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Abstract—Subspace clustering methods have become a powerful
tool to cluster hyperspectral imaging (HSI) data as they ensure
theoretical guarantees and empirical success. However, existing
methods explore subspace representation in the Euclidean space,
and thus, failing to exploit the high-order relationship and
long-range interdependences. This article presents a simple
yet effective method, to extend subspace clustering into the
non-Euclidean domain entitled hypergraph convolutional subspace
clustering (HGCSC). Instead of treating HSI as Euclidean data
only, we represent all the intraclass relations as hyperedges in a
hypergraph. With this representation, we can recast the classic
self-expression as a hypergraph convolutional self-representation
model. To explore the long-range neighboring relation, we
introduce a multihop hypergraph convolution process into
the method by collapsing the repeated multiplications into a
single matrix. HGCSC adopts the Frobenius norm to ensure a
closed-form solution. We assess the performance of HGCSC on five
real HSI datasets and show that HGCSC significantly outperforms
competitors in terms of clustering accuracy.

Index Terms—Graph representation learning, hypergraph
convolutional networks (HGCN), hyperspectral image clustering,
subspace clustering.

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) is one of the most
important Earth observation (EO) technologies [1]. The
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imaging data acquired by hyperspectral sensors consist of
dozens or hundreds of narrow spectral bands, which provide rich
spectral and spatial information. Methods aiming to automati-
cally find useful information in raw HSI data have increasingly
become an active area of research, in EO [2]–[4] and biomedical
engineering [5].

Despite the explosive growth of HSI classification meth-
ods [6], most of them are supervised, and thus, depend on
the availability of labeled samples, which demand not only a
large amount of manpower but also limit their applicability [7],
[8]. Unsupervised HSI classification (a.k.a, HSI clustering) is
a promising paradigm to circumvent human annotation. Un-
fortunately, due to the complexity and the ubiquitous spectral
variability of HSIs [9], HSI clustering is often more challenging
than that of RGB images and multispectral images [10]. To this
date, there is still a noticeable gap in terms of accuracy between
supervised and unsupervised methods [11].

Recently, there has been an increasing interest in narrowing
this gap in the hyperspectral community. Classic clustering base-
lines including K-Means [12], fuzzy c means (FCM) [13], and
spectral clustering (SC) [14] have been proven to be adaptable
to HSI. However, these methods usually rely on similarity mea-
surement and are not sufficient to explore high-order interactions
in the data. Benefiting from the development of representation
learning, many advanced clustering methods have recently been
devised. One of the most representative models is subspace
clustering [15]–[17]. Such methods are based on expressing
each data value as a linear combination of other values and
have become a popular tool to cluster HSI due to their empirical
success and theoretical guarantees.

The key behind subspace clustering is to calculate the self-
expression coefficient matrix. Previous works have often as-
sumed that the matrix is sparse (e.g., sparse subspace clustering
(SSC) [18]), dense (e.g., efficient dense subspace clustering
(EDSC) [19]), low-rank (e.g., low-rank subspace clustering
(LRSC) [20]), block diagonal [21], and so on. Furthermore, hy-
brid variants of these assumptions are often considered in prac-
tice [22], [23]. Despite great success, classic subspace clustering
models suffer from poor robustness since they are commonly
defined in the raw feature space. To overcome this drawback,
many works have attempted to explore the self-expressiveness
in robust spaces including deep latent space and non-Euclidean
space. Pan et al. [24] proposed to learn the self-expressiveness in
a multilayer autoencoder, resulting in a deep subspace clustering
(DSC) model. Such a model has been successfully applied into
HSI in [25] and achieved promising results. Furthermore, Cai
et al. [7] presented a graph convolutional subspace cluster-
ing (GCSC) framework to generalize the subspace clustering
model into an irregular space. Unlike the graph regularization
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[26], [27], GCSC provides a more efficient manner to incorpo-
rate structure with feature information from the perspective of
graph representation learning. However, a simple graph structure
is unable to reveal the high-order relationship of data.

The recent development of generalizing convolution on
graphs [28], [29] has bridged deep learning and structural data.
It also enables us to revisit previous problems from a non-
Euclidean space, even though there are no explicit structures. By
treating HSI as a single graph or a set of graphs, graph neural
networks (GNNs) have been widely used for supervised [30]
and semisupervised [31] classification of HSI. The existing
models follow a message passing scheme by aggregating neigh-
boring information from either spatial domain [32] or spectral
domain [31], making it efficient in capturing more complex
relationships beyond the original spectral-spatial information
in HSI. However, only a few attempts have been made to
incorporate GNNs into unsupervised HSI classification.

