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Consistency-Aware Map Generation at Multiple
Zoom Levels Using Aerial Image
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Abstract—The multilevel tiled map service is widely used and
serves as a kind of digital infrastructure. These map tiles are usually
rendered from vector data, whose update needs to walk or drive
with professional equipment to check every point of interest. This
leads to inconvenience and expensive cost in timely updating maps.
Compared with vector data, aerial images are much easier and
cheaper to obtain. In this article, we propose a novel multilevel
map (MLM) generation framework that can automatically gener-
ate accurate and consistent maps with multiple zoom levels from
aerial images. It consists of a level-aware map generator and a
consistency-aware map generator. The level-aware map generator
is able to generate accurate initial maps with realistic details for
each zoom level. The consistency-aware map generator regards
the initial maps at each zoom level as a sequence and builds the
connection between them, so as to guarantee content consistency
between maps at different zoom levels. Furthermore, we collect a
large-scale high-quality dataset called MLM for map generation
at multiple zoom levels. Experiments on our MLM dataset show
that our method outperforms the previous state-of-the-art map
generation methods on both comprehensive quantitative metrics
and perceptual quality.

Index Terms—Aerial image, GANs, image-to-image translation,
remote sensing, semantic segmentation.

I. INTRODUCTION

ONLINE multilevel map (MLM) service (e.g., Google
Maps), as an important role in our lives, not only provides

convenience for daily travel, but also serves as an important in-
frastructure for shared bike services, delivery services, logistics
industry, transportation industry, and etc.

Since MLMs make it much easier for the users to gather carto-
graphic information effectively by switching between different
zoom levels, the tiled map service always provides maps with
multiple zoom levels. They are usually rendered from vector
data, whose update needs to walk or drive with professional
equipment to check every point of interest. Although this ensures
accuracy, it leads to expensive cost and cannot update timely
in a crisis, such as an earthquake. Compared with vector data,
aerial images are much easier and cheaper to obtain. They can be
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Fig. 1. MLM generation is at different zoom levels. (a) Aerial image. (b) and
(c) Corresponding ground truth map at the 15th and 16th levels, respectively.
(d)–(f) Results of applying the existing single-level map generation methods on
multilevel generation task. (d) Pix2PixHD. (e) SMAPGAN. (f) SelectionGAN.
It can be seen that these results are inconsistent in content, blurring, and have
severe artifacts.

collected automatically and updated timely by remote sensing
instruments, e.g., airplanes, satellites, and drones. Aerial images
are widely used for earth observation, they inherently contain
rich information about the ground surface that can be utilized
for map generation [1], [2]. Therefore, the MLMs based on aerial
images can be quickly updated even in extreme conditions, such
as earthquakes, floods, mudslides, and other natural disasters,
and provide the rescuers with important information about the
ground surface in time to save people’s lives.

Generating MLMs from aerial images can be regarded as an
image-to-image translation task [3], i.e., extracting cartographic
information from an aerial image and render it as a series of
RGB map images at different zoom levels, e.g., from (a) to (b)
and (c) in Fig. 1. Currently, there are some methods, such as
Pix2Pix [3], Pix2PixHD [4], CycleGAN [5], GeoGAN [6], and
SMAPGAN [7], that can automatically generate images in map
style from aerial images. But they do not explicitly understand
the aerial images at pixel level and only consider map generation
at a single zoom level. As shown in Fig. 1(d)–(f), these methods
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Fig. 2. Illustration of our proposed MLM generation framework. (a) Overview of our pipeline. The LAMG first generates accurate initial maps for each zoom
level, and then the CAMG takes in the sequence of initial maps at different zoom levels and builds a connection between maps at different zoom levels in order to
keep the content consistent and refine maps at each zoom level. (b) Details of level-aware map generator. (c) Details of consistency-aware map generator.

easily result in inaccurate map generation, blur, artifacts, and
severe content inconsistency between different zoom levels.
Thus, it is necessary to design a MLM generation method to
avoid these problems. Besides, there is still no specialized MLM
dataset, which should provide paired samples of aerial images
and corresponding map images at multiple zoom levels. This
hinders the development and evaluation of MLM generation
methods.

