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Constrained-SIoU: A Metric for Horizontal
Candidates in Multi-Oriented Object Detection

Yanan Zhang

Abstract—Intersection over union (IoU) has been widely adopted
to evaluate and select candidate regions in multi-oriented ob-
ject detection. Intuitively, overlaps between candidates and multi-
oriented ground-truth boxes make more sense when assessing the
quality of horizontal candidates. However, the horizontal minimum
bounding box (HMBB) of the ground-truth box is generally used
for the IoU calculation in practice, bringing about biased results.
In this article, we propose a novel Splicing Intersection over Union
(SIoU) to provide a more preferable metric for horizontal candidate
selection when detecting multi-oriented objects. By computing the
intersection between the candidate region and the ground-truth
box rather than its HMBB, SIoU provides a better description of
how much object information a candidate contains. Furthermore,
we introduce two variants of constraints for the center of each
candidate to ensure its location focusing on the objects. Candidates
whose centers deviate too far from the objects will be penalized.
We integrate the constraint with SIoU, denoted as constrained-
SIoU, to select horizontal candidates more efficiently. Compar-
ative experiments on two datasets of aerial images, DOTA and
HRSC2016, demonstrate the effectiveness of the proposed method.

Index Terms—Aerial images, label assignment, multi-oriented
object detection, remote sensing.

I. INTRODUCTION

N the past few years, remote sensing image processing has

made rapid progress with the development of deep learn-
ing. Remote sensing images have some characteristics that are
different from natural images, and therefore, require special
researches. For example, they tend to have a lower resolution
than natural images and are usually bird’s-eye views. The re-
search issues that have attracted a lot of attention mainly include
image classification [1]-[3], object detection [4]-[6], change
detection [7]-[9], etc. Object detection can be divided into
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supervised object detection [6], [10], [11], weakly supervised
objectdetection [4], [5], [12], and unsupervised object detection.
According to the orientation of objects, it can also be divided into
horizontal object detection and multi-oriented object detection.
In this article, we mainly focus on the supervised multi-oriented
object detection.

Recently, multi-oriented object detection, which aims at de-
scribing objects with oriented bounding boxes (OBBs), has
achieved promising performances [6], [10], [11], [13]-[15].
OBB generally includes rotated bounding box (RBB) and
quadrilateral bounding box (QBB). As a subproblem of general
object detection, multi-oriented object detection is first explored
in scene text detection, and then, gradually extended to remote
sensing imagery processing. Currently, most multi-oriented ob-
ject detection methods [10], [11], [16] are based on the state-
of-the-art horizontal detectors, e.g., Faster R-CNN [17], feature
pyramid network (FPN) [18], and RetinaNet [19]. Compared
with the horizontal rectangles, bounding boxes with orientation
information indicate more accurate locations.

Anchor-based approaches [17], [19], [22], [23] for general
object detection often preset external indicators, which are
known as anchors [17], [19] or default boxes [23], to provide
candidates for subsequent predictions. In two-stage methods,
proposals generated in the first stage are also regarded as candi-
dates. Candidates are compared with the ground-truth boxes to
determine the targets of classification and localization through
a process named label assignment. Label assignment plays a
crucial role in the performance of detector and has been studied
extensively [24]-[26]. Most assignment methods use IoU to
measure the overlaps of ground-truth boxes and candidates.
Note that though intersection over union (IoU) is able to gauge
the similarity between two boxes of any shape, IoU in this
article refers specifically to the overlap between two horizontal
boxes in order to distinguish it from SkewloU. Borrowing from
axis-aligned detection algorithms, a lot of methods focusing
on multi-oriented objects also generate horizontal anchors in
advance, whether the final prediction format is OBB [16], [27]
or QBB [6]. Since the ground-truth box and the candidate are
generally of different types (one is axis-aligned and the other is
multi-oriented), the HMBB of the ground-truth box is used to
calculate ToU.

However, we observe that IoU based on the HMBB may
lead to unreasonable overlaps and biased assignment results
ulteriorly. The HMBB contains not only the features in the
ground-truth box but also the information in the background
area. As shown in Fig. 1(a), an equivalent IoU value may exist
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Fig. 1. Two sets of examples. (a) Three cases have the same IoU value,
GIoU [20] value, DIoU [21] value, and CIoU [21] value. However, they have
different SIoU values. Each candidate contains different part of the object.
(b) All candidates have large IoU and SIoU values, and two of them also have
large GIoU, DIoU, and CIoU values, but their centers are outside the respective
objects.

in completely different situations. Aspect ratios and orientations
of the objects greatly affect the actual overlaps between the
candidate regions and the objects. However, IoU just considers
information about the HMBB, so it is inaccurate to assess the
quality of anchors only based on IoU. Similarly, GloU [20],
DIOU [21], and CIoU [21] do not differentiate multi-oriented
objects with the same HMBB, which can also lead to inaccurate
results. Furthermore, we notice that the centers of some positive
candidates selected based on IoU or SIoU are far away from the
centers of objects. In some extreme cases, they are even outside
the respective objects. In the fixed label assignment method, 0.5
is a conventional threshold to select positive samples. As shown
in Fig. 1(b), a candidate with a high IoU value and a high SIoU
value may not focus on the object. This will hurt the detector’s
performance. DIoU [21] and CIoU [21] add a penalty term
based on the distance between centers of two boxes, so the case
of center deviation is reduced to some extent. However, since
they are not designed specifically for either rotated ground-truth
boxes or label assignment, CloU and DIoU cannot handle all
center deviations. Some candidates with high DIoU and CloU
values still have centers outside the respective objects, as shown
in the second and third examples in Fig. 1(b). For axis-aligned
objects, IoU between a ground-truth box and an anchor can
generally evaluate the anchor’s quality. Unfortunately, if the
ground-truth box is with orientation, IoU will be not suitable
to be applied.

In this article, we come up with a new method to address the
problem in label assignment. First, we propose a novel metric
named Splicing Intersection over Union (SIoU) to measure the
overlap between an axis-aligned candidate and a multi-oriented
ground-truth box. SIoU takes advantage of the following two
factors:

1) overlap between the candidate and the ground-truth box;

and

2) overlap between the candidate and the HMBB of the
ground-truth box.

Itnot only reflects how much valuable information a candidate
contains, but also takes into account the necessary redundancy
it must have. As shown in Fig. 1, we call features contained in
box O as valuable information, and the necessary redundancy
refers to the features contained in A but not in O. In addition,
we introduce two variants of constraints for the center of each
candidate to avoid it being too far from the object. In multi-
oriented object detection, the combination of SIoU and the center
constraint, constrained-SIoU, can serve as the metric to assign
labels for horizontal candidates.