In this article, we present an improved GCSC approach and
consider the complex data correlation in HSI clustering. We
term the proposed approach hypergraph convolutional subspace
clustering (HGCSC). Confronting the challenges of learning
self-expressive coefficients for complex HSI, we propose to
incorporate the data structure in a hypergraph, which is more
flexible for subspace modeling, especially when dealing with in-
traclass variation. Technically, HGCSC follows the basic GCSC
framework but generalizes it by using hypergraph convolution.
Furthermore, we introduce a simplified multihop propagation
mechanism to ensure the incorporation of long-range neighbor-
ing relationships in the framework.

To sum up, the contribution of this article is twofold. First, by
generalizing subspace clustering into a hypergraph, we propose a
simple but effective method with multihop neighbor aggregation
for HSI clustering. We train HGCSC by calculating the closed-
form solution induced by the Frobenius norm, resulting in a
high computational efficiency. Second, we systematically assess
the quality and effectiveness of HGCSC on real HSI datasets,
showing that HGCSC is consistently superior to baselines by a
significant margin across all datasets.

The rest of this article is organized as follows. We first briefly
review subspace clustering and introduce hypergraph concepts
in Section II. Second, we introduce the details of the proposed
HGCSC method in Section III. Finally, in Section IV, we sys-
tematically qualitatively and quantitively assess the proposed
method. Finally, Section V concludes this article.

II. PRELIMINARIES

A. Notations

Throughout this article, we use boldface lowercase italics
(e.g., x), uppercase roman symbols (e.g., X), regular italics
(e.g., xij), and calligraphy symbols (e.g., T ) to indicate vectors,
matrices, scalars, and sets, respectively. The Frobenius norm of a

matrix X is defined as ‖X‖F =
√

tr(XXT ). A graph structure
is denoted asG = (V, E ,A), whereV denotes the node set of the
graph with vi ∈ V and |V| = N , E indicates the edge set with
(vi, vj) ∈ E , and A ∈ RN×N stands for the adjacency matrix of
the graph.

B. Hypergraph Learning

Hypergraph is the generalization of the simple graph, in which
its edges, i.e., hyperedges can join any number of vertices.

Fig. 1. Example of (a) hypergraph consisting of eight vertices and three
hyperedges and (b) its corresponding incidence matrix H in R8×3.

Fig. 1 shows a simple example of hypergraph. Formally, a
hypergraph with N vertices and M hyperedges is represented as
G = (V, E ,W), where V denotes the vertex set with vi ∈ V , E
indicates the hyperedge set with e ∈ E , andw(e) ∈ W stands for
the weight of hyperedge e. The hypergraph G is often expressed
in an incidence matrix H ∈ RN×M , where h(v, e) denotes the
connection of v and e and can be determined by

h(v, e) =

{
1, if v ∈ e

0, otherwise
. (1)

The degree of a vertex v is defined as d(v) =∑
e∈E w(e)h(v, e), and the degree of an hyperedge e is defined

by d(e) =
∑

v∈V h(v, e). For each vertex and hyperedge, their
diagonal degree matrices Dv ∈ RN×N and De ∈ RM×M are,
respectively, defined as [Dv]ii =

∑M
e w(e)Hie and [De]ii =∑N

i Hie. Let W ∈ RM×M indicates the diagonal matrix of
edge weights. A hypergraph learning task often involves a
normalized hypergraph Laplacian matrix [33], [34] defined by

L = I−D−1/2
v HWD−1

e HTD−1/2
v . (2)

Practically, hypergraphs are usually used as an alternative to
a simple graph, such as hypergraph regularizations in semisu-
pervised [11] and unsupervised learning problems [35].

Compared to the simple graph, which can only represent
one-to-one relationships, hypergraph can be used to
indicate more complex relationships, e.g., one-to-many
and many-to-many relationships. For a classification task,
the intraclass variations between data points can be naturally
defined as hyperedges of a hypergraph, which often results
in a more robust result. More recently, in analogy to graph
convolutional networks [28], hypergraph has been used to
defined convolution (i.e., hypergraph convolutional networks
(HGCN) [36], [37]) for complex structural data.