In this article, we present a novel MLM generation method
that can generate accurate and consistent MLM from aerial
images. The proposed framework consists of a level-aware
map generator (LAMG) and a consistency-aware map generator
(CAMG), as shown in Fig. 2. To generate accurate initial maps
with realistic details for each zoom level, the LAMG extracts
semantic information in aerial images pixelwisely. It learns to
generate initial maps in an adversarial way [8] and helps to keep
the topological relationship among the geographical elements.
To guarantee content consistency between the maps at different
zoom levels, the CAMG refines initial maps at each zoom level
iteratively by building the connection between them.

Furthermore, we collect a large-scale high-quality MLM
dataset. It provides 18 700 paired samples of aerial images and
corresponding maps from two representative cities (Shanghai
and Rio de Janeiro) and with four zoom levels (15, 16, 17, and
18). Experiments on our MLM dataset show that our method
outperforms the previous state-of-the-art map generation meth-
ods on both comprehensive quantitative metrics and perceptive
quality.

In summary, our main contributions are as follows.
1) We present a novel MLM generation method, which is

able to generate accurate and consistent MLMs from the
aerial images.

2) We design an LAMG and CAMG, of which the former can
generate accurate initial maps for each zoom level and the
latter can guarantee content consistency between the maps
of different zoom levels.

3) We collect a large-scale high-quality MLM dataset. To our
best knowledge, it is the first specialized dataset for MLM
generation.

II. RELATED WORK

In this section, we review the traditional cartographic process,
map generation methods, and the progress of datasets for map
generation.

A. Traditional Cartographic Process

As an effective tool for humans to explore and recognize
the world, the map has been widely involved in our daily life
for a long time. Online maps have immense influence for they
can provide a realistic view of the world to millions of web
users [9]–[11]. Their production and update are done mainly in
two steps, i.e., collecting vector data and visualizing the data in
an appropriate way.

The collection of vector data usually relies on surveying [12],
e.g., the data collectors need to walk or drive with professional
equipment to check every point of interest and collect relevant
data, which is labor-intensive and time-consuming. This process
is easily limited by weather, ground surface condition of the city,
and data collectors themselves, which may lead to inaccurate
or even impossible data collection. After the vector data is
collected or updated, a team of cartographic experts is needed
to process the raw data, solve the problems that cannot be done
automatically [13]–[16], and finally convert it into the latest map
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tiles at multiple zoom levels with professional digital tools [17],
[18]. In summary, the traditional cartographic process ensures
the accuracy of MLMs, but the high cost both in labor and time
makes it hard to update timely and limits its applications.

B. Generating Maps from Aerial Images

Aerial images have found wide applications in human life [1],
[2], [19], [20]. They inherently contain rich information about
the ground surface. Compared with vector data, aerial images are
much easier and cheaper to obtain, e.g., airplanes, satellites, and
drones are able to collect aerial images and keep them up-to-date.

Existing works, such as dense-global-residual network [21],
bias U-Net [22], and road-extractor model [23], focus on extract-
ing the road from aerial images. They are based on semantic
segmentation and can achieve decent performance, but they
are unable to generate maps. By formulating map generation
as an image-to-image translation task [3], there are also many
methods, such as Pix2Pix [3], Pix2PixHD [4], CycleGAN [5],
GeoGAN [6], and SMAPGAN [7], that can generate images in
map style from aerial images based on generative adversarial
networks [8]. These methods treat the task of map generation as
a simple image translation task, trying to generate maps from
aerial images. These methods focus on generating images with
diverse and realistic details but do not explicitly understand the
content in aerial images, which may result in inaccurate map
generation.

Besides, some researchers have presented map generation
methods (e.g., GeoGAN [6] and SMAPGAN [7]) on single zoom
level based on image-to-image translation techniques [3], [5].
Ganguli et al. [6] utilize conditional GAN [24] with reconstruc-
tion and style loss to convert aerial images to human-readable
maps while Chen et al. [7] combine the supervised and unsuper-
vised image-to-image translation methods [3], [5] to improve
the map generation quality with limited training samples. These
methods only consider generating maps on single zoom level
instead of widely used MLMs which are more effective in
practical usage, and do not consider the connection between
the maps at different zoom levels. These easily cause content
inconsistency when directly applied to MLM generation.

C. Datasets for Map Generation

The development of the map dataset is still in its early stage.
Although all online tiled map services provide tiled maps with
multiple zoom levels instead of single zoom level for better
usage, there is no specialized dataset for MLM generation.
And there seldom exist datasets [3], [25] that are related to
map generation. The dataset in [25] provides maps but has no
corresponding aerial images. The dataset in [3] only provides
paired samples of aerial images and maps at a single zoom
level. To push the development of MLM generation forward,
we collect and produce the first MLM dataset.