The main contributions of this article are summarized as
follows.

1) We analyze the problem of IoU used in label assignment
and propose a new metric named SIoU. SIoU depicts the
overlap between an axis-aligned box and a multi-oriented
box. It helps to select proper horizontal candidates. The
anchors and proposals obtained by the proposed SIoU are
more precise than those selected by IoU.

2) We observe that the centers of some selected positive
samples are far away from the objects, so we introduce
constraints toward the centers. Biased centers may cause
classification errors and inaccurate locations. Through
penalizing the anchors whose centers are apart from the
objects in label assignment, we effectively reduce the
number of improper predictions.

3) We conduct experiments on two benchmarks. Without
bells and whistles, our proposed method achieves signifi-
cant performance improvements.

II. RELATED WORK

A. Anchor-Based Algorithms in Object Detection

As its name implies, anchor-based algorithms, whether for
general horizontal object detection or multi-oriented object
detection, commonly preset anchors. Differently, anchor-free
methods, e.g., [28]-[32], do not need anchors. In this section,
we mainly discuss anchor-based methods in object detection.

1) Axis-Aligned Object Detection: Algorithms in object de-
tection can be generally divided into two types: single-stage
methods and two-stage methods. In single-stage methods, e.g.,
YOLO [33], [34], SSD [23], and RetinaNet [19], anchors are
directly used for subsequent predictions. In two-stage meth-
ods [17], [22], [35]-[37], proposals generated in the first stage
are fed into the second subnetwork to obtain their categories and
more precise locations. The most popular network to produce
proposals is Region Proposal Network (RPN), which is proposed
in Faster R-CNN [17] and has been widely used in two-stage
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networks [6], [27] and multi-stage networks [38]. The RPN first
enumerates a certain number of aspect ratios and scales to crop
anchors, then classifies the anchors and refines their locations
and shapes to produce proposals. Anchors and proposals in
axis-aligned object detection are still axis-aligned, so IoU is
suitable to evaluate and select candidates.

2) Multi-Oriented Object Detection: Multi-oriented object
detection algorithms are mostly built upon the axis-aligned
detectors. The difference is that anchors and region proposals
for detecting oriented objects can be either horizontal or multi-
oriented. Most algorithms adopt horizontal anchors, e.g., see
[6], [10], [16], [27], and [39]-[41]. Rotational Region CNN
(R? CNN)[39], SCRDet [10], and gliding vertex [6] are based on
Faster R-CNN [17]. They use the RPN to generate axis-aligned
proposals, and then, produce rotated bounding boxes or quad-
rangles for multi-oriented objects. Horizontal candidates do not
often match objects well. To solve this problem, Ding et al. [27]
transform the horizontal regions of interest (HRols) into rotated
regions of interest (RRols) through a subnet named Rol Trans-
former. R? Det [16] adjusts the regression head of RetinaNet [19]
to predict multi-oriented bounding boxes. It adds multiple re-
finement stages and introduces the feature refinement module
to modify the inaccurate features in the refinement. As rotated
anchors can provide more precise features for classification and
better initial values for regression, some approaches [42]-[46]
crop anchors with orientation. Both anchors and objects are
multi-oriented, so SkewloU is used for label assignment in this
case. The RRPN [42] creatively introduces rotated anchors into
the RPN network based on Faster R-CNN [17] to detect multi-
oriented texts. DRBox [47] analyzes the disadvantages of the
horizontal bounding boxes and proposes to use multi-angle prior
RBoxes (essentially multi-oriented anchors) to produce rotated
bounding boxes. FFA [46] adopts Oriented Region Proposal
Network (RPN-O) to generate rotated proposals and uses Rol-O
pooling for feature extraction. In addition to modifying the net-
work, some researchers study loss functions to solve the problem
of regression loss discontinuity. Regression loss discontinuity is
caused by the periodicity of angles. The fundamental problem
is that a rotated box can be represented in several different
ways. Modulated Rotation Loss [48] enumerates all possible
representations for ground-truth boxes as well as the resulting
loss values and selects the minimum one to get regression loss.
SkewloU Loss is the ideal loss function like IoU Loss [49] in
general object detection. However, the calculation of SkewloU is
indifferentiable. PIoU Loss [50] uses statistics of pixels in each
box to approximate SkewloU. Gaussian Wasserstein Distance
(GWD) [51] models each box as a 2-D Gaussian Wasserstein
Distance, and uses their GWD as the regression loss.

B. Label Assignment

Fixed label assignment is a traditional assignment method
that sets two fixed thresholds to select positive and negative
samples. We will describe it in detail in Section ITI-A. Generally,
a fixed assignment method lacks flexibility and may not bring
optimal assignment results. Adaptive Training Sample Selection
(ATSS) [26] and Dynamic R-CNN [52] dynamically determine

Algorithm 1: IoU-based Fixed Threshold Label Assigner.

Input: O is a set which contains m ground-truth boxes. B
is a set which consists of n candidates. pos_iou_thr is the
threshold for positive samples, and neg_iou_thr is the
threshold for negative samples.

Output: results with shape (n,) is the results of
assignment.

I: fori=1—ndo

Calculate the overlaps overlaps; between the i-th

candidate and the ground-truth boxes.

3 maz_overlap < max(overlaps;)

4: index + argmax(overlaps;)

5: if max_overlap >= pos_iou_thr then

6.

7

8

N

results; < index
else if max_overlap < neg_iou_thr then
: results; + 0
9: else

10: results; + —1
11: end if
12:  end for

thresholds based on IoU statistics. ATSS [26] uses mean and
standard deviation, and Dynamic R-CNN [52] uses top-K frac-
tions. Some methods take into account the prediction results for
label assignment. Li et al. [53] introduce the cleanliness score
to measure the anchors’ quality. The cleanliness score is the
weighted mean of the localization accuracy and classification
confidence. After selecting a fixed number of positive candi-
dates, the cleanliness score is used to generate soft labels for
classification and weights of loss terms for regression. Similarly,
Dynamic Anchor Learning (DAL) [54] selects the candidates
according to the prediction results. In addition to output IoU, it
also considers the input IoU to stabilize the training. In anchor-
based detection methods, some objects with special aspect ratios
or scales cannot get enough positive candidates. High-quality
anchor mining strategy (HAMBox) [55] utilizes the prediction
results to select high-quality anchors for this part of objects. In
addition, OneNet [56], FCOSpss (PSS refers to positive sample
selector) [57], and DeFCN [58] explore one-to-one label as-
signment methods to achieve detection without postprocessing.
Unlike these studies, we mainly focus on how to measure the
similarity of boxes with different orientations. Although the
experiments are based on the fixed label assignment method,
actually our proposed constrained-SIoU is able to be integrated
into any label assignment algorithms that need to calculate
IoU, as long as the candidates and the objects are oriented
differently.