C. HSI Clustering

HSI clustering aims to group every HSI cells into several dis-
tinct clusters. Due to the lack of human annotations, such a task
is essentially a typical NP-hard (nondeterministic polynomial)
combinatorial optimization problem. Luckily, there are often
many intrinsic clues about HSI values belonging to the same
cluster, making the problem solvable. Nonetheless, HSI cluster-
ing is still more challenging than supervised HSI classification
problems because of the difficulty to assess all the parameters
that define classes without prior knowledge [10].
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The core of HSI clustering is to find out the criteria for the
assignment to a specific label. Classic centroid-based clustering
models, e.g., K-Means [12] and fuzzy c means (FCM) [13],
frequently adopt similarity measurements, such as the Euclidean
distance as the criterion. Recently, subspace clustering has
achieved great success in various areas. For HSI clustering, many
promising variants have been presented, such as spectral-spatial
sparse subspace clustering (S4C) [18], kernel SSC [38], and
multiobjective-based SSC [39].

On the other hands, this type of methods often suffers from
poor robustness to noise and outliers and high sensitivity to the
choice of cluster centroids. To overcome the drawbacks, many
attempts have been devoted to designing clustering models by
using the spectral graph theory. Such models recast clustering
problems into a graph partitioning (e.g., SC [14], [40]), result-
ing in two benefits: good theoretical guarantees and excellent
robustness to noise.

With the development of deep learning, there is increasing
interest in deep clustering for HSI. For example, DSC [24],
[41] has been proven to be superior to the traditional shallow
subspace clustering models. Such a method aims to explore the
subspace representation coefficients in a nonlinear latent space
approximated by an autoencoder, wherein the subspace cluster-
ing model will be recast as a special self-expression layer [41].
By incorporating suitable priors, DSC methods can achieve very
reliable clustering performance [11], [25]. Furthermore, recent
techniques including graph convolution [7] and self-supervised
learning [42] have shown some encouraging directions for HSI
clustering.

D. Subspace Clustering Models

Let X = [x1,x2, . . . ,xN ] ∈ RD×N be a collection of N
data points {xi ∈ RD}Ni=1 drawn from a union of n subspaces
S1 ∪ S2 ∪ . . . ∪ Sn, where N and D denote the number of data
points and features, respectively. Subspace clustering model
follows the reasonable assumption that each data point can be
expressed as a linear combination of a few other data points.
The observation can be further formulated as the following
self-representation problem [16], i.e.,

min ‖Z‖p s.t. XZ = X, s.t. diag (Z) = 0. (3)

Here, Z ∈ RN×N denotes the self-expressive coefficient ma-
trix, and ‖Z‖p represents a p-norm of the matrix Z. Generally,
l1-norm (‖Z‖1) tends to imply a sparse coefficient matrix, e.g.,
SSC [16], while nuclear norm (‖Z‖∗) can lead to a low-rank
coefficient matrix, e.g., LRSC [20], [40]. The self-representation
problem can be solved by using alternating directions method
of multipliers [18], [40] and heuristic methods [39], [43], [44].
In [19], [45], a Frobenius norm is applied to Z, which results
in a closed-form solution with a dense coefficient matrix. After
obtaining Z, labels of data points can be assigned by a SC based
on a constructed affinity matrix A = 1

2 (|Z|+ |Z|T ).
In [7], a GCSC framework is presented to generalize subspace

clustering models to the non-Euclidean domain so that more
complex relationship can be modeled. The framework can be
expressed as

argmin
Z

‖XÂZ−X‖F +
λ

2
‖Z‖p, s.t. diag (Z) = 0 (4)

where Â = (D+ I)−1/2(A+ I)(D+ I)−1/2 is an augmented
normalized adjacency matrix calculated by the graph adjacent

matrix A and degree matrix D, and λ is a regularization coeffi-
cient. The first term in (4) is equivalent to a graph convolutional
autoencoder. Noticeably, both Â and Z can be treated as the
similarity matrix of data points, however, they have obvious
differences. That is, Â reveals the intrinsic structure of a graph
with self-loops, whileZ signifies the reconstruction contribution
of each data in different subspaces (exclude the current data point
itself). Furthermore, the use of graph convolution allows us to
handle not only nonstructural data but also natural structured
data.

