networks are typically based on UNet [8] architecture using a
fully symmetric encoder–decoder structure. Their main compo-
nents include downsampling, upsampling and skip connection.
The network encodes the image through downsampling, com-
pressing the image into a latent-space representation, which con-
tains semantic information useful for prediction. In the decoding
part, the decoder uses the compressed feature representation by
upsampling to recover the resolution and make prediction. In the
skip connection part, after upsampling, the deep feature maps are
concatenated with the shallow feature maps of the same resolu-
tion, which alleviates the losing of location information caused
by the encoding to some extent. In such a network structure,
the deep feature maps extract sufficient semantic information to
be better used for prediction, but due to the low resolution, the
object boundary cannot be well localized; the shallow feature
maps retains higher resolution, so it can locate objects more
accurately, but the lack of semantic information may lead to
prediction errors. How to use features of different scales, fuse
high-level semantic information and low-level location spatial
information to construct high-resolution, high-semantic feature
maps, and improve network prediction performance is a problem
worthy of study.

To construct high-resolution and high-semantic feature maps,
many semantic segmentation methods focus on increasing the
receptive field, the most famous of which are DeepLab [9]
and DilatedNet [10], to obtain contextual information and es-
tablish long-range dependencies. They use dilated convolution
to avoid downsampling and improve the receptive field while
maintaining the resolution of the feature maps. Another way to
construct feature maps with contextual semantic information is
to use nonlocal operation [11]. Nonlocal is a simple and general
operation for capturing long-range dependencies in deep neural
networks. In simple terms, the nonlocal operation obtains the
feature representation of each position by performing a weighted
summation of all the position features of the input. In computer
vision, this position usually refers to each pixel. The advantage
of the nonlocal operation over the dilated convolution is that
it directly establishes long-range dependencies by computing
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Fig. 1. Examples of remote sensing images with different type of challenges. (a) Imbalance between foreground and background. (b) Small and numerous objects.
(c) Complex and diverse foreground and background. (d) Shadow occlusion.

the similarity between two positions, regardless of the distance
between them.

Although these methods have shown good performance in
natural image segmentation, there are many difficulties when
applying them to remote sensing image datasets. In addition
to the problem of varying scales of objects in most semantic
segmentation datasets, remote sensing images also suffers from
problems such as imbalance between foreground and back-
ground [12], small and numerous objects [13], complex and
diverse foreground and background, and shadow occlusion [14].
Some typical remote sensing images and challenges are shown
in the Fig. 1. In Fig. 1(a), the number of pixels of the buildings
is only a small part of the whole image, which is often found
outside urban areas, and such images are prone to false positives.
In Fig. 1(b), the image contains very dense buildings, each
occupying very few pixels, and the buildings are very close to
each other, so the boundaries are often not accurately located.
In Fig. 1(c), there are many subcategories within buildings such
as residential buildings, office buildings, shopping malls, and
schools. Different buildings have different sizes, heights, colors,
and forms, showing large intraclass differences. There are also
many subcategories within the background, such as roads, low
vegetation, trees, and rivers. Complex and diverse foreground
and background can cause some methods to introduce excessive
noise, leading to performance degradation. In Fig. 1(d), some
tall buildings produce long shadows at certain times of day, and
areas covered by shadows are prone to false negatives.

Downsampling will lose location information. Also, since
most objects in remote sensing images are very small, the
enlarged receptive field will contain more complex and diverse
background information, so the introduction of noise will lead
to performance degradation. In other words, it is not that deeper
semantic information is more useful for prediction. In the recent
literature, some scholars have experimented with UNet-8 s
(stride stands for the aspect ratio of the original image to the
minimum feature map) and obtained better performance than the
original UNet-16 s with deeper depth and more parameters [15].
For different datasets, the requirements for network depth are
different. As for nonlocal operation, due to the high resolution
of remote sensing images, performing nonlocal operation in the
whole image will incur huge computational costs. Because the
foreground and background are unbalanced and the background

is complex and diverse, performing nonlocal operation directly
can cause the contextual information overwhelming by
background noise. Moreover, the need for dense prediction of
each pixel makes manual annotation both time-consuming and
costly, rendering remote sensing segmentation datasets much
smaller than classification or detection tasks [16]. Complex
and high-capacity models are more likely to overfit due to the
scarcity of training samples.

In this article, we propose a novel network called Selective
Nonlocal ResUNeXt++ (SNLRUX++) for remote sensing build-
ing extraction to address the problems stated previously. Our
network is based on ResNeXt [17], a powerful network for
image classification task. First, we follow the encoder–decoder
architecture in UNet, add decoders and skip connections to it,
and therefore converting it to ResUNeXt for the segmentation
task. Then, we use the cascaded multiscale feature fusion method
to fuse features at different scales to obtain high-resolution and
high-semantic feature representation. Since the traditional skip
connections are replaced by residual connections, we can use
only short connections to reduce the network complexity and
alleviate the overfitting problem caused by the small remote
sensing dataset. Besides, if useful information cannot be learned
when the network goes deeper, it can still maintain the original
information, alleviating the problem of losing location infor-
mation. Second, we use selective non-local operation to extract
key points from the feature maps, perform nonlocal operation
between these key points, and propagate contextual information
near the key points by convolution operation to capture long-
range contextual dependencies. In addition to obtaining global
contextual information, the advantages of selective nonlocal
operation include: the computational cost is greatly reduced
because the nonlocal operation are performed at only a small
number of positions; key point extraction resamples the fore-
ground and background ratios, reducing the noise introduced by
the nonlocal operation; the module does not change the resolu-
tion of the feature map, so it can be easily plugged into various
positions of the network, enhancing the feature map represen-
tation. Finally, we use multiscale prediction methods to deeply
supervise the network. The feature maps at different scales are
upsampled to the highest resolution, the semantic information
at different scales is merged, and the predicted masks are output
through the prediction head. The advantages of this approach
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include enabling the feature maps of the intermediate layers,
especially the shallow ones, more transparent and making the
features learned in the intermediate layers more discriminative
and robust. In addition, it can accelerate the convergence of
the network and alleviate training problems such as gradient
disappearance that may be caused by the depth of the network.