III. METHOD

In this section, we first formulate the problem and introduce
the motivation, and then we describe the LAMG and CAMG in

our framework. Finally, the learning details of our method are
provided.

A. Formulation and Motivation

MLM generation is a task that generates map tiles at multiple
zoom levels from an aerial image pyramid, which are obtained
from a single high-resolution aerial image by a series of 2×
downsampling that corresponds to scales of map zoom levels.
Although the map at each zoom level is different from each other
(e.g., a map at higher zoom level has higher resolution and is able
to show more roads in detail), they keep their content consistent
because they represent the same corresponding area.

In MLMs, the world map at thekth zoom level usually consists
of 2k × 2k map tiles, i.e., the number of map tiles at the kth
zoom level decreases exponentially when k lowers. Each map
tile usually has 256× 256 pixels, thus the world map at the
(k + 1)th zoom level has a double resolution of that at the kth
zoom level. In this way, the map at a higher zoom level shows
more details and the map at a lower zoom level provides wider
view.

Previous map generation methods, such as Pix2Pix [3],
Pix2PixHD [4], CycleGAN [5], GeoGAN [6], and SMAP-
GAN [7], mainly focus on generating photo-realistic images
or images in map style. They do not consider MLM generation
and fail to generate accurate and consistent MLMs. To solve
this, we propose a MLM generation framework consisting of an
LAMG and CAMG. The former generator can generate accurate
initial maps for each zoom level and the latter one can guarantee
content consistency between maps at different zoom levels. The
overview of our proposed method is illustrated in Fig. 2(a).

B. Model Structure

As shown in Fig. 2, our framework consists of two generators
LAMG and CAMG. They share the same model structure, i.e.,
a semantic module and a drawer module.

In this section, we first introduce the semantic module, and
then the details of the drawer module are described. In addition,
we also introduce the structure of the discriminator that is
utilized for adversarial learning.

1) Semantic Module: The semantic module based on
DeepLabv3+ [26] and Xception-65 [27] serves as the backbone.
Apart from its semantic segmentation results, we also take its 4×
upsampled final feature maps as the input of the drawer module
for providing more semantic information.

2) Drawer Module: We design the drawer module with a
coarse-to-fine encoder–decoder structure [4]. The drawer mod-
ule consists of a local subnetwork and a global subnetwork. The
global subnetwork focuses on the whole image and the local
subnetwork focuses on the details of the image. The structure
of the drawer module is shown in Fig. 4. We input the original
image and the 2× downsampled image to the local subnetwork
and global subnetwork, respectively, and their features are fused
by pixelwise addition. The detailed configurations of global
subnetwork and local subnetwork are tabulated in Tables I and II,
respectively.
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Fig. 3. Visualized results for each part in our pipeline. It can be seen that the accuracy and content consistency gradually improves from column (b) to column
(e). LAMG indicates the level-aware map generator and CAMG indicates the consistency-aware map generator. (a) Aerial image. (b) Drawer module. (c) Drawer
module + level ID. (d) Drawer module + level ID + semantic module (LAMG). (e) Drawer module + level ID + semantic module + CAMG. (f) Ground truth.

Fig. 4. Illustration of drawer module. “+” indicates pixelwise addition. More
details are provided in Tables I and II.

3) Discriminator: We adopt a multiscale discriminator [4] to
enhance the ability to differentiate real and synthesized maps at
different zoom levels. It consists of three discriminators, which
share the same structure, as shown in Table III. We refer to these
discriminators as D1, D2, and D3, which operate at different

image scales. D1 takes the original images as input, and D2 and
D3 take 2× and 4× downsampled images as input, respectively.
In this way, discriminators can have different receptive fields
and focus on details at different scales that benefits the MLM
generation.

C. Level-Aware Map Generator

As shown in Fig. 2(b), the LAMG consists of two modules,
i.e., the semantic module and drawer module. To ensure accu-
racy, we employ a semantic module to explicitly extract pixel-
wise semantic information from aerial images, and the drawer
module is designed for drawing maps with realistic details.

To avoid the performance degradation caused by domain gap
between maps at different zoom levels, we input level iden-
tification along with an aerial image to help the generator be
level-aware, so as to generate high-quality maps for each zoom
level. Thus, the LAMG can be represented by

yk = gφ(xk, fθ(xk), k) (1)

where xk and yk represent aerial image and initial generated
map at the kth zoom level, respectively, and gφ and fθ indicate
semantic module and drawer module of LAMG, respectively.