III. HYPERGRAPH CONVOLUTIONAL SUBSPACE CLUSTERING

(HGCSC)

A. Motivation and Definition

Previous subspace clustering methods seek to find subspaces
either in Euclidean space or merely considering simple graph-
structured prior. However, raw data or simple graph fail to
represent a high-order relationship, e.g., intracluster depen-
dences, thus leading to poor robustness in handling complex HSI
datasets. Furthermore, most graph-based subspace clustering
models focus mainly on the one-hop neighborhood relation-
ship while ignoring the long-ranging neighboring dependences.
These motivate us to generalize subspace clustering into the non-
Euclidean domain so that the structural information, especially
high-order relationships, can be incorporated into the subspace
representations.

The overall framework of the HGCSC approach is shown in
Fig. 2. Before elaborating on the details, we first present some
necessary notations. Given an HSI, denoted as X ∈ RD×N ,
where D is the number of spectral bands and N indicates the
number of cells, the goal of training is to learn a model Fθ

to assign each xi to a certain cluster label yi, i.e., Fθ : xi ∈
RD → yi ∈ {1, 2, . . . , C}, where C is the number of clusters.
In the following, we explain hypergraph construction, the def-
inition of hypergraph convolution, hypergraph convolutional
self-representation (HGCSR), and the training process.

B. Hypergraph Construction

We first transform an HSI X ∈ RD×N with D spectral bands
and N cells into the irregular domain by constructing a hyper-
graph G = {X,H,W}. Specifically, each cell xi can be repre-
sented as a vertex in a hypergraph and its k nearest neighbors
Nk(xi) constitute a hyperedge. We adopt Gaussian kernels with
the bandwidth parameter σ to measure the similarity of a pair of
cells, s(xi,xj), i.e.,

s (xi,xj) = exp

(
−‖xi − xj‖22

σ

)
. (5)

The hypergraph structure is encoded into an incidence ma-
trix H ∈ RN×N , where [H]ij = {0, 1} denotes whether a cell
belongs to a hyperedge, i.e.,

[H]ij =

{
1, if xj ∈ Nk (xi)

0, otherwise
. (6)

Furthermore, we use a sum of similarities of all vertices linked
by the same hyperedge to indicate the weight of the hyperedge,
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Fig. 2. Overview of the proposed HGCSC approach. In HGCSC, the original HSI data are converted into a hypergraph, where each vertex denotes an HSI cell
and each hyperedge links several most similar cells. Subsequently, based on a propagation matrix, a HGCSR with multihop aggregation is adopted to calculate a
robust subspace coefficient matrix. Finally, SC is used to assign the cluster labels.

i.e., [W]ii =
∑

xj∈Nk(xi)
s(xi,xj). Compared with the origi-

nal HSI, G contains more high-order information so that we can
define the subsequent operations.

C. Definition of Hypergraph Convolution

Following the spectral hypergraph convolution proposed
in [36] and [37], we define the nonparametric hypergraph con-
volution with a symmetric normalization as

X̂ = XD−1/2
v HWD−1

e HTD−1/2
v (7)

where X̂ ∈ RD×N is the embedding of G. For convenience,
let P = D

−1/2
v HWD−1

e HTD
−1/2
v be a propagation matrix in

RN×N , then we have X̂ = XP. The hypergraph convolution
can be treated as a two-stage refinement performing “node-
hyperedge-node” feature transformation upon the hypergraph
structure [46], [47]. The multiplication operation XH serves
as the information aggregation from nodes to hyperedges, and
then, premultiplying HT defines to aggregate information from
hyperedges to nodes.

D. Hypergraph Convolutional Self-Representation (HGCSR)

We recast the classic self-representation as a structured ver-
sion by incorporating it with hypergraph convolution. We refer to
such a self-representation model as HGCSR. Formally, HGCSR
is parameterized by a coefficient matrix Z ∈ RN×N and is
defined as the following reconstruction problem, i.e.,

X = XPZ, s.t. diag (Z) = 0. (8)

Following [19] and [7], by using the Frobenius norm, the
diag (Z) term can be ignored but without loss performance.
Then, we can rewrite the HGCSR as a minimum Frobenius norm
problem, i.e.,

argmin
Z

J (Z) =
1

2
‖Z‖2F +

λ

2
‖X−XPZ‖2F . (9)

As a result, we can efficiently calculate the closed-form solu-
tion for HGCSR. Specifically, the partial derivative with respect
to Z can be denoted as

∂J
∂Z

=
(
PTXTXP+ λIN

)
Z−PTXTX. (10)

Thus, we have the closed-form solution, i.e.,

Z =
(
PTXTXP+ λIN

)−1
PTXTX. (11)

Algorithm 1: HGCSC.
Input HSI: X, propagation step: K, the number of
neighbors: k, and regularization coefficient: λ.