In general, the main contribution of this article are as follows.
1) We propose a cascaded multiscale feature fusion method

to fuse semantic information multiple times and thus ex-
tend the high-performance backbone ResNeXt in image
classification task to construct extraction task.

2) We design a selective nonlocal operation, which extracts
the key points from the feature maps, performs nonlocal
operation only between these key points, and follows a
convolution block to obtain a feature representation con-
taining global contextual information.

3) We apply multiscale prediction to achieve deep supervi-
sion, so the network can adaptively adjust the prediction
weights at different scales according to the scale of the
object, thus improving the performance of objects at dif-
ferent scales.

The rest of this article is organized as follows. Section II
reviews the previous work on general semantic segmentation
and the improvements made by scholars to use it in remote
sensing images. Section III introduces the proposed network
SNLRUX++ for remote sensing building extraction task in
detail. Section IV introduces the datasets and experimental
details, and discusses the experimental results. Finally, Section V
concludes this article.

II. RELATED WORK

A. General Semantic Segmentation

Semantic segmentation has been a very fundamental problem
in computer vision [18]. Before the maturity of deep learning,
scholars used traditional methods including thresholding [19],
region growing [20], k-means clustering [21], and more ad-
vanced algorithms such as graph cuts [22], superpixel meth-
ods [23], sparsity-based methods [24], and conditional and
Markov random fields [25]. In recent years, scholars have grad-
ually shifted their attention to deep learning methods because
their performance has been significantly improved compared to
traditional methods.

FCN [26] is an important milestone in deep learning semantic
segmentation. Based on image classification networks such as
AlexNet [27], VGGNet [28], and GoogLeNet [29], it removes
the final fully connected layer and adopts a fully convolutional
architecture, allowing it to perform dense prediction task on
inputs of any size. UNet [8] and SegNet [30] follow the connec-
tion paradigm used by FCN and reorganize the decoder section
to achieve better performance. DeepLab [9] used dilated convo-
lution to address the problem of decreasing network resolution
caused by maxpooling and striding, and then uses atrous spatial
pyramid pooling, which probes the feature map with filters of
multiple sampling rates, thus capturing multiscale context to
robustly segment objects at multiple scales. Another method

once used by DeepLab but later abandoned is the postprocess-
ing of object boundary using a fully connected CRFs. Feature
pyramid network (FPN) [31] was originally developed for object
detection, it can easily be used for segmentation as well [32].
In order to generate segmentation output from FPN multilevel
features, a simple design is used to merge information from
each level of the FPN pyramid into a single one. The merging
is done by upsampling features of different FPN levels several
times to the lowest level and merging them using an elementwise
addition method, and then making predictions after the merging.
Pyramid scene parsing network [33] is a multiscale network that
focuses on better learning of global contextual representation. It
uses a pyramid pooling module to extract different subregion
representation, and upsamples the output of multilevel pool-
ing and connects with the initial feature map to capture local
and global contextual information. UNet++ [34] is a deeply-
supervised encoder–decoder network in which the encoder and
decoder subnetworks are connected by a series of nested, dense
skip pathways. HRNet [35] maintains high-resolution represen-
tation throughout by connecting multiresolution subnetworks
in parallel and iteratively exchanging the information across
different resolutions. UNet 3+ [36] uses full-scale skip connec-
tions, incorporating low-level details with high-level semantics
from feature maps at different scales, to replace the dense skip
pathways used in UNet++. The abovementioned model lays the
foundation for remote sensing image segmentation and explores
different feature fusion methods. Although these models show
good performance in natural images or medical images, there
is still much room for improvement when transferring them to
remote sensing segmentation due to the characteristics of remote
sensing images.

B. Remote Sensing Segmentation

According to the characteristics of remote sensing images,
many scholars have made targeted adjustments to the network
architecture. Michael et al. [13] proposed a network focusing on
the accuracy of small objects to alleviate the problem of class
imbalance. The architecture includes patch-based method and
pixel-to-pixel method, and then combine their strengths using
model ensemble. And the uncertainty map is used to indicate that
the difficulty of remote sensing segmentation is the boundary
of the object. building residual refine network [37] consists
of two parts, namely the prediction module and the residual
refinement module. Among them, the prediction module based
on an encoder–decoder structure introduces dilated convolution
of different dilation rates to extract more global features. While
the residual refinement module takes the output of the predic-
tion module as input, and further refines the residual between
the result of the prediction module and the real result. Zhang
et al. [38] enhanced the low-to-high features extracted from
different branches of HRNet to enhance the embedding of scale-
related contextual information. The low-resolution branches are
incorporated in a spatial-reasoning module to learn the long-
range spatial correlations, while the high-resolution branches are
enhanced by adaptive spatial pooling module to aggregate local
contexts. Cheng et al. [39] proposed an end-to-end cross-scale
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feature fusion (CSFF) framework, which is used for detection but
can be easily applied to segmentation as well. CSFF uses FPN
to obtain multilevel feature maps and then inserts a squeeze and
excitation block at the top layer to model the relationship be-
tween different channels. The feature maps of all stages are then
passed into the CSFF module to fuse different scale information
to obtain a multilevel feature representation. Chen et al. [40]
proposed an improved semantic segmentation network based
on DeepLabv3 with addition augmented atrous spatial pyramid
pool and FC fusion path layers to deal with the problems of
ambiguous classification and unclear boundary of small objects
caused by the characteristics of the remote sensing images.
DenseU-Net [41] builds on UNet by replacing the VGG blocks
with Dense connections [42] in both the downsampling and
upsampling sections to enhance the feature extraction capability
of the network. And uses the focal loss weighted by the median
frequency balancing to improve predication accuracy of the
small object classes. Based on the feature pyramid network
(FPN) framework, PFNet [43] uses a module called PointFlow
to propagate semantic information from high to low features
at salient and edge points. The dual point matcher module is
designed to extract these salient and edge points. And in this way,
it solves the problems of foreground-background imbalanced
distribution and multiple small objects in remote sensing images.
D-CNNs [44] uses metric learning method to solve the problem
of within-class diversity and between-class similarity in remote
sensing images by adding metric learning regularization term
to the objective function to supervise the learned features to be
more discriminative. FENet [45] proposes the DAFE module and
the CFE module, where DAFE module is used to highlight the
network to focus on the distinctive features of the objects of in-
terest and suppress useless ones, and CFE module is used to cap-
ture global context cues and selectively strengthen class-aware
features. In summary, most remote sensing image segmentation
models are exploring methods for obtaining multiscale feature
maps, multiscale fusion methods, attention mechanisms for en-
hancing feature representation, and postprocessing methods to
deal with the characteristics of remote sensing images.