III. BACKGROUND

We first briefly introduce the fixed label assignment method in
Section III-A, and then, analyze the necessity of horizontal can-
didate regions in multi-oriented object detection in Section I1I-B.
In Section III-C, we discuss problems of the metrics used in label
assignment.
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A. Overview of the Fixed Threshold Label Assigner

In this article, we adopt the method of label assignment
proposed by [17]. After cropping anchors, overlaps between
these anchors and ground-truth boxes are calculated. Based
on some preset fixed thresholds, positive and negative samples
are selected. This strategy is widely applied in anchor-based
algorithms such as Cascade R-CNN [38], SSD [23], and Reti-
naNet [19]. We sketch out the method in Algorithm 1. For a
more concise representation, we omit the part of low-quality
matching. In the assignment results, numbers greater than O
represent the index of the object matched by the candidate, 0
means the corresponding region is a negative sample, and —1
shows the ignored one.

In multi-oriented object detection, many algorithms follow the
label assignment method in Algorithm 1. If axis-aligned anchors
are adopted, overlaps between candidates and the HMBBs of
ground-truth boxes may lead to inaccurate results. We propose
a new method to calculate the overlaps. The details will be
described in Section IV.

B. Comparison of Horizontal and Rotated Candidates

In practice, some algorithms use rotated anchors, e.g., [42]
and [47], but many more use horizontal ones, e.g., [10], [16],
and [27]. High efficiency and satisfactory recall are the main
reasons why horizontal candidates are more popular. First of all,
generating rotated candidates will cause extra time consumption.
In training, encoding the orientation information will result in a
multiplication of anchors. For example, there are six orientations
in the RRPN [42], which means that the number of anchors will
be six times as many as in the horizontal case. The large number
of anchors seriously slow down the label assignment, which uses
SkewloU as the primary basis. Actually, in the experiments, we
find that the massive computation of SkewloU without CUDA
for acceleration will have a devastating impact on the training
speed. Unluckily, there will be a great burden on the memory if
CUDA is used. Ding et al. [27] also discussed the degradation of
matching efficiency caused by the dramatic increase of anchors’
number. In addition, as the overlap between two multi-oriented
boxes is largely affected by the orientation, some objects will
have difficulty in finding anchors with sufficient overlaps. To
some extent, adding orientation information does not necessarily
improve the recalls, even with more anchors. Yang et al. [16]
discovered that though rotated anchors can perform better in
dense scenes, horizontal anchors can achieve higher recalls in
fewer quantities. Although cropping anchors at a smaller interval
of orientation can improve the performance, it will increase the
time consumption even further. In summary, it does take more
time and is not necessarily better to crop rotated anchors, so
we still generate horizontal anchors and assign labels for them
based on the new metric we proposed.

C. Drawbacks of Existing Metrics

There are two kinds of metrics commonly used in label
assignment when detecting multi-oriented objects. The first one
is IoU shown in (1). As discussed earlier, it is a relatively crude

IoU: 1.00 ToU: 1.00 IoU: 0.50
SkewloU: 0.44 SkewloU: 0.23 SkewloU: 0.28
SloU: 1.00 SloU: 1.00 SloU: 0.70
(a) (b) ()
[—Jbox A box B box O

Fig. 2. Comparison of three metrics. For different objects in (a) and (b), the
HMBBs have different SkewloU values. For the same ground-truth box in (b)
and (c), the candidate in (b) that is closer to the HMBB of O has a smaller
SkewloU value.

indicator with a bias in evaluating the quality of horizontal
candidates. Another one is for oriented boxes named SkewloU,
which is proposed in the RRPN [42] and also used in Rol
Transformer [27]. Unfortunately, SkewloU, which is attained
by (2), is still not suitable for calculating the overlap between a
horizontal box and a rotated one. Generally, we intend to find
candidates similar to the HMBBs of the ground-truth boxes.
However, as Fig. 2(a) and (b) shows, SkewloU between a non-
horizontal object and its HMBB will never be 1, and the upper
limit value of SkewloU is largely influenced by the orientation
and aspect ratio of the object. Moreover, from Fig. 2(b) and (c),
we can learn that the SkewloU of an object and its HMBB is
not necessarily the highest one, so it is also not viable to assign
labels according to the ranking of SkewloU. In summary, IoU
for two axis-aligned boxes cannot explicitly reflect how much
valid information an anchor contains, and SkewloU ignores the
necessary redundancy one horizontal anchor must have.

AN B

JoU= """ 1

°U= 1105 M
_[onB]

SkewloU = OUB| 2)

In addition, there are three other metrics in object detection.
Based on IoU Loss [49], Rezatofighi et al. [20] propose another
important metric named Generalized Intersection over Union
(GIoU) and GIoU Loss. GIoU is shown in (3), and C' in the
equation is the smallest rectangle enclosing the union of A and
B. GIoU is equivalent to adding a penalty term for unnecessary
redundancy in the candidate box. If the candidate is totally
inside the ground-truth box, GIoU is equal to IoU. As a loss
function, GIoU Loss still works in the case of non-overlapping
bounding boxes. However, as we do not care how far apart
two non-overlapping boxes are in label assignment, the role of
GIoU is limited. Distance-IoU (DIoU) [21], which is shown in
(4) considers the distance between the centers of two boxes.
p in the equation is the Euclidean distance between the centers
of two boxes, and c in the equation is the diagonal length of
C in GloU. DIoU Loss converges faster and still plays a role
in the cases where GloU Loss degrades into IoU Loss. In our
opinion, the penalty term in DIoU is closer to our constraint
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toward the centers. They are different in the calculation method
of the penalty term. Complete IoU (CIoU) [21] adds another
penalty term to DIoU to get the consistency of aspect ratios.
Readers are referred to [21] for more details.

GIoU = IoU — IC\(AU B)| (3)
|C|
2
DIoU = IoU — % 4)

IoU, GIoU [20], DIoU [21], and CIoU [21] are all for hor-
izontal objects. SkewloU measures the overlap between two
multi-oriented boxes. To the best of our knowledge, the metric
for boxes of different types has not come up yet.

IV. PROPOSED METHOD

Constrained-SIoU consists of two parts, SIoU and center
constraint, described in Sections IV-A and I'V-B, respectively.