1: Construct hypergraph using (6);
2: Compute propagation matrix

P = D
−1/2
v HWD−1

e HTD
−1/2
v ;

3: Compute multihop propagation matrix PK ;
4: Compute closed-form solution using (13);
5: Construct affinity matrix A;
6: Assign cluster labels using SC;

Output: Clustering results.

E. Multihop Aggregation

In the HGCSR defined previously, we ignore the long-range
interdependence between hyperedges and vertices, leading to
inefficient utilization. To overcome the problem, following the
suggestions in [48] and [49], we provide a simple multihop
aggregation rule for HGCSR. More precisely, the strategy stems
from a fact that the propagation of a K-layer linear HGCN can
be simplified as theK power of the propagation matrix, i.e.,PK .
Hence, we use PK as the multistep propagation and replace the
original single-step propagation in (9)

argmin
Z

J (Z) =
1

2
‖Z‖2F +

λ

2

∥∥X−XPKZ
∥∥2
F
. (12)

Similarly, its closed-form solution becomes

Z =
((

PK
)T

XTXPK + λIN

)−1 (
PK
)T

XTX. (13)

It should be noted that the HGCSR with multihop aggregation
can be regarded as a simplified deep hypergraph convolutional
autoencoder parameterized by learnable parameters Z.

F. Overall Learning Steps

When Z is obtained, we construct an affinity matrix A and
pass it into the SC. Since there is no globally accepted solution
for this step, we adopt the heuristic strategy suggested in [7]
and [19] to enhance the block structure. Besides, to fully use
spectral-spatial information in HSI, we take a patch of pixels sur-
rounding the central pixel into account. Such a strategy is widely
adopted in the HSI classification community [7]. We show the
pseudocode of the HGCSC Algorithm 1. It can be seen that the
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TABLE I
SUMMARY OF THE FIVE HSI DATASETS USED IN EXPERIMENT

proposed HCGSC method can be efficiently implemented using
sparse matrix multiplication.

G. Remarks and Computational Complexity

HGCSC can be treated as a generalization of traditional
subspace clustering models in the irregular domain, particularly
on hypergraph. By setting k = 1, the propagation matrix P
collapses into an identity matrix, while HGCSC is degraded into
the traditional subspace clustering models. Thus, HGCSC is a
more general alternative to the traditional subspace clustering
with the ability to handle regular data and irregular data. Our
HGCSC follows the previous GCSC framework but there exist
two main differences. First, HGCSC is defined on hypergraph,
while GCSC works on a simple graph. Furthermore, hypergraph
is the generalization of the simple graph, signifying that our
HGCSC is more general than GCSC. Second, we enable HGCSC
to capture long-range relationships, while GCSC only considers
1-hop neighborhoods.

Mathematically, if we solve (13) directly using matrix mul-
tiplications, it will lead to a computational complexity upper
bounded byO(N3). Specifically, theK-hop propagation matrix
PK needs O(KN2 M) operations. However, its real computa-
tional complexity would be significantly reduced by using sparse
matrix multiplications and precomputation. Thus, the computa-
tional complexity of HGCSC will finally be decreased to be
the same as the calculation of a typical least-squares regression,
wherein most operations will result from the matrix inverse.
Fortunately, there are many well-optimized tools, e.g., SciPy,
that can be used to efficiently solve this classic optimization.

IV. EXPERIMENTS

In this section, we extensively evaluate the proposed HGCSC
on five frequently used HSI benchmark datasets and compare
them with many state-of-the-art approaches. To thoroughly eval-
uate the performance of each approach, three popular evaluation
metrics including overall accuracy (OA), normalized mutual in-
formation (NMI), and kappa coefficient (Kappa) are calculated.

A. Setup

1) Datasets: We conduct experiments on five real HSI im-
ages, i.e., SalinasA, Indian Pines, Pavia University, Hous-
ton2013, and Xuzhou [7], [50]. The first two datasets were
acquired by AVIRIS sensors, while the latter three were collected
by ROSIS, ITRES CASI-1500, and HYSPEX, respectively. For
computational efficiency, we take the subscenes of these datasets
as it is done in [7] and [51]–[54]. More details can be found in our
previous work [7]. Note that the subscene taken from the Salinas
dataset is also known as the SalinasA dataset. The details of the
three datasets are summarized in Table I.