III. METHOD

In this section, we will introduce in detail the Selective Non-
local ResUNeXt++ (SNLRUX++) for remote sensing building
extraction proposed in this article. Including: (see Section III-A)
The backbone ResNeXt [17]; (see Section III-B) Using the
cascaded multiscale feature fusion method, ResNeXt used for
classification task is transferred to ResUNeXt++ for segmenta-
tion task; (see Section III-C) Use selective nonlocal operation to
introduce global contextual information in the feature maps of
all stages of the decoder; (see Section III-D) Predict on feature
maps at different scales to achieve deep supervision. The overall
structure of the network and the location of each module is shown
in the Fig. 2.

A. Resnext

SNLRUX++ uses ResNeXt as its backbone and uses the final
feature map of each stage in the downsampling. On the basis of

Fig. 2. Structure of SNLRUX++.

Fig. 3. Typical convolution block. (a) ResNet. (b) Inception. (c) ResNeXt.

ResNet [46], ResNeXt introduces the “split-transform-merge”
aggregation transformation used in Inception [47], a network
architecture that uses multibranch parallel convolution and then
merges the results of each branch. Typical ResNet block, Incep-
tion block and ResNeXt block are shown in the Fig. 3. Unlike
Inception, the size and number of convolution filters in each
parallel branch have been carefully designed and experimentally
adjusted. ResNeXt uses the same topology on each branch, so
the structure can be reshaped into grouped convolution used
in AlexNet [27]. In addition, the difference also includes that
ResNeXt uses an addition operation to merge the results of dif-
ferent branches, while Inception uses the channel-dimensional
concatenation.

In ResNeXt, the introduced hyperparameter is called “car-
dinality,” which means the number of parallel transformation
branches. Because all branches of ResNeXt use the same topol-
ogy, there is no need to adjust the size and number of convolution
filters, thereby reducing the number of hyperparameters in the
model and improving the generalization ability of the network in
different datasets. In addition to adjusting the width and depth, it
provides a new way to adjust the capacity of the network model.
Experiments show that increasing the “cardinality” can improve
the network performance more effectively than increasing the
width and depth for the same amount of computation, especially
when the marginal benefit of increasing the depth gradually
diminishes.

Formally, aggregation transformation can be expressed as
follows:

F(x) =
C∑
i=1

Ti(x) (1)
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Fig. 4. Three equivalent forms of ResNeXt block.

Fig. 5. Transformation between the three models. (a) ResNeXt. (b) ResUNeXt.
(c) ResUNeXt++.

where x represents the input feature, Ti(x) represents the paral-
lel transformation function, which can be any function. Similar
to a simple neuron, Ti(x) should project x into an usual low
dimensional embedding and then transform it. C is the number
of the transform set to be aggregated, which is cardinality in
ResNeXt. C is used to control the complexity and capacity of
the network.

In ResNeXt, first, a simple transformation function design is
used, where allTi share the same topology. This follows the VGG
style strategy of repeating the same structure, making it possible
to control the network capacity with only a few hyperparameters.
Second, the individual transformation Ti is set as a bottleneck
structure. In this case, the first 1×1 layer in each Ti is used
to produce low-dimensional embeddings. Third, use residual
connections to establish direct path between inputs and outputs.
In general, the aggregation transformation in ResNeXt can be
expressed as

y = x+

C∑
i=1

Ti(x) (2)

where y is the ResNeXt block output.
ResNeXt block can be expressed in three equivalent forms, as

shown in the Fig. 4. In this article, we use the form of Fig. 4(c),
because of its concise expression and easy implementation.

B. Resunext++

ResNeXt is used for image classification task, which is illus-
trated in Fig. 5(a), and the width and height of its last stage (stage
is used to distinguish the resolution of different feature map)
feature map is 1/32 of the original image, which is too coarse
for building extraction task. Therefore, following the encoder-
decoder architecture used in UNet and FCN, we removed the last
global average pooling and FC layer of ResNeXt. Starting from

Fig. 6. Difference between the two types of connections. (a) Skip connection.
(b) Residual connection.

the last stage, the feature maps are continuously upsampled, and
merged with the feature map of corresponding stages through
skip connection to restore the resolution of the feature maps.
By now the network model is transformed into ResUNeXt (note
the U) for building extraction task, the network architecture is
illustrated in Fig. 5(b). For the sake of simplicity, we only show
the upsampling, downsampling and skip connection parts in the
figure. Each stage is represented by S, and the ResNeXt blocks
in each stage are not drawn in detail.

In ResUNeXt, since the initial stride convolution and max-
pooling, the width and height of the feature map with the
highest resolution are 1/4 of the original image. Unlike UNet,
the network makes predictions at this scale and uses bilinear
interpolation to upsample the predictions to the size of the
original image to obtain the final prediction mask. Because of the
regularity of the boundary of the building object, the prediction
under the feature map with lower resolution than the original
image will not be seriously damaged.

Inspired by UNet++ [34], UNet 3+ [36], and HRNet [35],
we redesigned the skip connections between the encoder and
decoder, and used cascaded multiscale feature fusion method to
obtain high-resolution and high-semantic feature maps for build-
ing extraction task. We call ResUNeXt that combines cascaded
multiscale feature fusion as ResUNeXt++, and its structure is
illustrated in Fig. 5(c).

In UNet, the feature maps of the encoder are directly copied
and concatenated with the feature maps of the corresponding
decoder, and then convolution is used to reduce the number
of channels. The feature maps of each stage in the encoder
will be fused only once, which is detrimental to the shallow
stages. We believe that for shallow stage feature maps, since
they are the most lacking in semantic information, they should
be fused several times, and each fusion can improve the semantic
information.