1) Semantic Module: To display a realistic view of the world
and correct cartographic information, the high-quality generated
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TABLE I
DETAILED CONFIGURATION OF GLOBAL SUBNETWORK IN DRAWER MODULE

Notes: Conv: convolutional layer, DeConv: deconvolutional layer, N: the number of input
channels, K: kernel size, S: stride size, P: padding size, IN: instance normalization.

TABLE II
DETAILED CONFIGURATION OF LOCAL SUBNETWORK IN DRAWER MODULE

Notes: Conv: convolutional layer, DeConv: deconvolutional layer, N: the number of input
channels, K: kernel size, S: stride size, P: padding size, IN: instance normalization.

maps should not only be images in map style but also provide
accurate semantic information (e.g., the locations of roads and
rivers). Existing single-level map generation methods [6], [7]
focus on generating images with realistic details and do not
explicitly force the model to learn and understand the content
of the input image pixelwisely, which may lead to inferior
and erroneous map generation. To better keep the topological
relationship among geographical elements and help the drawer
module to generate maps with high accuracy, we design a seman-
tic module that can learn to assign each pixel a semantic category
(e.g., road, water area, and land background) and understand the
aerial image pixelwisely. The semantic module is based on the
semantic segmentation model DeepLabv3+ [26], we choose it
for its stable performance and easy training procedure.

TABLE III
DETAILED CONFIGURATION OF DISCRIMINATOR IN MULTISCALE

DISCRIMINATOR

Notes: Conv: convolutional layer, DeConv: deconvolutional layer, K: kernel size, S: stride
size, P: padding size, IN: instance normalization.

The semantic module can provide pixelwise semantic infor-
mation whose role is similar to vector data in the traditional
cartographic process. It improves the accuracy of the generated
map and keeps the right topological relations of map elements,
as shown in Fig. 3(c) and 3(d).

2) Drawer Module: The drawer module is the basic module
of the generator. As shown in Fig. 3(b), it can learn to gen-
erate maps with realistic details independently by adversarial
learning [3], [8]. To optimize the quality of map details, it also
takes aerial images along with level identification as input [see
Fig. 3(c)]. To improve the generation accuracy, it takes feature
maps and semantic segmentation results from the semantic
module as an input and translates them to map with accurate
geographical information [see Fig. 3(d)].

Its role is similar to cartographic experts in the traditional
cartographic process. On the basis of pixelwise semantic infor-
mation of aerial images from the semantic module, the drawer
module can learn to draw a realistic map with accurate infor-
mation by taking semantic segmentation, zoom level, and aerial
image into consideration.

3) Level Identification: Compared with the single-level map
generation, MLM generation is more challenging because it has
to generate maps from aerial images for multiple zoom levels,
and keeps their content consistent. A naive solution is to learn
a mapping model for each zoom level, but it is inconvenient
and makes the training procedure complicated. Moreover, the
amount of training samples for each zoom level decreases
exponentially when the zoom level lowers, which results in
insufficient samples for the training model at a low zoom level.

To solve this problem, we utilize level identification as guid-
ance information and input it into the generator. The level
identification is R1×H×W , which simply repeats the zoom level
number k for H ×W times. It guides the generator to generate
an appropriate map for each zoom level, and all the samples
from different zoom levels can be used for training the generator
in a unified way, achieving better performance especially for
generating maps at low zoom level, e.g., the river at the 15th
level in Fig. 3(c) is clearer than that in Fig. 3(b).

D. Consistency-Aware Map Generator

LAMG can generate an appropriate and accurate initial map
for each zoom level. But due to the lack of connection between
the generated maps at different zoom levels, there may exist
content inconsistency between maps at different zoom levels,
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Fig. 5. Examples of our Multi-Level Map dataset from Shanghai. (a) Aerial
image. (b) 15th level. (c) 16th level. (d) 17th level. (e) 18th level.

e.g., as shown in Fig. 1(d) and 1(e), the generated map at the
16th zoom level shows a river while a land shows up in the same
area of generated map at the 15th zoom level.