In data preprocessing, we perform a PCA to reduce spectral
bands into four by preserving at least 95% of the cumulative

TABLE II
SETTINGS OF HYPERMETERS IN HGCSC

percentage of variance. With a common solution [55], we use a
sliding square window to take samples from an HSI. Specifically,
the window size of the Indian Pines is 13× 13, while the other
four datasets are 9× 9. All samples are standardized by scaling
feature values into [0,1] by using the min–max scale approach
before use.

2) Baselines: We compare the proposed HGCSC model with
ten existing clustering methods, including three classical clus-
tering methods and seven popular HSI clustering methods. The
classical clustering methods compared in our experiment include
SC [14], SSC [16], and LRSC [20]. The popular HSI clustering
methods include �2-norm based SSC (�2-SSC) [56], unsuper-
vised broad learning (UBL) clustering [52], robust manifold
matrix factorization (RMMF) [57], EDSC [19], efficient graph
convolutional subspace clustering (EGCSC) [7], deep spatial-
spectral subspace clustering (DS3-Net) [41], and affinity matrix
learning via nonnegative matrix factorization (NMFAML) [53].
For these compared methods, we follow their settings reported in
the corresponding articles. The hyperparameters of the proposed
HGCSC are listed in Table II. All the baseline methods are
implemented with Python 3.5 and evaluated on an Intel i5-6500
3.20-GHz CPU with 8-GB RAM.

B. Results

1) Quantitative Results: Table III shows the clustering per-
formance of different methods evaluated on the SalinasA, Indian
Pines, Pavia University, Houston, and Xuzhou datasets. It can
be observed that, the presented HGCSC model obtains the
best clustering performance that significantly outperforms the
other clustering methods on all datasets according to OA, NMI,
and Kappa values. Furthermore, we can observe the following
tendencies.

First, the introduction of hypergraph convolution is beneficial
for HSI subspace clustering. Specifically, the proposed HGCSC
has significant improvement compared against EGCSC on all
datasets. In our experiment, the proposed HGCSC achieves
0.15%, 7.61%, 10.89%, 10.77%, and 13.23% improvement over
EGCSC on SalinasA, Indian Pines, Pavia University, Hous-
ton, and Xuzhou datasets, respectively. Particularly, HGCSC
achieves 100% in OA, NMI, and Kappa value on SalinasA
dataset, which is mainly because the land covers in the dataset
have distinct subspace structures. This demonstrates that hy-
pergraph convolution is more effective than the simple graph
convolution for improving the subspace clustering model.

Second, complementary information and feature extraction of
data can remarkably enhance the clustering performance. From
all the baselines, we can conclude that by incorporating multiple
types of information, clustering methods can obtain a better per-
formance. For example, RMMF and NMFAML tend to achieve
higher accuracy than traditional subspace clustering models.
It is mainly because that the former combines dimensionality
reduction and manifold information, while the latter utilizes
homogeneous information. Similarly, the proposed HGCSC is
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TABLE III
CLUSTERING PERFORMANCE COMPARISON OF BASELINES AND OUR METHOD ON SALINASA, INDIAN PINES, PAVIA UNIVERSITY, HOUSTON2013, AND

XUZHOU DATASETS

0The best results are highlighted in bold.

Fig. 3. Clustering results obtained by different methods on the SalinasA dataset. (a) Ground truth. (b) SC 68.06%. (c) SSC 76.66%. (d) �2-SSC 64.12%.
(e) LRSC 56.13%. (f) RMMF 98.20%. (g) NMFAML 99.56%. (h) EGCSC 99.85%. (i) HGCSC 100%.

Fig. 4. Clustering results obtained by different methods on the Indian Pines dataset. (a) Ground truth. (b) SC 68.41%. (c) SSC 49.37%. (d) �2-SSC 66.45%.
(e) LRSC 51.42%. (f) RMMF 71.21%. (g) NMFAML 85.08%. (h) EGCSC 84.83%. (i) HGCSC 92.44%.

benefited from the hypergraph structure and our developed
information aggregation operations. It shows that an effective
information extraction and fusion strategy will be helpful for
HSI clustering.