In ResUNeXt++, the feature maps of the encoder undergo
multiple feature fusions, and the number of fusions depends
on the stage level. For example, the shallowest feature map
will undergo three feature fusions, while the penultimate stage
feature map will only undergo one feature fusion. UNet++ also
concatenates the previous layers and lower stage features, and
the architecture of UNet++ has even more connections than
ResUNeXt++ showed in Fig. 5(c). Following the ResNet design,
we use residual connections instead of dense skip connections.
The difference between skip connection and residual connection
is illustrated in Fig. 6. The advantage of residual connection is
that the feature maps ensure the retention of valid information
and avoids the noise introduced by feature fusion, if the deeper
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stage of the feature map does not learn meaningful semantic
information, which often happens in remote sensing images.
For these reasons, it is natural to remove the dense skip connec-
tions used in UNet++ and keep only short ones. Therefore, the
complexity of the parameters and calculations of the model are
reduced, as well as the possibility of overfitting.

Formally, we formulate the residual connection as follows:
let xi,j denote the output of node Xi,j where i indexes the
stage along the encoder and j indexes the intermediate residual
convolution block of cascaded feature fusion along the residual
connection pathway. The stack of feature maps represented by
xi,j is computed as

xi,j =

{
R

(
xi−1,j

)
, j = 0

xi,j−1 +H
([
xi,j−1,U

(
xi+1,j−1

)])
, j > 0

(3)

where function R(·) is stage layer in ResNeXt, which contains
multiple ResNeXt blocks according to the network capacity.
H(·) is channel reduction convolution block, which consists of
multiple groups of convolution operation, batch normalization
and ReLU, and [ ] denotes the concatenation operation. Ba-
sically, nodes at level j = 0 only receive one input from the
previous stage of the encoder, which is essentially the backbone
in ResNeXt. Nodes at level j > 0 receive two inputs, one is
the output of the previous nodes in the same residual connection
pathway and the other is the upsampled output from the adjacent
lower residual connection pathway. We do not use all the lower
stage outputs, which are used in HRNet and UNet 3+. First, in
remote sensing images, deeper features generally do not contain
better semantic information. Second, the resolution and semantic
gap is so large that direct use will introduce more noise. Finally,
overly complex models are more prone to overfitting due to the
lack of labeled datasets.

From another perspective, ResUNeXt of different depth is
integrated in ResUNeXt++. The network can adjust the depth
of the network adaptively. When the deep layer of the network
does not learn useful information for prediction, the residual
connection in feature fusion will discard this part of information,
making the network more versatile in different datasets and
different tasks.

C. Selective Nonlocal Operation

Formally, we can define a generic nonlocal operation as

yi =
1

C(x)
∑
∀j

f (xi,xj) g (xj) (4)

where i and j are the indexes of an position, it usually refers to
pixel position of feature map in computer vision. x is the input
feature map and y is the output feature map with the same size
as x. A pairwise function f computes a scalar representing
affinity between the features at positions i and all j. The unary
function g computes the embedded representation on the posi-
tion j of the feature map. The output is normalized by a scalar
factor C(x). It can be seen from the formula that each position
on the output can be expressed as a linear combination of the
input after embedded representation. Position j can be any point
on the feature map, so it can ignore the distance and establish a

Fig. 7. Process of extracting key points. Each yellow quadrilateral on D
represents a key point.

long-range contextual dependencies. There are several versions
of f and g, we use dot product similarity as function f , which
can be expressed as

f (xi,xj) = θ (xi)
T θ (xj) . (5)

Here θ(xi) means the embedded representation of xi. For
simplicity, we use 1×1 convolution over the whole feature map,
so all positions share the same linear embedded function θ,
so is the function g. And 1

C(x)f(xi,xj) becomes the softmax
computation along the dimension j. In order to obtain the
affinity matrix, it is necessary to calculate the affinity between
two-by-two at each position on the feature map. The complexity
of this process is O(H2 W 2 d). Where H and W are the height
and width of the feature map, and d is the number of channels.
Although the d can be reduced by feature embedding, the main
factor affecting the computational effort is the resolution of the
feature map.

Different from traditional nonlocal operation, selective non-
local operation do not use all the positions j on the feature map,
but perform nonlocal operation between key points. In order to
get the key points, we take the feature map xd from decoder
as input, and then perform one 3×3 convolution following with
sigmoid function to get descriptorDof each position, the process
is shown as

D = Sigmoid
(
conv

(
xd

))
. (6)

Descriptor D has the same shape as xd, but only one channel.
Intuitively, it represents the importance of each position, or the
difficulty of prediction. Because the D is acquired in a learnable
manner, the network can adaptively determine the importance
of each position based on the local feature representation. Then,
perform a maxpooling on the descriptor D to obtain the most
salient position by recording the indices in the maxpooling
operation. The process of extracting key points is shown in
the Fig. 7. The kernel size and stride of maxpooling can be
seen as a hyperparameter to control the number of key points.
For simplicity, we use adaptive-maxpooling, i.e., the kernel size
and stride are the same, so the hyperparameters are compressed
into one. For the hyperparameters of adaptive-maxpooling, one
design strategy is to sample the same number of key points in
each stage, i.e., to set the same output size in different stages,
so the deeper the stage, the smaller the kernel size and stride.
Another design strategy is to use the same kernel size and stride
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in each stage, so the deeper the stage, the fewer the key points,
which forces the network to pay attention to the key points of
different scales. The computational complexity of the affinity
matrix in the selective nonlocal operation is only O(k2 d) by
performing nonlocal operations only between key points. Where
k denotes the number of key points, which is usually much
smaller than the resolution H ·W of the feature map. Since
most pixels in an image can be well classified, there is no
need to reinforce semantic information at all positions and the
limited computational resources should be allocated to the most
important positions first.

Then perform nonlocal operation between key points i and j.
The result of the operation is reincorporated into the original
feature map according to the position of each key point. Instead
of replacing the features at each position with the computed
results, we use a residual style to fuse the original features and
the computed features, because this results in better performance
and more stable training. The calculation process can be ex-
pressed as

yi = xi +
1

C(x)
∑
∀j

f (xi,xj) g (xj) . (7)

Here, i and j are the indexes of the key points. The key points
are obtained by performing maxpooling operations on D. So
far, the key points have been enriched with global semantic
information. Using the residual convolution block, this global
semantic information is then propagated around the key points.

