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Dynamic Negative Sampling Autoencoder for
Hyperspectral Anomaly Detection
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Abstract—Hyperspectral anomaly detection (HAD) aims at de-
tecting the anomalies without any prerequisite information, which
gains lots of attention in recent years. Most of existing detectors
locate the anomalies by eliminating the background. The back-
ground is usually reconstructed by utilizing only the global and
local homogenous attribute, no matter the matrix decomposition-
based or the deep learning-based methods. In this article, a dynamic
negative sampling autoencoder is proposed for the hyperspectral
anomaly detection (DNA-HAD). Some pixels are randomly selected
and altered as negative samples. Both the rest original pixels and
the altered negative samples are sent into the network. An adaptive
adjusted loss function is designed to suppress the reconstruction
error for the original pixels, and to enlarge the error for the
negative samples. Meanwhile, skip connection is designed to ensure
features at both shallow levels and deep levels being utilized for
the reconstructing process. In this way, by importing some negative
samples in the reconstructing process, the proposed DNA-HAD is
not only robust to reconstruct the background but also sensitive
to detect the anomalies. Experiments on six hyperspectral imagery
which are captured by different sensors have demonstrated the
effectiveness of the proposed method.

Index Terms—Anomaly detection, autoencoder (AE),
hyperspectral image, negative sampling.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) with hundreds of spec-
tral bands can intuitively be represented as a 3-D data

cube, including two spatial dimensions and one spectral dimen-
sion [1]. The spectral dimension of the HSI usually ranges from
the visible to the near-infrared wavelength by a step of less than
10 nm. The rich and detailed spectral information is the key for
accurate identification of the subtle difference between different
objects [2], [3].

With this spectral discriminative property, HSI has been
widely utilized in many applications, including target detec-
tion [4], [5], classification [6], change detection [7], and the
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others [8], [9]. Hyperspectral target detection can be viewed
as a binary classification problem which determines each pixel
in the spatial domain as background or target. According to
whether signature information of the target is known, the object
detection can be classified into the target detection with prior
information [10], [11] and the anomaly detection without prior
information [12], [13]. A weakly supervised low rank represen-
tation is designed to convert the deep learning-based anomaly
detection into a convex low rankness representation optimization
problem [14]. The weakly supervised back estimation model is
more flexible than supervised manner, and more robust than the
unsupervised manner. To deal with the challenges in separating
the background and the anomaly, a class saliency map extraction
algorithm is utilized to obtain pseudobackground and anomaly
samples for adversarial training [15]. In addition, a discrimi-
nator is induced to make the encoded representation resemble
Gaussian distribution.

In reality, it is often difficult or even impossible to access the
spectral information of the targets. In this way, the unsupervised
hyperspectral anomaly detection (HAD) attracts much attention
of researchers for its practicability. As to the anomalies without
any prerequisite information, they have not been exactly defined,
and usually refers to the pixels those are obviously different from
the spectrum of the surrounding background and appear with a
small probability. Specifically, according to [16], there are four
features suggested to characterize anomalies, as follows.

1) There is no prior information about neither the back-
grounds nor the anomalies.

2) The anomalies occur with a low probability.
3) The anomalies exhibit insignificance in spectral statistics.
4) The anomalies are with small size compared to the back-

grounds.
In this way, a lot of works have been proposed according

to these four features, which can be roughly divided into two
categories (RGAE) [17].

The first category is the distance-based detectors. This kind of
methods usually suppose that, the distribution of the background
is simulated via some typical distribution, such as the Gaussian
distribution, the mixture of Gaussian distribution or some others.
Every pixel in the spatial domain is measured to evaluate its
derivation from the background. The derivation denotes the
tendency of it to be the anomaly. The classical global Reed Xiaoli
detector (Global-RX) is the typical representor of this kind of
detectors [18]. They assume the whole background follows a
Gaussian distribution, which is consistent to the aforementioned
third feature of the anomalies. Once the covariance matrix and
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mean vector of the scene are calculated, the probability density
function of the background can be estimated. In this way, all the
pixels are measured by their derivations from the distribution
of the background, and the pixels far from the background
distribution are supposed to be anomalies.

Inspired by the RX detector, many other methods have been
proposed to make some improvements over the RX detector.
Some works aim at formulating a more accurate distribution for
the background, such as the local RX detector [19], the weighted
RX detector [20], the subspace RX detector [21], kernel RX [22],
and some other detectors [23], [24]. Meanwhile, some works
mainly focus on enhancing the spatial discrimination ability of
the input HSI. They preprocess the original HSI to highlight the
anomalies, and further utilize the RX detector to make a final
detection. Considering the superiority of the fractional Fourier
transform in handling the nonstationary noise, it is employed to
obtain features in an intermediate domain. The discrimination
between the anomalies and backgrounds in the fractional domain
is enhanced, and the RX detector is applied to locate the anoma-
lies (FrFT-RX) [25]. Considering the noise during the imagery
process, local gradient profiles of the probable anomalies have
been transformed, and to enhance the spatial information of the
HSI. The enhanced HSI is finally detected by the RX detector
(LGG-RX) [26]. In ref. [27], the anomalies are detected with
the background following a gaussian distribution. Two adaptive
detectors are proposed based on the generalized likelihood ratio
test (GLRT) design procedure and ad hoc modification of it.
Demonstration has shown that the one step GLRT is equivalent
to the two-step GLRT (2S-GLRT), but the 2S-GLRT consumes
a less computational complexity.