A. Splicing Intersection Over Union

As we have discussed in Section III-C, for a multi-oriented
object O, IoU between the candidate B and O’s HMBB A is
relatively rough to evaluate the quality of B. Besides, direct use
of SkewloU, which is calculated by (2), is also problematic.
At present, there is still a lack of ideal methods to evaluate
the quality of horizontal candidates in multi-oriented object
detection.

To address this issue, we propose a new method named SIoU
to calculate the overlap between a horizontal box and a multi-
oriented box.

First, IoU for A, B C S € R" can also be expressed as

———=— |[ANB|#0
IoU ={ mom st | # (5)
0 |[AnB|=0.

When |AN B|#0, the first term in the denominator,
|A|/|AN B, can be read as a multiple of the first box’s size
and the intersection’s size, and the second term is the same. If A
is the box enclosing the object, the first term indicates how much
valuable information B contains about A, and the second term
describes how much redundancy B has. As shown in Fig. 3, the
intersection between O and B is sometimes quite different with
the intersection of A and B. In multi-oriented object detection,
the first term may be inaccurate because the real object may
only occupy a small part of region in A. Suppose that A is the
HMBB of O, we can replace A in the first term with O so that
the first term is able to better represent how much information B
contains about the object. B cannot be exactly the same with O,
unless O is axis aligned, so B has to contain some redundancy. In
order to keep the overlaps from being affected by the necessary
redundancy, the second term remains unchanged. In addition, it
is intuitive that the overlap of two non-overlapping boxes should
be 0. In this way, we can obtain a method to calculate the overlap
between a horizontal box and a rotated one, just as (6) shows. The
area of intersection in (6) can be calculated like the intersection

[—Jbox A
box B

2w AnB
HiffHH OonB

@

©

Fig.3. Intersectionsin SIoU. (a) Overall relationship between the ground-truth
box O, its HMBB A, and the horizontal candidate B. (b) Region of intersection
between A and B. (c) Intersection of O and B.

area in SkewloU. The entire calculation process refers to [42].

el |ONB|£0
SloU = { mormtmnm 1 | | . (6)
0 |ONB|=0

The properties that both IoU and SIoU have are as follows.

1) SIoU is nonnegative, and the range of SIoU is still [0, 1].
When B and A are exactly the same, SToU between O and
Bis 1.

2) SloU is still invariant to the scale.

The differences between IoU and SIoU include the following.

1) IoU between A and B has symmetry, but SloU between
O and B does not.

2) If Aand B are notidentical, there is no definite relationship
between the values of IoU and SloU. If O and B do not
overlap but A and B do, SIoU will still be 0 even if IoU
between A and B is larger than 0.

3) The process of IoU calculation is differentiable. Unfortu-
nately, there are nondifferentiable parts in the calculation
of SIoU, so we cannot simply use 1 — SToU or — In SToU
as the loss function.

In summary, SIoU retains most of the good properties of
IoU and increases the ability to evaluate boxes of different
types. When assigning labels for horizontal candidates in multi-
oriented object detection, SIoU can be used just like ToU.

B. Center Constraint

Though there are a few objects with acentric features, informa-
tion contained in the center of a candidate is critical for classifica-
tion and regression in most cases. The satisfactory performances
of FCOS [59] and CenterNet [30] demonstrate the importance of
the central feature. However, in multi-oriented object detection,
some candidates with both high IoU values and great SIoU
values have centroids far away from the objects’ centers. As
shown in Fig. 1(b), some of them are even centered outside the
objects. Intuitively, this may spell trouble for predictions.

The simple and straightforward idea is to suppress the positive
samples whose centers are not close to the centers of objects. We
merely regard these samples as negative if the distances between
their centers and the objects’ centers exceed the predefined
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Fig. 4. Center constraint. If the center of box B is far from the center of the
box O, we calculate the horizontal and vertical distances between two centers
and convert them to be aligned with the orientation of O.

range. We call it hard constraint (abbreviated HC). We will give
a formal representation of the constraint in the following.

As shown in Fig. 4, suppose that the center of the ground-truth
box O is (x1,y1), and the center of the horizontal box B is
(22, y2), then their horizontal and vertical distances are Ax and
Ay, respectively. The differences along the direction of object,
Az" and Ay", can be obtained according to the orientation of
0. The angle is denoted by 6.

Ax" = cosf x Az +sinf x Ay 7
Ay" = —sinf * Az + cos 6 x Ay. )

The penalty term for HC is shown in (9). Suppose the width
of the object is w, and the height of the object is h, then the two
parts of the Ph¢ are expressed by (10) and (11), respectively.
A is the hyperparameter, which decides the center’s range of
candidates in reserve. For example, if A = 1, the value of the
penalty term will be 1 if the center of the candidate is outside
the object, and then, the overlap of this pair of boxes will be
0. If A < 1, the range will be smaller and the constraint will be
tighter. We will discuss how to combine SIoU and our penalty
term in Section I'V-C.

Phard — max (P_ildIdy P,;ard) (9)
1 A2 1>0
hard __ 0,55 =
R PR L
, 1 22 —2>0
phard { 0osh = (11)
v 0 & —4<0.

HC eliminates samples that are not centered in the range we
set, but it has a drawback: samples whose centers are outside
the range sometimes are able to produce reasonable results,
especially when their overlaps are large enough, but HC excludes
these samples.

To handle this problem, we propose a new constraint named
soft constraint (abbreviated SC). If the center of a sample is
outside the range we set, a penalty term P*°" will be generated
according to the distance of two centers. P*°'t also consists of
two parts, representing the two directions along the width and
height of the object, respectively.

Psoft _ P;oft + P;oft. (12)

Algorithm 2: Matching Matrix for Label Assignment.

Input: Set of oriented boxes S° = {Oi}f;, set of

horizontal boxes S® = {B; };V:I ”
pt.
Output: The matching matrix M
1: fori=1— N°do
2 forj=1— N°do
3 Calculate A;, the HMBB of O;
4: Calculate SIoU by (6) using O;, A;, and B;
5: if pt == “HC” then
6.
7
8

the type of penalty term

Calculate penalty term P by (9), (10), and (11)
else if pt == “SC” then
: Calculate penalty term P by (12), (13), and (14)
9: else

10: P=0

11: end if

12: M, ; < max(0, SIoU — P)
13: end for

14: end for

Just like in HC, w is the width of the object, / is the height
of the object, and A is a hyperparameter which is no less than 0,
then the penalty term will be

‘ Az”
Pt — max (O, 057110 — A) (13)
P = max (0, oéi - /1) : (14)

Suppose A =1, Az"/(0.5xw)—1>0 is equivalent to
Az" —0.5xw >0, and the center of the horizontal box,
(22,y2), will be outside the rotated box. In this case, we will
give it a penalty term. Based on 0.5 * w, the bigger Az" is,
the larger P, will be. If (x5, ys) is inside the rotated box, the
penalty term is 0. It is the same with P,. If A < 1, there will be
less scope for impunity. Similarly, if A > 1, there will be more
samples whose penalty values are 0.