Because the maxpooling evenly sample points on the feature
maps, the ratio of foreground and background is rebalanced,
and the noise caused by background diversity is alleviated. It
also greatly reduces the amount of computation of similarity
calculation between two points. We perform nonlocal operations
on the decoder part right after residual connection to enhance
the feature representation of the feature maps participating in the
multiscale prediction, thus improving the network performance.

D. Multiscale Prediction and Deep Supervision

Traditional deep supervision is implemented by connecting
auxiliary classifiers to the intermediate layers during training,
and optimizing the main loss and auxiliary supervision loss at
the same time, so the gradient can be directly backpropagated
from the auxiliary loss to the intermediate layers. The total loss
can be expressed as

Ltotal = Lmain + αtLsup (8)

where αt controls the tradeoff between the two terms. In normal
practice, in order to use the second term mainly as regularization,
α always decays as a function of epoch t. For example, we can
use a simple linear decay function, which can be expressed as

αt = αinit ∗ (1− t/N) (9)

where αinit denotes the weight of the initial auxiliary loss, which
is a hyperparameter. t indicates the current epoch, N indicates
the total number of epochs. Between each epoch, αt is updated.
It can be seen that the auxiliary loss item will approach zero in
the later training process.

Fig. 8. Three methods of multicale prediction (a) predict and average, (b) add
and predict, (c) concatenate and predict.

In UNet++, the auxiliary predictor is attached to feature maps
in highest skip pathway to performs mask prediction as deep
supervision. Different from UNet++, we fuse multiscale feature
maps from the decoder, perform prediction, and conventional
loss calculations to achieve deep supervision. Because we found
that the prediction of different scales have different focuses, this
multiscale prediction method is also retained in the testing phase
to obtain better performance.

There are many ways to fuse feature maps from different
stages, as illustrated in Fig. 8. We use bilinear interpolation
to upsample all feature maps that have undergone selective
nonlocal operations to the highest resolution, with a width and
height of 1/4 of the original image. Then, perform the normal
segmentation prediction head on the concatenated feature maps
to obtain the final prediction mask, the process is shown in
Fig. 8(c). Because it has the best performance in the experiment,
and the amount of calculation introduced is very small compared
to the overall amount of calculation.

IV. EXPERIMENT

A. Dataset

The dataset used in the experiment comes from [48], which
uses 18-level Google Earth images with a spatial resolution of
0.522 m taken in Beijing, the capital of China. Beijing is a
typical urban city, containing a variety of buildings, which is very
suitable for building extraction research. The dataset contains a
total of 344 labeled images, which has been divided into training
set (80%) and test set (20%) by authors. We randomly select 20%
from the training set as the validation set, so the ratio of training
set, validation set and test set is 3:1:1. It is worth mentioning
that the size of this dataset is much smaller than many other
public remote sensing datasets, such as Vaihingen and Potsdam,
so the model is more prone to overfit. All images have been cut
into 512×512 patches, including three channels of RGB. Some
typical patches in the dataset are shown in Fig. 9. As shown in
the figure, the buildings are very small and dense, which poses
a challenge to the extraction task.



416 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 9. Sample patches from the dataset taken in Beijing from Google Earth.

B. Implementation Details

For all models, due to the high resolution of remote sensing
images and memory limitations, we use the same batch size
set to 8. The optimizer is SGD, the initial learning rate is 0.1,
the momentum is 0.9, and the weight decay is 1e-4. The loss
function is binary cross entropy. All models are trained for 300
epochs, and the learning rate decays to 0.01 at 180 epoch. For
the backbone ResNeXt, we use the ResNeXt-101 32×8d [17]
pretrained on ImageNet as the encoder part, and randomly
initialize the decoder and residual connection part. For data
augmentation, we use random horizontal and vertical flips, and
random rotations of 90◦, 180◦, and 270◦ during training, and do
not use data augmentation at testing phase. Our experiment is
based on the open source deep learning framework PyTorch. The
experimental environment is Ubuntu20.04. The GPU is GeForce
RTX 3090 with 24 G memory. The CPU is AMD Ryzen 9 5900X.

C. Evaluation

In this article, we use the IoU and F1 score to evaluate
the results. In order to evaluate the effectiveness of image
pixel-level prediction task, we compare the prediction results
with the corresponding ground truth, and divide each pixel into
true positive (TP), false positive (FP), false negative (FN), and
true negative (TN). The evaluation metrics used to measure the
effectiveness of our method are calculated based on these four
indicators.

IoU is a commonly used evaluation metric in semantic seg-
mentation. The numerator part calculates the number of pixels
that are correctly predicted in the foreground, and the denom-
inator part calculates the number of pixels in the union of the
real foreground and the predicted foreground. The calculation
process of IoU can be expressed as

IoU =
TP

FN + TP + FP
. (10)

F1 score is another evaluation metric in the statistical analysis
of binary classification. In the segmentation task, it is equivalent
to Dice similarity coefficient. Before calculating the F1 score,
we need to calculate precision and recall. Precision refers to
the proportion of pixels that are predicted to be true positives
among all predicted positives. Recall refers to the proportion of
pixels that are predicted to be true positives among all positives.
F1 score is the harmonic average of precision and recall, when

TABLE I
EXPERIMENTAL RESULTS OF DIFFERENT NETWORKS ON [48]

the weight of accuracy and recall is the same. The calculation
process of F1 score can be expressed as

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (13)

D. Comparisons With Baseline Methods

In order to verify the effectiveness of the SNLRUX++, we
compared it with some baseline methods. Table I shows the
experimental results of different networks. Fig. 10 provides
some visualization results. The experimental results show that
our proposed network has significant performance advantages
and better localization on the boundary compared to other net-
works. Moreover, to make a fair comparison with other methods,
we also used ResNet as backbone for our experiments, and
its performance is the best except SNLRUX++. This further
demonstrates the effectiveness of the proposed method and that
the use of a strong backbone in remote sensing images does
not lead to significant overfitting and can result in considerable
performance gains.