Therefore, we employ the CAMG in our framework and build
the connection between the generated maps at different zoom
levels. As shown in Fig. 2(a), we view the initial generated maps
at K different zoom levels as sequential data {y1, y2, . . ., yK}.
The “frame” in map sequence is different in shape, i.e., the height
and width of the map at the (k + 1)th zoom level is twice the
size of the map at the kth zoom level. Considering that the higher
resolution of a map at higher zoom level is able to provide richer
information for refining initial map of each level, we optimize
the generation and refine the MLM sequence from high to low
zoom level in an iterative way as follows:

yrk = g′φ′(f ′
θ′(xk), yk, y

r
k+1) (2)

where yrk and yrk+1 are the refined maps at the kth and the (k +
1)th zoom level, and g′φ′ and f ′

θ′ indicate semantic module and
drawer module of the CAMG, respectively. Note that we regard
the initial map at highest zoom level yK as a refined map yrK
for the refinement of yK−1. The refinement defined in (2) builds
a connection between the adjacent zoom levels. By applying
it iteratively, we can build a connection across different zoom
levels to ensure their consistency, e.g., the refined map yrk−1 can
be obtained from yk and yrk+1 as follows:

yrk−1 = g′φ′(f ′
θ′(xk−1), yk−1, g

′
φ′(f ′

θ′(xk), yk, y
r
k+1)). (3)

It largely improves the accuracy of the generated map and
keeps the content consistency between different levels, as shown
in Fig. 3(e).

The structure of the CAMG is the same as the LAMG, which
also consists of a semantic module and a drawer module. The
main difference is their input, i.e., the LAMG takes an aerial
image and level identification as input, while the CAMG takes
an aerial image and initial maps from the kth and the (k + 1)th
zoom level as input, as shown in Fig. 2(c).

TABLE IV
COMPARISON WITH THE EXISTING MAP DATASETS

Notes: MLM provides larger number of samples and in more zoom levels.

Fig. 6. Examples of our Multi-Level Map dataset from Rio de Janeiro. (a)
Aerial image. (b) 15th level. (c) 16th level. (d) 17th level. (e) 18th level.

TABLE V
DETAILS OF OUR MLM DATASET

Notes: It consists of samples from Shanghai (SH) region and Rio De Janeiro (RJ)
region.

E. Learning Details

In this section, we first introduce the loss function and then
describe the implementation details. Note that the LAMG and
CAMG utilize the same loss function.

1) Losses for Semantic Module: The semantic module is
trained to learn to understand the aerial images pixelwisely, we
follow [26], [39], [40], and [41] to use pixelwise cross-entropy
loss for training. And to better adapt to hard samples, we adopt
focal loss [42] version of it

LSM =
1

H ×W

H×W∑
i=1

FL(pi, y
seg
i )

FL(pi, y
seg
i )=

{
−αt(1− pit)

γ log(pit) fy
seg
i = t

−αt p
γ
it log(1− pit) otherwise

(4)
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TABLE VI
DETAILS OF EVALUATION METRICS

Notes: Up arrow means higher is better and down arrow means lower is better.

where H and W indicate the height and width of the image,
respectively, yseg is the ground truth semantic segmentation
label, pit ∈ [0, 1] is the predicted confidence value of pixel i
for category t, and αt and γ are the hyperparameters of focal
loss [42], whose values are 1.0 and 2. The ground truth semantic
segmentation label is obtained from the real map by mapping
different colors of the map to semantic categories, e.g., blue
indicates rivers, yellow indicates roads, etc. We mainly focus
on segmenting three semantic categories, i.e., roads, water area,
and land.

2) Losses for Drawer Module: To generate high-quality
maps with realistic details, we adopt content loss, adversarial
loss, and perceptual loss for the training drawer module.

The content loss [3], [4] improves the similarity between
generated map and real map

Lcon =
1

H ×W

H×W∑
i=1

‖G(x)− ymap‖1 (5)

where ymap is ground truth map and G is the generator.
The adversarial loss [8], [24] is able to make the details of the

image more realistic:

Ladv = min
G

max
D

V (D,G)

= Ex,ymap [logD(x, ymap)]

+ Eymap [log(1−D(x,G(x)))] (6)

where D is the discriminator, G is the generator, and x and ymap

indicate the aerial image and map image. To enhance the dis-
criminator’s ability to differentiate real and synthesized maps at
different zoom level, we adopt multi-scale discriminator [4].

The perceptual loss [4], [43] is utilized to improve the per-
ceptual quality of the generated map as

Lper=

L∑
i=1

1

Ni
‖F (i)(ymap)− F (i)(G(x))‖1 (7)

where F is feature extraction network, F (i) indicates the ith
layer of feature extraction network, Ni is the number of pixels
of the corresponding feature map, and L is the number of layers.
We use a pretrained VGG model [44] as a feature extraction
network F .