Compared with HC, SC is more flexible and friendlier to
samples near the penalty boundary.

C. Matching Matrix for Label Assignment

In summary, as the Algorithm 2 shows, the new metric mainly
depends on the overlaps between horizontal candidates and
oriented ground-truth boxes. The penalty term is optional. We
can calculate matching matrix only use SIoU, or give hard or
soft constraint to the center of candidates. The matching matrix
we get will be applied in label assignment. Note that if the
ground-truth box is quadrangular, it is not easy to calculate the
relative difference between two centers. We can first get the
rotated minimum bounding box (RMBB) of the ground-truth
box, and then, calculate their distance. Generally, most quad-
rangles are quite similar to their RMBBs, and SIoU can be
calculated using quadrangles, so the matching matrix we get
is still accurate. Moreover, if we use HC and set A=1, we can
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directly exclude samples whose centers are outside the quadran-
gular ground-truth boxes. In most cases, A=1 can produce good
results. Although ground-truth boxes in our experiments are
rotated rectangles, constrained-SIoU can be applied to detectors
of quadrangles [6].

Our method consumes about an additional 10% time in the
training process. When it is applied in RetinaNet-H [16] with
three scales, in each epoch, SIoU takes about 600 s to calculate,
and the time required for center constraint is negligible, while
the whole training time of the model using IoU is about 100 min.
Luckily, we do not need to assign labels during the inference, so
our method does not add any testing time.

V. EXPERIMENTS

We evaluate the proposed method on two benchmarks:
DOTA [60] and HRSC2016 [61]. Experiments are conducted
based on two methods: Faster R-CNN [17] and RetinaNet
[19]. The ablation study is carried on both DOTA [60] and
HRSC2016 [61]. Furthermore, we also compare our perfor-
mance with other methods. Note that to clarify the category
of constraint used, we use “SIoU with SC” and “SloU with HC”
to represent constrained-SIoU.

A. Datasets

DOTA [60] is one of the largest datasets with orientation
annotations. It contains 2806 images with 188 282 instances.
The 1.0 version of the dataset we used consists of 15 categories:
plane, baseball diamond (BD), bridge, ground field track (GTF),
small vehicle (SV), large vehicle (LV), ship, tennis court (TC),
basketball court (BC), storage tank (ST), soccer-ball field (SBF),
roundabout (RA), harbor, swimming pool (SP), and helicopter
(HC). The official public indicator is mAP, and evaluation server
is provided.

Training and validation sets are used during the training,
and the testing set is used for testing. Images are cropped into
subimages of 1024 x 1024 with an overlap of 200 pixels. In
total, we get 15 749 patches in the training set, 5 297 patches in
the validation set, and 10 833 patches in the testing set. 10276 of
patches in the training set are with objects, and 3 281 of patches
in the validation set are with objects. During the training, we
only use patches with objects. For data augmentation, we use
two scales, 0.5 and 1.0, on training and validation sets. Three
scales, 0.5, 1.0, and 1.5, are applied to the testing set. We crop
images to subimages of 1024 x 1024 with step 500.

HRSC [61] is a dataset with the orientation annotations for
ship detection. 1070 images in this dataset are from six har-
bors. There are 436 images in the training set, 181 images in
the validation set, and 453 images in the testing set. Training
set is used during the training, and testing set is used in the
test. Since the dataset is relatively small, we use random flip,
rotation, and photometric distortions for data augmentation in
all experiments.

B. Implementation Details

We mainly use two baseline methods in the experiments,
Faster R-CNN trained on oriented bounding boxes (FR-O) [60]

(== Line IoU = SloU
0.9+ Overlapping samples
|\ Positive samples added by SloU

IoU

0.0 0.2 04 0.6 0.8 1.0
SloU

Fig. 5. Relationships between SIoU values and IoU values. Samples come
from the model of RetinaNet-H [16] with three scales based on DOTA [60].

and RetinaNet trained on oriented bounding boxes (RetinaNet-
H, “H” means horizontal anchors) [16]. The former one is a
classical two-stage detection method, and the last one is an
important one-stage algorithm.

We implement our algorithm based on the public code-
base “Aerial Detection,”! which is modified from mmdetec-
tion [62]. In all experiments, we use 1 TITAN xp GPU to train our
model. The basic learning rate is 0.00125 for one GPU and one
image per GPU. In the experiments of DOTA [60], the batch size
is 2 and the learning rate is initialized as 0.0025. For FR-O [60],
models are trained by 12 epochs, and the learning rate is dropped
tenfold at the 9th and 12th epoch. For RetinaNet-H [16], the
total number is 24 epochs, and the learning rate decreases at
the 17th and the 23th epoch. For HRSC [61], the batch size
is 1, so the learning rate is 0.00125. Models are trained by
120 epochs, and the learning rate is dropped tenfold at the
81th and 111th epoch. During the training, we use the SGD to
optimize. The momentum is 0.9, and the weight decay is 0.0001.
Unless otherwise specified, all experiments are conducted with
ResNet50 and FPN. All the hyperparameters follow the default
settings in “AerialDetection,” and our method only add one
new hyperparameter A. We simply set A = 1 unless specifically
mentioned.

C. Ablation Study

1) Results About SIoU on DOTA [60]: By applying SIoU to
FR-O [60], the performance increases 1.19%. For RetinaNet-
H [16] with three scales on each feature map, SIoU results in a
1% performance drop. We quantitatively plot the relationships
between SIoU values and IoU values of all training samples in
RetinaNet-H [16] with three scales. For ease of display, samples
with IoU values less than 0.1 are removed. As shown in Fig. 5,
the distribution of SIoU is different from IoU. If 0.5 is taken
as the boundary between positive and negative samples, SloU
adds more positive samples while retaining almost all positive
ones selected by IoU. Since enough anchors are predefined, the
number of positive samples may have been met. Positive samples
added by SIoU may have negative effects, because most of them