Third, the cluster results obtained by the proposed HGCSC
are comparable with a lot of supervised HSI classification meth-
ods [1], [58]. To be more specific, the proposed HGCSC achieves
100%, 92.44%, 95.31%, 73.15%, and 91.57% OA values on
the SalinasA, Indian Pines, Pavia University, Houston, and
Xuzhou datasets, respectively. In general, supervised HSI clas-
sification approaches have excellent ability than unsupervised
HSI classification approaches because supervised methods use a
large number of labeled samples during the training procedure.
Nevertheless, our proposed HGCSC provides a new idea for
developing an efficient HSI clustering model to compete with
supervised HSI classification methods.

2) Qualitative Comparison of Different Methods: In order to
further observe the clustering results, we visualize the clustering
maps of different clustering methods in Figs. 3–7. Since the
source codes of UBL and DS3-Net have not been released, we
cannot reproduce their clustering maps. However, this does not
affect the conclusions in this experiment. As we can observe
from Fig. 3, the class map obtained by HGCSC on the SalinasA
dataset is identical as the ground truth, while the other baseline
methods exhibit different levels of noise points. Moreover, the
other visual clustering results for the other four datasets are also
shown in Figs. 4–7, respectively. For these datasets, the proposed
HGCSC shows the best class maps that contain the least noise
and are visually the closest to the real ground truths. The class
maps obtained by the other clustering methods all show less
accurate results compared to HGCSC, and they contain more
noise caused by misclustering. On the whole, the hypergraph
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Fig. 5. Clustering results obtained by different methods on the Pavia University dataset. (a) Ground truth. (b) SC 76.91%. (c) SSC 61.46%. (d) �2-SSC 58.42%.
(e) LRSC 43.26%. (f) RMMF 77.04%. (g) NMFAML 89.67%. (h) EGCSC 84.42%. (i) HGCSC 95.31%.

Fig. 6. Clustering results obtained by different methods on the Houston dataset. (a) Ground truth. (b) SC 36.61%. (c) SSC 55.26%. (d) �2-SSC 42.28%. (e) LRSC
35.71%. (f) RMMF 70.39%. (g) NMFAML 63.46%. (h) EGCSC 62.38%. (i) HGCSC 73.15%.

Fig. 7. Clustering results obtained by different methods on the Xuzhou dataset. (a) Ground truth. (b) SC 72.67%. (c) SSC 63.53%. (d) �2-SSC 56.77%. (e) LRSC
56.31%. (f) RMMF 61.11%. (g) NMFAML 81.78%. (h) EGCSC 78.34%. (i) HGCSC 91.57%.

convolution structure in the proposed HGCSC is beneficial for
distinguishing the discriminative spatial and spectral features,
which further verifies the effectiveness and superiority of our
proposed model for the HSI subspace clustering.

3) Visualization of the Learned Affinity Matrix: To observe
the learned affinity matrices, we select two datasets (SalinasA
and Houston) and show their affinity matrices obtained by the
proposed HGCSC in Fig. 8(a) and (b). Note that all data points
are reordered according to the ground truth before calculating
the affinity matrix, which makes sense for observing subspace
structure. In Fig. 8, each column or row of an affinity matrix
represents the contribution using all data points to represent the

corresponding data point. Technically, if a group of samples
belongs to the same cluster, then the representation coefficients
between them are usually nonzero; otherwise, they should be
zero. Hence, the ideal affinity matrix is block diagonal. As we
can see from Fig. 8(a) and (b), the learned affinity matrices
not only are sparse but also have an obviously block-diagonal
structure. Furthermore, such subspace structure can be expressed
by a hypergraph, and then, be revealed by using the multihop
HGCSR. This phenomenon verifies that the proposed HGCSC
has the ability to accurately distinguish the internal relationships
between clusters, and thus, performs superior subspace cluster-
ing results.
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TABLE IV
ROBUSTNESS COMPARISON WITH DIFFERENT INTENSITY NOISE ON INDIAN PINES DATASET

Fig. 8. Visualization of the affinity matrix learned on (a) SalinasA. (b) Houston
datsets.