To better stabilize the training procedure [4], we adopt feature-
matching loss for training. Specifically, we extract features from
multiple layers of the discriminator, and learn to match these
intermediate representations from the real and generated maps

Lfm =

L∑
i=1

1

Ni
‖D(i)(x, ymap)−D(i)(x,G(x))‖1 (8)

where D(i) means the first i layers of the discriminator D, L
means the total number of layers, and Ni denotes the number of
elements in each layer.

Thus, the total loss function for drawer module is

LDM = λconLcon + λadvLadv + λperLper + λfmLfm (9)
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TABLE VII
QUANTITATIVE RESULTS ON MULTILEVEL MAP SHANGHAI (MLM-SH)

DATASET

Notes: “Avg.” indicates results that average over 15–18 zoom levels and also shows
consistency results.

where we let λcon = λper = λfm = 10 and λadv = 1 for loss bal-
ancing.

3) Implementation Details: We first train the LAMG, then
fix it to help to optimize the CAMG. The training procedures of
the two generators are the same. The input size of paired map
tile is 256× 256.

We train the semantic module and drawer module jointly with
Adam optimizer [45]. We set the initial learning rate of the
semantic module, backbone of the semantic module, and the
drawer module to 7× 10−4, 7× 10−5, and 2× 10−4, respec-
tively, for balancing the learning of each part, and the batch size
is 4. Both generators are trained for 100 epochs on a GeForce
RTX 3090. The semantic module adopts a polynomial learning
rate decay schedule [26] while the learning rate of the drawer

TABLE VIII
QUANTITATIVE RESULTS ON MULTILEVEL MAP RIO DE JANEIRO (MLM-RJ)

DATASET

Notes: “Avg.” indicates results that average over 15–18 zoom levels and also shows
consistency results.

module is fixed for the first 50 epochs, and linearly decays to 0
for the rest 50 epochs.

IV. MULTILEVEL MAP DATASET

To develop and evaluate learning-based MLM generation
methods, a dataset consisting of paired samples of aerial images
and maps with multiple zoom levels is necessary needed. Thus,
we collect and produce a large-scale high-quality MLM dataset
for map generation at multiple zoom levels. The data comes
from Google Maps and Tianditu. It has the following distinctive
characteristics.

1) Region diversity: As shown in Figs. 5 and 6, our MLM
dataset provides data for two regions with different ge-
ographical features, i.e., Shanghai and Rio de Janeiro,
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Fig. 7. Visualized results of MLM-SH generated by our method and counterparts. Our method shows satisfactory accuracy and content consistency especially
for rivers and roads in all zoom levels. (a) Aerial image. (b) Pix2Pix. (c) Pix2PixHD. (d) CycleGAN. (e) GeoGAN. (f) SMAPGAN. (g) SPADE. (h) SelectionGAN.
(i) TSIT. (j) LPTN. (k) Ours. (l) GT.
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Fig. 8. Visualized results of MLM-RIO generated by our method and counterparts. Our method shows satisfactory accuracy and content consistency, especially
for rivers and roads in all zoom levels. (a) Aerial image. (b) Pix2Pix. (c) Pix2PixHD. (d) CycleGAN. (e) GeoGAN. (f) SMAPGAN. (g) SPADE. (h) SelectionGAN.
(i) TSIT. (j) LPTN. (k) Ours. (l) GT.
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which are the representative cities from the Northern
Hemisphere and the Southern Hemisphere. For brevity, we
indicate the subset of the samples in Shanghai as MLM-SH
and the subset of samples in Rio de Janeiro as MLM-RJ.

2) Multilevel: As shown in Table V, the MLM dataset pro-
vides paired samples in four different zoom levels, i.e.,
15, 16, 17, and 18, that cover the central region of the
two cities. The samples at zoom levels lower than 15 are
too few due to the area size and high distance per pixel
ratio, while those at zoom level higher than 19 are hard to
access due to usage limitations. All of the samples form a
complete MLM, as shown in Figs. 5 and 6.

3) Large scale: The MLM dataset has 18 700 high-quality
paired samples, i.e., 10 200 samples of Shanghai and
8500 samples of Rio de Janeiro. It is much larger than the
existing map dataset in [25] and dataset in [3], as shown
in Table IV.