![Online]. Available: https://github.com/dingjiansw101/AerialDetection.git
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TABLE I
ABLATION RESULTS ON DOTA [60]
Method Metric Plane BD Bridge | GTF Y LV Ship TC BC ST SBF RA Harbor SP HC mAP
ToU 88.69 | 75.02 45.57 59.42 | 73.86 | 69.74 | 77.53 | 90.58 | 81.93 | 82.63 | 46.38 | 62.36 62.82 65.65 | 52.18 68.96
IoU with HC 88.58 | 73.30 46.27 59.70 | 73.56 | 73.21 83.99 | 90.36 | 79.09 | 82.64 | 44.46 | 64.22 63.70 66.99 | 62.20 | 70.15(+1.19)
FR-O [60] ToU with SC 88.79 | 74.90 45.36 63.97 | 77.52 | 73.62 | 84.00 | 90.78 | 78.57 | 82.39 | 42.65 | 60.29 63.89 67.52 | 5434 | 69.90(+0.94)
SIoU 88.90 | 80.35 4472 62.61 73.54 | 70.56 | 77.67 | 90.81 78.50 | 81.79 | 52.44 | 61.26 64.08 66.44 | 57.86 | 70.10(+1.14)
SloU with HC 88.93 | 79.24 47.24 62.79 | 73.84 | 73.65 | 78.08 | 90.76 | 81.48 | 81.39 | 53.77 | 62.96 64.61 67.96 | 57.38 | 70.94(+1.98)
SloU with SC 89.24 | 80.70 44.34 65.99 | 7345 | 73.55 | 83.52 | 90.80 | 81.42 | 80.57 | 55.65 | 60.03 64.87 67.49 | 63.17 | 71.65(+2.69)
ToU 87.81 80.43 42.71 66.54 | 70.53 | 58.07 | 73.73 | 90.87 | 79.37 | 71.25 | 50.43 | 62.34 62.06 66.68 | 53.32 67.74
“ToU with HC 88.72 | 81.62 4422 67.53 | 75.30 | 73.87 | 78.77 | 90.66 | 80.37 | 71.57 | 53.68 | 64.74 63.64 66.11 52.35 70.21(+2.47)
fRetinaNet-H [16] bloU with SC 88.89 | 79.53 43.11 65.71 | 76.87 | 74.04 | 83.93 | 90.65 | 84.36 | 81.50 | 50.88 | 64.19 63.92 67.18 | 51.33 | 71.07(+3.33)
SIoU 82.68 | 74.92 42.42 66.63 | 68.57 | 57.18 | 73.20 | 90.72 | 77.51 67.23 | 54.41 62.82 61.90 6523 | 55.74 66.74(-1.00)
“SIoU 87.10 | 79.95 42.61 69.98 | 72.39 | 60.94 | 74.54 | 90.86 | 81.01 69.83 | 5539 | 63.36 62.96 67.06 | 46.18 | 68.28(+0.54)
“SloU with HC | 89.05 | 79.15 43.66 70.03 | 74.67 | 73.06 | 7845 | 90.80 | 79.96 | 71.33 | 52.06 | 62.71 64.26 68.33 | 51.92 | 69.96(+2.22)
4SToU with SC | 89.27 | 78.80 40.92 68.96 | 76.79 | 73.42 | 83.01 90.67 | 82.73 | 80.96 | 52.81 62.15 63.15 67.76 | 52.93 | 70.95(+3.21)
ToU 83.70 | 70.93 44.25 60.20 | 76.24 | 6190 | 74.77 | 90.68 | 77.49 | 71.44 | 39.53 | 65.01 60.71 62.12 | 53.36 66.15
IoU with HC 82.61 71.93 43.18 62.61 7729 | 71.18 | 77.52 | 90.59 | 79.34 | 71.01 43.45 63.13 62.02 63.75 | 52.03 67.44(+1.29)
+RetinaNet-H [16] IoU with SC 85.71 | 72.66 44.47 5835 | 77.13 | 72.08 | 82.49 | 90.75 | 80.58 | 79.68 | 41.23 | 63.50 62.57 64.80 | 5491 68.73(+2.58)
SIoU 87.27 | 73.92 44.76 65.71 75.54 | 61.46 | 74.87 | 90.90 | 79.70 | 72.59 | 48.29 | 61.03 62.68 67.16 | 48.29 | 67.61(+1.46)
“SloU 88.24 | 72.10 43.42 67.53 | 77.31 65.07 | 76.25 | 90.87 | 81.40 | 70.87 | 45.46 | 62.24 61.65 67.03 | 54.94 | 68.29(+2.14)
SloU with HC 87.99 | 75.06 45.58 69.62 | 77.88 | 73.51 83.56 | 90.87 | 83.65 | 72.39 | 49.13 | 59.94 63.51 68.43 | 5220 | 70.22(+4.07)
SIoU with SC 88.81 | 75.62 45.45 69.41 78.53 | 73.09 | 83.72 | 90.89 | 80.97 | 80.44 | 47.54 | 61.99 63.56 67.12 | 53.72 | 70.72(+4.57)
SC means soft center constraint, and HC is hard center constraint.
Models marked with % are using 1 scale every feature layer to generate anchors. Three scales are applied in models with t.
In the model marked with a, A = 0.7. In the model marked with b, A = 0.6. In the model marked with ¢, A = 0.7. In the model marked with d, A = 0.3.
Models marked with e are with the modified thresholds to make sure that the number of positive and negative samples is the same as the baseline method.
are not selected by IoU and the quality is not high enough. 0.70 0.681 0.679
. 0.68 0.671 0.678 0.677 0.673 0.675
When we set the number of scales per feature map is 1, the - 0651 : 0.667 ¢ ¢6n
0.66 0
performance of the benchmark method decreases, but we get a ’ 0669 e 9671 0,668 0.660
. . 0.64 0.651 . 0.659 Y-
performance gain of 1.46% by using SIoU. We speculate that 0.62 0.643
there are two important factors affecting the performance in label % 0.60
. . . . . g 0.605
assignment, one is the metric that is used to measure the quality 0.58
of anchors, and the other is the method for selecting positive 0.56
and negative samples. Although SIoU is a suitable metric, the 8‘2‘2‘
variation in its distribution makes 0.5 an inappropriate positive 050 0.522
threshold. The negative effect of the unsuitable threshold is 01 02 03 04 05 06 07 08 09 1.0
greater than the positive action of the good metric, so the threshold
performance decreases when SloU is applied to the model of SC HC
Retin -H [1 ith thr les. To verif’ r conj I ) .
etinaNet-H [16] with three scales. To verify our conjecture, Fig. 6.  Curve of the model performance as a function of the threshold A based

we modify the thresholds in label assignment to make sure that
each experiment marked with e in Table I has the same number
of positive and negative samples as the baseline methods. As
shown in Table I, the performance of the experiment using SToU
with modified thresholds is significantly better than that without
modification, whether the setting is one scale or three scales. In
addition, perhaps a more flexible approach in label assignment
can help SIoU to be more effective.