Among them, UNet-16 s is the original network model pro-
posed in the article [8]. It downsamples the image four times, so
the width and height of the minimum resolution feature map is
1/16 of the original image. On the basis of UNet-16 s, UNet-8 s
removes the final downsampling and corresponding upsampling,
so that the width and height of the minimum resolution feature
map is 1/8 of the original image. We have not adjusted the width
of the UNet-8 s network, thus, it has a smaller amount of param-
eters and calculations than UNet-16 s. The experimental results
show that UNet-8 s outperforms UNet-16 s, which indicates that
for remote sensing images, not the deeper the network means the
better the performance. This may be attributed to the small size
of the objects in the remote sensing images, and the location
information lost by downsampling is less than the semantic
information it brings.
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Fig. 10. Some visualization results. Compared with previous works, our method has obvious advantages in performance and boundary location. Best view it on
screen and zoom in. (a) Images. (b) GT. (c) UNet-8s. (d) UNet++. (e) DeepLabv3. (f) SNLRUX++.

It is worth mentioning that UNet++ has no significant per-
formance improvement compared to UNet. They use the same
encoder and decoder. In the training process, the loss of UNet++
is much smaller than that of UNet. It can be inferred that UNet++
suffers from overfitting, which often occurs in small remote
sensing datasets. Besides, the dense skip connection in UNet++
causes huge memory consumption and computational effort.
Compared with this, our proposed cascaded multiscale feature
fusion method is faster to train and more memory-efficient.
BiSeNet and HRNet are high-performance general segmentation
networks, but they perform poorly when applied to remote
sensing images, even worse than the baseline UNet. This is
also because the model capacity is too large for the information
provided by a small dataset to support such a model.

The Res2-UNeXt [50] is a medical image segmentation
model. Since medical images and remote sensing images share
the problems of unbalanced foreground background and small
and numerous objects, we tried to apply this model directly to
remote sensing images and obtained relatively poor results. This
may indicate that although there are many commonalities, there
are more semantic gaps between remote sensing images and
medical images.

Comparing the experimental results of DeepLabv3 and Res-
FCN, they use the same backbone ResNet101, but the perfor-
mance of Res-FCN has a greater advantage over DeepLabv3.
This suggests that using dilated convolution directly on remote

sensing images may not yield good results. Because in remote
sensing images, the actual distance of the object on the image is
relatively far, and the semantic relevance is not as good as that
of natural images. Directly using dilated convolution to increase
the receptive field will cause excessive noise to be introduced and
cause model degradation. Interestingly, when using ResNet as
the backbone, the most traditional and concise FCN model even
outperforms many later proposed models. This may suggests that
a backbone with powerful feature extraction capability is very
important for complex and variable remote sensing images. In
addition, some techniques in general segmentation model have
inductive biases based on natural images, such as segmentation
objects occupying a large portion of the entire image, which
does not occur often in remote sensing images and, thus, causes
performance degradation instead. This also shows that when
processing remote sensing images, overly complex modules
should be avoided and simple structures will instead give better
results, especially when the dataset is small.

E. Ablation Experiment

In order to quantitatively analyze the contribution of different
components in ResUNeXt++, we conduct ablation experiments.
In general, our model contains three components, cascaded
multiscale feature fusion (CMFF), selective nonlocal operation
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TABLE II
ABLATION EXPERIMENT OF DIFFERENT COMPONENTS. CMFF: CASCADED

MULTISCALE FEATURE FUSION, SNL: SELECTIVE NONLOCAL, MSP:
MULTISCALE PREDICTION

(SNL), and multiscale prediction (MSP). Here, we take Re-
sUNeXt as the baseline, replace skip connection with residual
connection and use “concatenate and predict” [see Fig. 8(c)]
multiscale prediction method by default, and add different com-
ponents for experimentation. The ablation experiment results of
different components are shown in the Table II.

From the experimental results, all three components improve
network performance. Among them, CMFF has the best perfor-
mance improvement and no overfitting like the dense connec-
tions in UNet++. This shows that CMFF can indeed effectively
fuse features at different scales and enhance the feature repre-
sentation at each stage, even on small datasets. It also indirectly
demonstrates that the feature maps at different stages have
different focuses. With this as a basis, it is feasible to construct
high-resolution and high-semantic feature maps. SNL validates
its effectiveness by achieving considerable performance gains at
the cost of a small number of operations. MSP has the smallest
performance improvement, this is because in the case of the same
height shot, the volume of different buildings does not present
a very obvious difference due to architectural standards. In
natural images, the distance and proximity of things can greatly
affect the size in the image. So MSP in remote sensing images
may not be as significant for performance improvement as in
natural images. However, the evaluation metrics cannot reflect
the network training speed and stability. During the experiment,
with the deep supervision of multiscale prediction, the network
training is significantly faster, especially directly using addition
to fuse different feature maps, that is Fig. 8(b).

In order to verify the effectiveness of the residual connection
and the performance difference of different multiscale prediction
methods, we designed related experiments. The experimental
results are shown in the Table III. From the experimental re-
sults, the residual connection can significantly improve network
performance. And the training becomes more efficient due to
the nature of the structure itself. The performance of the three
multiscale prediction methods is similar, and “concatenate and
predict” is slightly better than the other two. This is possible
because the “concatenate and predict” method gives different
weights to the feature maps of different scales, so that it can
adjust the weights adaptively according to the size of the object
scale of the datasets, and give more weight to the feature maps
that are most conducive to prediction. The remaining two can

TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT CONNECTION AND MULTISCALE

PREDICTION METHODS

Fig. 11. Sample patches from Vaihingen dataset.

be regarded as special cases where all feature map weights are
the same, and converge faster. Since the calculation amount of
the three methods is very small compared to the entire network,
we choose “concatenate and predict” by default.

F. Experiments on Benchmark Vaihingen

In order to further verify the effectiveness of SNLRUX++,
we conducted experiments on the remote sensing segmentation
benchmark Vaihingen [51]. The Vaihingen dataset was provided
by the German Society for Photogrammetry, Remote Sensing,
and Geoinformation (DGPF). The spatial resolution of the image
is 9 cm. This dataset has 33 high-resolution remote sensing
images with different sizes, the average size of which is about
2000×2500. We used the same experimental configuration as
before, cutting the images into 512×512 patches. A total of 2554
patches were obtained, which is much larger than the dataset
from [48], so we only trained for 150 epochs. We randomly
select 25% of patches as the test set, 25% as the validation
set, so the ratio of training set, validation set and test set is
2:1:1. This dataset has a total of six label categories. In order
to focus on the building extraction task, we set all categories
except buildings as the background. Some sample patches are
shown in Fig. 11. Compared to the previous dataset, Vaihingen
has a higher spatial resolution, which makes the details of the
buildings more prominent. Also the dimensions in the images
are larger, which makes the task of building extraction easier.