C. Ablation Studies

1) Impact of λ and k: Fig. 9(a)–(d) exhibits the impact of
the two important hyperparameters of HGCSC, i.e., the regu-
larization coefficient λ and the number of the nearest neighbors
k. In this experiment, we set λ = [10−2, 10−1, . . . , 104] and k =
[10, 15, . . . , 40] for all HSI datasets. As shown in Fig. 9, we can
see that the regularization coefficient λ has a significant effect
on clustering performance. In general, the clustering accuracy
of HGCSC tends to increase as λ increased. Taken overall, the
performance of HGCSC degrades dramatically when λ < 10.
Therefore, empirically, it is appropriate to set λ within [102, 104].
In addition, the neighborhood size k reveals the property of
the predefined hypergraph, thus, it will impact the clustering
accuracy. If the number of cells belonging to a certain class
is less than k, then the predefined hypergraph will inevitably
contain noisy hyperedges, resulting in an unreliable hypergraph
structure. Consequently, the neighborhood size should not be

Fig. 9. Influence of hyperparameters of k and λ for HGCSC on (a) SalinasA,
(b) Indian Pines, (c) Pavia University, and (d) Houston datasets.

Fig. 10. Influence of the propagation steps on SalinasA, Indian Pines, Pavia
University, and Houston datasets.

too large. According to the empirical study, the suitable k can
be found in a range from 10 to 30.

2) Impact of Propagation Step: The propagation operation
that aggregates information from high order neighborhoods
suffers from performance drops when the propagation step is too
large. We thus test the robustness of the HGCSC model on large
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Fig. 11. t-SNE visualization of the embeddings obtained on the SalinasA (the first row), Indian Pines (the second row), and Houston (the third row) with an
increasing propagation steps. From left to right, the embeddings are obtained under K = 0, 1, 2, 3, 5, and 10, orderly. Each color indicates a cluster.

propagation steps. In Fig. 10, we show the clustering accuracy
curves with different propagation steps varying from 0 to 10. We
find that, like most GCN models [28], our model performance is
remarkably improved by small propagation steps (e.g., K ≤ 3),
while suffers from performance drops with large propagation
steps. Such phenomenon is caused by the oversmoothing prob-
lem commonly encountered in graph convolution, which often
leads to similar and indistinguishable node representation for
different clusters. Instead, when a suitable propagation step is
set, e.g., K = 2, the long-range interdependence is incorporated
into the self-representation, and resulting in better robustness.
Notably, whenK = 0, HGCSC degenerates to the classical SSC
model while its performance is significantly worse than that with
hypergraph convolution. It signifies that our HGCSC is superior
to the classic subspace clustering models.

To better understand the effect of propagation steps on the
clustering, we visualize the embeddings obtained under different
steps. From Fig. 11, we can observe that the proposed multihop
aggregation can distinctly increase the separability between dif-
ferent clusters. More precisely, the initial features (K = 0) can
be roughly separated into a few clusters. However, there are also
many samples of different clusters mixed with others. Compared
with the initial features, hypergraph embeddings show better
intraclass compactness and interclass separability, which is ben-
eficial to the subsequent subspace clustering. Furthermore, such
a tendency is enhanced as the propagation steps increase. This
shows the effectiveness of the multihop aggregation strategy.
Nonetheless, from the last column in figures (K = 10), we
can see an obvious oversmoothing phenomenon, especially on
SalinasA and Houston datasets.

3) Analysis of Robustness: To explore the robustness of
HGCSC, we conduct clustering on the Indian Pines dataset
with different noise levels. In this experiment, we add random
Gaussian noises with zero means and variances of 0.1, 0.3, and
0.5 into the dataset. Higher variance means that the data contain
more noise. From Table IV, we can see that HGCSC consistently
shows better robustness to different intensity noise than EDSC
and EGCSC. This is because HGCSC leverages both high-order
information and long-range dependences, which are more robust
than the simple graph and pure features. This shows the effective-
ness of our method. Furthermore, EGCSC remarkably improves

the robustness over EDSC by using the simple graph structure,
demonstrating the importance of structural information.

V. CONCLUSION

In this article, we proposed a simple yet very effective HSI
clustering approach, namely HGCSC, which learns the subspace
representation coefficients by using a multihop HGCSC model.
Experimental results on five popular HSI datasets show that
our HGCSC not only can effectively enhance a strong model,
i.e., GCSC but also achieve state-of-the-art performances that
consistently outperform competitors by a large margin. Due
to the limitation of computational resources, we only tested
HGCSC on small-scale scenes in this work. We will try to
scale it to large-scale datasets in the future. In this work, we
focused on the assumption that data points are drawn from a
linear subspace. We will apply HGCSC to nonlinear graph neural
network architectures.
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