2) Results About Center Constraint on DOTA [60]: We com-
bine the center constraint with both IoU and SIoU based on
FR-O [17], RetinaNet-H [19] with one scale and RetinaNet-
H [19] with three scales. From Table I, we learn that SC
improves the mAP by 1.55%, while HC increases by 0.84%
for FR-O [17] based on SIoU. For RetinaNet-H [19] with three
scales, we use the training set to train the model with different
A and test it on the validation set in order to find the optimal
hyperparameter A. The results are shown in Fig. 6. As shown
in Fig. 6, the performances of SC are generally better than
those of HC. The curve of SC is smoother, indicating that SC
is more robust than HC to different thresholds A. When A drops
below 0.3, the performances of HC deteriorate rapidly due to

on RetinaNet-H [16] with three scales.

the decrease in the number of positive samples matched, while
the performances of SC change relatively steadily. We believe
that this is mainly because SC can retain samples whose centers
are outside our predefined range but have relatively high overlap
with the object. The optimal value of A for SC is 0.3, while that
for HC is 0.7. To some extent, this also confirms the ability
of SC to retain high quality positive samples outside the range
of center.

We visualize some of the results, and compare our new metric
to the baseline method. From Fig. 7, we find that false positives
tend to occur near objects with large aspect ratios like harbors
and large vehicles. In the model using SIoU with SC, the number
of false positives decreases significantly.

3) Results on HRSC2016 [61]: We apply our new metric in
FR-O [60] and RetinaNet-H [16] on HRSC2016 [61]. As shown
in Table II, applying the new method to label assignment can
significantly improve the performance of both baseline methods.
Alhough IoU with HC leads to the best model regarding mAP5,
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M Plane
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Fig. 7.
from the model that assigns labels based on SIoU with SC.
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Comparisons with the baseline results of FR-O [60] on DOTA [60]. The first line is from the baseline method, and the second line shows the results

TABLE II
ABLATION RESULTS ON HRSC2016 [61]

Method Metric Backbone Size mAP50(07) | mAP50(12) | mAP75(07) | mAP75(12)
ToU ResNet-50 | 416x416 79.75 80.40 47.14 45.30
IoU with HC ResNet-50 | 416x416 88.13 91.16 61.63 59.99
RetinaNet-H [16] ToU with SC ResNet-50 | 416x416 87.95 90.77 60.37 58.84
SloU ResNet-50 | 416x416 75.73 77.78 48.03 47.62
SIoU with HC | ResNet-50 | 416x416 87.58 90.17 63.11 62.91
SloU with SC ResNet-50 | 416x416 87.80 90.30 64.19 64.17
TIoU ResNet-50 | 416x416 86.52 89.16 53.12 56.43
IoU with HC ResNet-50 | 416x416 89.14 92.89 63.53 63.44
FR-O [60] ToU with SC ResNet-50 | 416x416 88.52 91.65 62.74 62.75
SloU ResNet-50 | 416x416 87.18 90.21 59.25 57.60
SIoU with HC | ResNet-50 | 416x416 88.76 92.84 63.16 63.22
SloU with SC ResNet-50 | 416x416 88.79 92.55 63.72 65.13
FR-O [60] SIoU with SC | ResNet-101 | 800x800 89.53 96.73 75.07 77.95

All models use data augmentation and multiscale training.
The best two results are shown in bold font.

it is clear that the performance of SIoU with SC is better when
mAP75 is considered. Our method can produce detection results
of higher quality.

D. Comparison With Other Metrics

1) Results About GloU [20] on DOTA [60]: Since GloU does
not explicitly consider the center distance between two boxes, we
mainly compare it to the baseline method. As shown in Table III,
when we set three scales, the performance of the model using
GlIoU is slightly improved with unchanged thresholds. With
modified thresholds, its performance decreases a little bit. If the
model contains only one scale per feature map, its performance

changes little when using GloU. In summary, GloU focuses on
non-overlapping boxes in regression, which is not important in
label assignment. Therefore, GIoU does not have a significant
impact on the results when applied in label assignment.