Table IV shows the experimental results of different networks.
Fig. 12 provides some visualization results. As a whole, all mod-
els have better results on this dataset than before. This indicates
that the number and spatial resolution of remote sensing images
can significantly reduce the difficulty of building extraction. Our
SNLRUX++ still maintains its best performance. This indicates
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Fig. 12. Some visualization results on Vaihingen. Best view it on screen and zoom in. (a) Images. (b) GT. (c) UNet-8s. (d) UNet++. (e) DeepLabv3. (f) SNLRUX++.

TABLE IV
EXPERIMENTAL RESULTS OF DIFFERENT NETWORKS ON VAIHINGEN [51]

that the proposed method maintains its effectiveness in both
small and large datasets. UNet-16 s outperforms UNet-8 s on
this dataset, which verifies our hypothesis that deeper networks
are more advantageous when the objects in the images are
larger in size. Models that are prone to overfitting, such as HR-
Net and BiSeNet, have significantly improved performance on
this dataset. This illustrates that the increase in data volume can
effectively mitigate model overfitting, but the cost of acquiring
data in remote sensing images is often enormous, making these
high-capacity models perform poorly. Due to the larger building
size, the dilated convolution method DeepLabv3 performs better
on this dataset compared to the previous dataset. When the
spatial resolution is higher, the semantic correlation between

objects becomes higher, resulting in a better performance of the
expanded receptive field approach.

V. CONCLUSION

In this article, we proposed a new end-to-end deep learning
network SNLRUX++ to solve the problems encountered when
general segmentation models were transferred to high-resolution
remote sensing images building extraction task. We explored
the feature map fusion methods and proposed a cascaded mul-
tiscale feature fusion method to improve the performance of
the network on small but numerous buildings. We proposed
selective nonlocal operation to establish long-range contextual
dependencies. It alleviates the introduction of additional noise
and the huge amount of calculation caused by using nonlocal
operation directly on the entire feature map. We used mul-
tiscale prediction as deep supervision, which makes training
more stable and accelerates network convergence. And used
the prediction advantages of feature maps of different scales to
improve the network’s performance for different scale buildings.
We conducted comparative experiments of different methods
and ablation experiments of the ResUNeXt++ components on
the public dataset [48]. Further experiments on Vaihingen seg-
mentation dataset also prove the generality of our method.

REFERENCES

[1] J. Cardoso-Fernandes, A. C. Teodoro, and A. Lima, “Remote sensing data
in lithium (Li) exploration: A new approach for the detection of Li-bearing
pegmatites,” Int. J. Appl. Earth Observ. Geoinformat., vol. 76, pp. 10–25,
2019.



420 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[2] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning
classification of land cover and crop types using remote sensing data,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 778–782, May 2017.

[3] F. Vanegas, D. Bratanov, K. Powell, J. Weiss, and F. Gonzalez, “A novel
methodology for improving plant pest surveillance in vineyards and crops
using UAV-based hyperspectral and spatial data,” Sensors, vol. 18, no. 1,
2018, Art. no. 260.

[4] M. Shimoni, R. Haelterman, and C. Perneel, “Hypersectral imaging for
military and security applications: Combining myriad processing and
sensing techniques,” IEEE Geosci. Remote Sens. Mag., vol. 7, no. 2,
pp. 101–117, Jun. 2019.

[5] T. Wellmann et al., “Remote sensing in urban planning: Contributions
towards ecologically sound policies?,” Landscape Urban Plan., vol. 204,
2020, Art. no. 103921.

[6] C. Liping, S. Yujun, and S. Saeed, “Monitoring and predicting land use
and land cover changes using remote sensing and GIS techniques-a case
study of a hilly area, Jiangle, China,” PLoS One, vol. 13, no. 7, 2018,
Art. no. e0200493.

[7] M. A.-A. Hoque, S. Phinn, C. Roelfsema, and I. Childs, “Tropical cyclone
disaster management using remote sensing and spatial analysis: A review,”
Int. J. Disaster Risk Reduction, vol. 22, pp. 345–354, 2017.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., Springer, 2015, pp. 234–241.

[9] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.

[10] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” ICLR, 2016.

[11] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., 2005, vol. 2, pp. 60–65.

[12] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, “Urban land cover
classification with missing data modalities using deep convolutional neural
networks,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11,
no. 6, pp. 1758–1768, Jun. 2018.

[13] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, “Semantic segmentation
of small objects and modeling of uncertainty in urban remote sensing
images using deep convolutional neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops, 2016, pp. 1–9.

[14] T. Zuo, J. Feng, and X. Chen, “Hf-FCN: Hierarchically fused fully con-
volutional network for robust building extraction,” in Proc. Asian Conf.
Comput. Vis., Springer, 2016, pp. 291–302.

[15] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet : Redesign-
ing skip connections to exploit multiscale features in image segmentation,”
IEEE Trans. Med. Imag., vol. 39, no. 6, pp. 1856–1867, Jun. 2020.

[16] X. Yao, X. Feng, J. Han, G. Cheng, and L. Guo, “Automatic weakly super-
vised object detection from high spatial resolution remote sing images via
dynamic curriculum learning,” IEEE Trans. Geosci. Remote Sens., vol. 59,
no. 1, pp. 675–685, Jan. 2021.

[17] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 1492–1500.

[18] A. Rosenfeld, Digital Picture Processing. New York, NY, USA: Academic,
1976.

[19] Y. Zhang and L. Wu, “Optimal multi-level thresholding based on maximum
tsallis entropy via an artificial bee colony approach,” Entropy, vol. 13, no. 4,
pp. 841–859, 2011.

[20] M. M. S. J. Preetha, L. P. Suresh, and M. J. Bosco, “Image segmentation
using seeded region growing,” in Proc. Int. Conf. Comput., Electron. Elect.
Technol., 2012, pp. 576–583.

[21] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image segmentation
using k-means clustering algorithm and subtractive clustering algorithm,”
Procedia Comput. Sci., vol. 54, pp. 764–771, 2015.