4) High-quality: During data collection, we ensure that the
image pairs at different levels show the same correspond-
ing geographic area. Each map image is semantically
aligned with the corresponding aerial image.

V. EXPERIMENTS

The proposed method is systematically evaluated on our
MLM-SH and MLM-RJ datasets. We use their train set for
training and test set for evaluation. In this section, the evalu-
ation metrics are first introduced. Then, we quantitatively and
qualitatively evaluate our method. Finally, the ablation studies
are performed to analyze our proposed method.

A. Evaluation Metrics

1) Evaluation Metrics for Accuracy: To evaluate the accu-
racy and the similarity between the generated maps and real
maps for each zoom level, we use Fréchet inception distance
(FID) [28], kernel inception distance (KID) [30], kernel max-
imum mean discrepancy (KMMD) [31], and inception score
(IS) [34] as metrics. FID and KID are shown to correlate well
with the human judgment of visual quality and are often used to
evaluate the quality of samples of GANs [28], [30], KMMD is
able to identify generative or noisy images from the real images,
and IS is a popular metric for image generation quality evalua-
tion. In addition, we also adopt the classical peak signal-to-noise
ratio (PSNR) as our metric. The lower FID, KID, and KMMD
and higher IS and PSNR indicate better results. The relevant
details are shown in Table VI.

2) Evaluation Metrics for Consistency: To evaluate the con-
tent consistency in a simple way, we compare the generated maps
with real maps at each zoom level. Considering real maps keep
their content consistent at different zoom levels, if the generated
maps at all zoom levels are accurate and close to the real maps,
they should also keep good content consistency, thus we evaluate
the consistency by

Metricc =
1

K

i=K∑
i=1

Metric(yi, y
map
i ) (10)

TABLE IX
QUANTITATIVE RESULTS OF DIFFERENT METHODS TRAINING ON PIX2PIX

DATASET AND MLM-SH DATASET

Notes: “Avg.” indicates results that average over 15–18 zoom levels and also shows
consistency results.

where yi and ymap
i are the generated map and real map at the

ith zoom level, respectively, Metric indicates the metric we use
for accuracy evaluation, i.e., FID, KID, KMMD, IS, and PSNR,
and Metricc is the result of consistency. In this way, the result
of consistency can also show the overall accuracy.

B. Quantitative and Qualitative Evaluation

We compare our method with several previous state-of-the-art
methods for single-level map generation including Pix2Pix [3],
Pix2PixHD [4], CycleGAN [5], GeoGAN [6], SMAPGAN [7],
SPADE [35], SelectionGAN [36], TSIT [37], and LPTN [38].
As for the MLM generation method, there is still no relevant
method for comparison. We note that all methods are trained
with the same setting on the training set of the MLM dataset and
evaluated on the testing set for fairness. We only need to crop the
aerial images into 256× 256 patches as inputs, and do not need
other preprocessing for the training or testing. The quantitative
and qualitative results show that our method outperforms the
prior works on the MLM dataset.

As illustrated in Tables VII and VIII, our method outperforms
all counterparts by a large margin on average results and most
single-level results of FID, KID, KMMD, and IS metrics. Note
that IS uses an ImageNet pretrained InceptionV3 [29] to calcu-
late the realism of the generated images but does not compare the
generated map images with the ground truth map images [34],
so its result is not as reliable as FID, KID, and KMMD. Nev-
ertheless, we provide the IS result due to its popularity and
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TABLE X
RESULTS OF LAMG AND CAMG ON MLM-SH DATASET FOR ABLATION STUDY

for a more comprehensive comparison. As for PSNR, we also
achieve better results than including Pix2Pix [3], Pix2PixHD [4],
CycleGAN [5], SPADE [35], SelectionGAN [36], TSIT [37],
and LPTN [38]. Although GeoGAN [6] and SMAPGAN [7]
achieve similar or better results than our method in PSNR, their
visual quality is much worse than ours, as shown in Figs. 7 and 8.
The reason may be that GeoGAN [6] and SMAPGAN [7] tend to
minimize the mean square error (MSE), but the ability of MSE
(and PSNR) to capture perceptually relevant differences (e.g.,
high texture detail) is very limited as they are defined based on
the pixelwise image differences [46]–[48]. A series of research
works have shown that a higher PSNR does not necessarily
reflect perceptually better visual results [49].