2) Results About DIoU [21] and CloU [21]: The penalty
term in DIoU and ClIoU is a little bit like the “SC” we proposed,
so we compare their performances to “loU with SC.” As shown
in Table III, no matter the model is with three scales or one
scale, they do not behave better than “loU with SC.” The center
constraint we proposed consists of two terms, corresponding
to the two directions of a 2-D rotated rectangle. The penalty
term in DIoU only considers the Euclidean distance of two
centers, so it is not suitable for objects with large aspect ratios,
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TABLE III
COMPARISON BETWEEN DIFFERENT METRICS ON DOTA [60]
Method Metric Plane BD Bridge | GTF SV Lv Ship TC BC ST SBF RA Harbor SP HC mAP
ToU 87.81 | 80.43 42.71 66.54 | 70.53 | 58.07 | 73.73 | 90.87 | 79.37 | 71.25 | 5043 | 62.34 62.06 66.68 | 53.32 67.74
GloU 88.03 | 76.38 43.25 65.35 | 73.61 | 62.52 | 76.34 | 90.83 | 81.61 | 69.93 | 52.54 | 61.70 61.46 66.51 | 51.80 | 68.12(+0.38)
tRetinaNet-H [16] “GloU 86.63 | 76.22 43.75 66.53 | 64.94 | 56.65 | 73.49 | 90.76 | 81.00 | 72.07 | 53.22 | 61.06 62.05 68.48 | 53.05 67.33(-0.41)
IoU with SC | 88.89 | 79.53 43.11 65.71 | 76.87 | 74.04 | 83.93 | 90.65 | 84.36 | 81.50 | 50.88 | 64.19 63.92 67.18 | 51.33 71.07
DIoU 88.08 | 77.16 43.14 60.45 | 7291 61.53 | 74.78 | 90.82 | 80.96 | 78.23 | 50.43 | 64.37 61.49 66.06 | 48.77 67.95(-3.12)
CloU 89.09 | 77.81 4291 62.54 | 7431 | 61.42 | 75.88 | 90.87 | 80.20 | 79.78 | 53.45 | 63.23 62.28 67.74 | 50.27 68.78(-2.29)
IoU 83.70 | 70.93 44.25 60.20 | 76.24 | 61.90 | 74.77 | 90.68 | 77.49 | 71.44 | 39.53 | 65.01 60.71 62.12 | 53.36 66.15
GloU 86.07 | 70.79 43.01 60.02 | 76.96 | 66.58 | 7597 | 90.73 | 77.48 | 70.60 | 40.19 | 62.83 60.41 65.19 | 4529 66.14(-0.01)
+RetinaNet-H [16] €GloU 84.76 | 73.39 45.64 60.99 | 76.91 62.52 | 75.83 | 90.81 78.01 72.73 | 38.81 63.45 61.00 65.52 | 48.56 | 66.59(+0.44)
IoU with SC | 85.71 | 72.66 44.47 5835 | 77.13 | 72.08 | 82.49 | 90.75 | 80.58 | 79.68 | 41.23 | 63.50 62.57 64.80 | 54.91 68.73
DIoU 85.90 | 72.53 42.06 60.83 | 77.30 | 6591 | 76.05 | 90.72 | 74.65 | 80.31 | 44.92 | 61.02 59.99 64.48 | 51.39 67.20(-1.53)
CloU 85.82 | 72.23 42.48 57.07 | 7749 | 6521 | 76.52 | 90.60 | 76.98 | 80.14 | 39.26 | 63.82 60.25 65.96 | 47.49 66.75(-1.98)
Models marked with * are using 1 scale every feature layer to generate anchors. Three scales are applied in models with .
Models marked with e are with the modified thresholds to make sure that the number of positive and negative samples is the same as the baseline method.
TABLE IV
COMPARISON WITH OTHER METHODS ON DOTA [60]
Method Backbone Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor Sp HC mAP
PloU [50] DLA-34 80.9 69.7 24.1 60.2 38.3 64.4 64.8 90.9 712 70.4 46.5 37.1 57.1 61.9 64.0 60.5
R2CNN [39] ResNet101 80.94 | 65.67 35.34 67.44 | 59.92 | 5091 | 55.81 | 90.67 | 66.92 | 72.39 | 55.06 | 52.23 55.14 53.35 | 48.22 | 60.67
RRPN [42] ResNet101 88.52 | 71.20 31.66 59.30 | 51.85 | 56.19 | 57.25 | 90.81 | 72.84 | 67.38 | 56.69 | 52.84 53.08 51.94 | 53.58 | 61.01
Rol Transformer [27] ResNet101 88.64 | 78.52 43.44 75.92 | 68.81 | 73.68 | 83.59 | 90.74 | 77.27 | 81.46 | 58.39 | 53.54 62.83 5893 | 47.67 | 69.56
SCRDet [10] ResNet101 89.98 | 80.65 52.09 68.36 | 68.36 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 65.02 | 66.68 66.25 68.24 | 65.21 | 72.61
R3Det [16] ResNet152 89.49 | 81.17 50.53 66.10 | 70.92 | 78.66 | 78.21 | 90.81 85.26 | 84.23 | 61.81 | 63.77 68.16 69.83 | 67.17 | 73.74
Gliding Vertex [6] ResNet101 89.64 | 85.00 52.26 7734 | 73.01 | 73.14 | 86.82 | 90.74 | 79.02 | 86.81 | 59.55 | 70.91 72.94 70.86 | 57.32 | 75.02
OSSDet [64] ResNeXt101 | 89.49 | 81.10 51.23 71.30 | 76.80 | 76.97 | 87.27 | 90.79 | 83.43 | 84.71 | 60.55 | 64.92 71.21 70.44 | 66.00 | 75.08
FFA [46] ResNet101 90.1 82.7 54.2 752 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7 75.7
APE [65] ResNeXt101 89.96 | 83.62 53.42 76.03 74.01 77.16 | 79.45 | 90.83 | 87.15 | 84.51 67.72 | 60.33 74.61 71.84 | 65.55 75.75
CSL (FPN based) [11] ResNet152 90.25 | 85.53 54.64 75.31 70.44 | 73.51 77.62 | 90.84 | 86.15 86.69 | 69.60 | 68.04 73.83 71.10 | 68.93 | 76.17
OPLD [15] ResNet101 89.37 | 85.82 54.10 79.58 | 75.00 | 75.13 86.92 | 90.88 86.42 | 86.62 | 62.46 | 68.41 73.98 68.11 63.69 | 76.43
SIoU with SC (RetinaNet-H [16]) ResNet50 90.15 | 83.78 49.64 7742 | 78.53 | 78.43 | 86.92 | 90.79 | 8540 | 85.16 | 65.67 | 65.21 73.98 70.60 | 63.25 | 76.33
SIoU with SC (FR-O [60]) ResNet50 89.39 | 84.00 54.76 7371 | 76.22 | 78.31 | 83.73 | 90.87 | 84.96 | 87.37 | 62.38 | 67.15 73.86 69.44 | 71.98 | 76.54
In the model marked with a, A = 0.3.
TABLE V

as shown in Fig. 1(b). Furthermore, we set the distance within
a specific range to avoid punishment, which also improves the
performance.

E. Comparison With the State-of-The-Art

1) DOTA [60]: With data augmentation, we obtain compet-
itive results on DOTA [60]. As shown in Table IV, our model
stands out in categories whose objects are with dense arrange-
ments and large aspect ratios, like small vehicle (SV), ship,
and large vehicle (LV). Combined with the visualized results,
we learn that our new method helps to reduce the number of
low-quality candidate regions via center constraint, and further
reduce the results of false positive.

2) HRSC2016 [61]: We utilize data augmentation in all ex-
periments to increase data volume for FR-O [60] and RetinaNet-
H [16]. As shown in Table V, our performance is comparable
with the best method using VOC07 metric to measure, and is
better when VOC12 metric is used.

VI. CONCLUSION

In this article, we introduce a new metric named constrained-
SIoU to describe the overlap between a horizontal box and a
multi-oriented object. Compared to IoU, SIoU is a better indica-
tor of how much information a horizontal box contains about the
object. Combined with the center constraint, SIoU can be applied

COMPARISON WITH OTHER METHODS ON HRSC2016 [61]

Method mAP50(07) | mAP50(12)
Rol Transformer [27] 86.20 -
RSDet [48] 86.50 -
CenterMap [66] - 92.8
SBD [67] - 93.70
Gliding Vertex [6] 88.20 -
OPLD [15] 88.44 -
PIoU [50] 89.20 -
SLA [68] 89.51 -
S2A-Net [69] 90.17 95.01
R3Det [16] 89.26 96.01
FPN-CSL [11] 89.62 96.10
DAL [54] 89.77 -
OSSDet [64] 89.91 -
SIoU with SC (FR-O [17]) 89.53 96.73

to label assignment and help improve the model’s performance.
Our experiments show that our proposed constrained-SIoU has
positive effects in both single-stage detectors and two-stage
detectors. In the future, for one thing, we will work on the
adaptive label assignment for the assignment method we adopt
is based on the fixed thresholds. For another, we will explore the
application of SIoU to loss functions.
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