[22] F. Yi and I. Moon, “Image segmentation: A survey of graph-cut methods,”
in Proc. Int. Conf. Syst. Informat., 2012, pp. 1936–1941.

[23] Z. Li and J. Chen, “Superpixel segmentation using linear spectral cluster-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1356–
1363.

[24] Y. Yu, J. Huang, S. Zhang, C. Restif, X. Huang, and D. Metaxas, “Group
sparsity based classification for cervigram segmentation,” in Proc. IEEE
Int. Symp. Biomed. Imag., Nano Macro, 2011, pp. 1425–1429.

[25] P. Ghamisi et al., “New frontiers in spectral-spatial hyperspectral Image
classification: The latest advances based on mathematical morphology,
Markov random fields, segmentation, sparse representation, and deep

learning,” IEEE Geosci. Remote Sens. Mag., vol. 6, no. 3, pp. 10–43,
Sep. 2018.

[26] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Adv. Neural Inf. Process. Syst.,
vol. 25, pp. 1097–1105, 2012.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ICLR, 2015.

[29] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[30] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[31] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2117–2125.

[32] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 6399–6408.

[33] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 2881–2890.

[34] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet : A nested
u-net architecture for medical image segmentation” in Deep Learning in
Medical Image Analysis and Multimodal Learning for Clinical Decision
Support. New, York, NY, USA: Springer, 2018, pp. 3–11.

[35] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation
learning for human pose estimation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 5693–5703.

[36] H. Huang et al., “Unet 3+: A full-scale connected UNET for medical image
segmentation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2020, pp. 1055–1059.

[37] Z. Shao, P. Tang, Z. Wang, N. Saleem, S. Yam, and C. Sommai, “BRRNet:
A fully convolutional neural network for automatic building extraction
from high-resolution remote sensing images,” Remote Sens., vol. 12, no. 6,
2020, Art. no. 1050.

[38] J. Zhang, S. Lin, L. Ding, and L. Bruzzone, “Multi-scale context aggrega-
tion for semantic segmentation of remote sensing images,” Remote Sens.,
vol. 12, no. 4, 2020, Art. no. 701.

[39] G. Cheng, Y. Si, H. Hong, X. Yao, and L. Guo, “Cross-scale feature
fusion for object detection in optical remote sensing images,” IEEE Geosci.
Remote Sens. Lett., vol. 18, no. 3, pp. 431–435, Mar. 2020.

[40] G. Chen et al., “Fully convolutional neural network with augmented atrous
spatial pyramid pool and fully connected fusion path for high resolution
remote sensing image segmentation,” Appl. Sci., vol. 9, no. 9, 2019,
Art. no. 1816.

[41] R. Dong, X. Pan, and F. Li, “DenseU-net-based semantic segmentation
of small objects in urban remote sensing images,” IEEE Access, vol. 7,
pp. 65347–65356, 2019.

[42] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4700–4708.

[43] X. Li et al., “Pointflow: Flowing semantics through points for aerial image
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 4217–4226.

[44] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When deep learning meets
metric learning: Remote sensing image scene classification via learning
discriminative CNNs,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5,
pp. 2811–2821, May 2018.

[45] G. Cheng, C. Lang, M. Wu, X. Xie, X. Yao, and J. Han, “Feature enhance-
ment network for object detection in optical remote sensing images,” J.
Remote Sens., vol. 2021, 2021.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[47] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. 31st AAAI Conf. Artif. Intell., 2017.

[48] L. Xia, X. Zhang, J. Zhang, H. Yang, and T. Chen, “Building ex-
traction from very-high-resolution remote sensing images using semi-
supervised semantic edge detection,” Remote Sens., vol. 13, no. 11, 2021,
Art. no. 2187.



LEI et al.: SNLRUX++ FOR BUILDING EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES 421

[49] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilateral
segmentation network for real-time semantic segmentation,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 325–341.

[50] S. Chan, C. Huang, C. Bai, W. Ding, and S. Chen, “Res2-UNeXt: A
novel deep learning framework for few-shot cell image segmentation,”
Multimedia Tools Appl., pp. 1–14, 2021.

[51] F. Rottensteiner et al., “The ISPRs benchmark on urban object classifica-
tion and 3D building reconstruction” ISPRS Ann. Photogrammetry, Remote
Sens. Spatial Inf. Sci., vol. 1, no. 1, pp. 293–298, 2012.

Yanjing Lei received the Ph.D degree in parallel and
distributed computing from Northwestern Polytech-
nical University, Xi’an, China, in 2009.

Her current research interests include computer
vision, crowd-sensing, and edge computing.

Jiamin Yu received the B.B.A degree in manage-
rial theroy and servant leadership from the Zhejiang
University of Finance and Economics, Hangzhou,
China, in 2017. He is currently working toward the
M.E. degree in computer vision and remote sensing
segmentation with the Zhejiang University of Tech-
nology, Hangzhou, China, in 2019.

His current research interests include computer
vision and remote sensing information extraction.

Sixian Chan received the Ph.D. degree in deep learn-
ing, image processing, tracking and segmentation
from the College of Computer Science and Technol-
ogy, Zhejiang University of Technology, Hangzhou,
China, in 2018.

He is currently a Lecturer of the computer sci-
ence and technology with the Zhejiang University of
Technology. His research interests include image pro-
cessing, machine learning, deep learning, and video
tracking.

Wei Wu received the B.E. degree in land resource
management from Anhui Normal University, Wuhu,
China, in 2007, and the Ph.D. degree in cartography
and geographic information system from the Univer-
sity of Chinese Academy of Sciences, Beijing, China,
in 2013.

He is currently an Associate Professor with the
School of Computer Science and Technology, Zhe-
jiang University of Technology, Hangzhou, China.
His research interest includes remote sensing infor-
mation extraction.

Xiaoying Liu received the B.E. degree in electronic
engineering from the Nanjing University of Science
and Technology, Nanjing, China, in 2013, and the
Ph.D. degree in electronic engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2018.

She is currently an Associate Professor with the
School of Computer Science and Technology, Zhe-
jiang University of Technology, Hangzhou, China.
Her research interests include green wireless com-
munication networks and the mathematical modeling
of images.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