The Figs. 7 and 8 show that the visual quality of the proposed
method outperforms all counterparts in two aspects. First, the se-
mantic module explicitly provides the pixelwise understanding
of the input aerial images, so our method is able to generate clear
and accurate maps that are similar to the real maps, while the vi-
sual results of the counterparts tend to be blurred and inaccurate
at each zoom level. Second, our method largely keeps the content
consistency across all of the zoom levels with the help of the
CAMG, whereas the MLM generated by the counterparts suffer
from severe content inconsistency. Nonetheless, our method still
has room for improvement to distinguish different types of roads
(indicated as white, yellow, and orange in map images). These
roads have the same semantic features and look very similar in
aerial images, but they need to draw in different colors, which
makes it very challenging.

These results show that the proposed method outperforms all
counterparts on accuracy and consistency by a large margin,
quantitatively and qualitatively in MLM generation task, and
demonstrate the effectiveness of the proposed method.

C. Ablation Study

We perform the ablation studies on MLM-SH for evaluating
the effectiveness of each part in our method. Considering that
the drawer module is the basic module of the generator and the
semantic module cannot generate maps independently, we take
the performance of the drawer module as a baseline and evaluate
the effectiveness of level identification, semantic module, and
CAMG.

1) Level Identification: Level identification provides the in-
formation of zoom level, which is helpful for the generator
to optimize the output map at each zoom level. As shown
in Table X, it leads to improvements on FID, KID, KMMD,
and IS metrics. The accuracy of the generated maps with level

identification is better than the baseline in Fig. 3(c) (e.g., the
river in the 15th zoom level is more clear).

2) Semantic Module: The semantic module is designed to
provide pixelwise understanding of aerial images and semantic
information so as to keep the topological relationship among
the geographical elements. It can be seen in Table X that
the semantic module largely improves FID, KID, KMMD,
and IS results. Fig. 3(d) shows that the semantic module in-
creases the accuracy of the generated maps, especially for
lower zoom levels. This shows the effectiveness of the semantic
module.

3) Consistency-Aware Map Generator: CAMG cannot only
build the connection between maps at different zoom levels, but
also repair and refine the initial generated map with the infor-
mation provided by the maps at higher zoom levels. After we
employ the CAMG, the overall accuracy and content consistency
of the generated maps are largely improved, as shown in Table X
and Fig. 3(e).

4) Dataset for Multilevel Map Generation: In order to
demonstrate the effectiveness of our dataset for MLM genera-
tion, we perform a series of experiments with our MLM dataset
and an aerial-to-map dataset provided by Pix2Pix [3]. The
Pix2Pix dataset [3] is a well-known high-quality aerial-to-map
dataset, which validates the feasibility of translating the aerial
images to single-level maps.

For efficiency, we choose TSIT [37], SelectionGAN [36], and
our LAMG for experiments. The reason why LAMG was chosen
instead of our entire model is that the Pix2pix dataset does not
include multilevel data and cannot be used to train our entire
model. For fairness, we train these models on the Pix2pix dataset
and the MLM-SH dataset, respectively, and we evaluate them
on the MLM-RJ dataset. Note that the maps in MLM-SH and
MLM-RJ have a very different style (i.e., domain gap), as shown
in Figs. 5 and 6. Therefore, the MLM-SH, MLM-RJ, and Pix2Pix
dataset [3] can be regarded as three independent datasets.

As shown in Table IX, the models trained on the MLM-
SH dataset achieve the best results on most metrics at each
level. These results show that our dataset is effective and has
a better potential for MLM generation task, whereas the ex-
isting single-level map dataset cannot handle the needs of this
task.

VI. CONCLUSION

In this article, we propose a novel method for MLM generation
from aerial images. By understanding aerial images pixelwisely
and building connections between the maps at different zoom
levels, it cannot only generate accurate maps for each zoom
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level, but also keep the content consistency between the maps
at different zoom levels. The quantitative and qualitative results
both show that our method achieves the best performance com-
pared with the previous state-of-the-art map generation methods.
In addition, we collect and produce a large-scale high-quality
dataset called MLM. The MLM dataset provides 18 700 samples
of aerial images and maps from two representative cities in four
zoom levels. It is able to serve as a benchmark and support the
future research of MLM generation.

In the future, we plan to collect and produce a MLM dataset
with a larger scale, more cities, and more zoom levels. Con-
sidering that the development of MLM generation is still in its
early stage, it is worth investigating the better model structure,
loss function, and evaluation metric specially designed for this
task. We hope our dataset and preliminary work can serve as a
foundation and open new chances for future research.
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