The second category is the reconstruction-based method.
Considering that the original HSI can be viewed as a combina-
tion of the backgrounds and the anomalies, many methods detect
the anomalies by reconstructing the background. For this kind
of methods, accurate reconstructing the background is important
to locate the anomalies. Both the matrix decomposition-based
detectors and most of the deep learning-based methods belong
to this category.

For the matrix decomposition-based detectors, the most com-
mon tools for reconstructing the background including the low
rankness and the sparse decomposition [28]. For the HSIs,
highly correlated spatial and spectral information makes the
low-rankness of the HSIs [29]. The anomalies are sparse
due to the aforementioned second and the fourth feature of
them, which can be formulated as a low-rank and sparse de-
composition (LRaSMD) problem [30]. The classical GoDec
algorithm is usually adopted to solve for the optimal vari-
ables [31]. Inspired by the LRaSMD, many other detectors
have been proposed by importing some other more effective
constraints, such as the graph and total variation constraints to
suppress the noises and to preserve the local structure of the
HSIs (GTVLRR) [32]. A spatial constraint was incorporated to
smooth the coefficients, which are based on single or multiple lo-
cal windows and the low-rank representation sum-to-one model
(SLW_LRRSTO/MLW_LRRSTO) [33]. Meanwhile, to avoid
the large computational complexity caused by the redundant

dictionary atoms, the initial dictionary was constructed via a ran-
dom selection method. By formulating the sparse component as a
mixture of Gaussian noises (LSDM-MoG) in the reconstructing
process, the anomalies can be detected more accurately [34].

In contrast, collaborative representation detector (CRD) as-
sumes that collaboration between dictionary atoms is more
important than competition in the case of small samples, and
it allows all atoms in a dictionary to participate in linear rep-
resentation to obtain better performance [35]. CRD has rapidly
attracted a lot of attention because it is simple and efficient.
However, its dictionary construction is also implemented via a
dual window, which does not take account for the pollution of
abnormal pixels. An improved outlier removal anomaly detector
based on CRD (CRDBPSW) has been proposed that incorpo-
rates a background purification framework to automatic remove
the outlier. It avoids the heterogeneous pixels being involved
in the background reconstruction process, and achieves a more
appealing detection performance [36].

In addition, because of the 3-D characteristics of the HSIs,
the three-order tensors are also utilized to reconstruct the back-
ground HSI [37]. The tensor decomposition-based detector
(TenB) is applied to eliminate the background, and highlights the
anomalies. To be specific, the TenB abandons the first principal
component in the three dimensions, a process to eliminate the
background [38]. Considering that the mislocating anomalies
usually happen for the pixels with comparative large but not the
largest responses, the tensor completion-based detector sets a
comparatively strict threshold for the background [39]. In this
way, most of the selected backgrounds are correctly selected, and
can be utilized to reconstruct the entire background and to detect
the anomalies. Considering the group sparse prior in the HSI,
a prior-based tensor approximation detector is proposed, which
combines the low-rankness, sparsity and piecewise smoothness
with the advantages of the tensor representation [40].

Motivated by the development of the deep learning in im-
age processing, it has also been extensively applied to the
HSI processing. When it comes to the HAD with no prior
information about the anomalies, the autoencoders (AEs) [41],
[42] and generative adversarial networks (GANs) are widely
employed [43]. The basic idea is that the trained AEs and GANs
act as the feature extractors, which can accurately preserve the
main feature of the input HSIs [44]. In this way, the background
can be accurately reconstructed via the network, while the
anomalies cannot be. Residual between the original pixel and
the reconstructed pixel can directly be regarded as the abnormal
level. A robust graph AE detector is proposed by embedding a
super-pixel segmentation-based graph regularization term in the
AE, which preserves the geometric structure in reconstructing
the background [17]. To avoid the manual parameter setting in
the training process, an autonomous HAD (autoAD) method is
proposed by utilizing a fully convolutional AE with adaptive-
adjusted loss function [45]. The potential anomalies have been
allocated smaller weight during the training process. For most
of the GAN based detectors, the AEs usually act as generators;
discriminators are added to evaluate the difference between the
real pixel and the generated pixel [46].
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In this article, a dynamic negative-sampling AE is proposed
for hyperspectral anomaly detection (DNA-HAD). There are
three modules involved in the network, including generation
of the negative samples, feature extraction via the AE, and the
adaptive-adjusted loss back propagation. To be specific, some
pixels in the scene are first randomly selected and altered as
negative samples via a fixed ratio. The HSIs with already known
negative samples are sent into the AE with skip connections. Skip
connection in the network is designed to utilize features at both
shallow levels and deep levels for the reconstructing. In addition,
the adaptive-adjusted loss function is formulated to suppress the
reconstruction error for the background pixels, and to enhance
the discrimination ability for the altered negative samples. In
this way, the network is more sensitive to the abnormal anomaly
pixels, and can achieve a more precise detection accuracy.

The main contributions of this article can be summarized as
follows.

1) Dynamic negative-sampling is used to improve the sensi-
tivity of the proposed detector for the anomalies, where
fixed percentage of pixels are randomly selected and al-
tered as negative samples. These negative samples are
supposed to be highlighted by the AEs, which can be
treated as some manually made anomalies.

2) To enhance the robustness of the network in dealing with
the negative samples, an adaptive-adjusted loss function is
designed to suppress the negative samples and to highlight
the positive samples. Meanwhile, skip connections are
utilized to make a combination between the features at
both deep and shallow levels. In this way, the network is
more sensitive to the pixels which are severally different
from the background, and can achieve a more precise
detection accuracy.

3) All the parameters are fixed to reconstruct the background.
Detection map is also automatically generated by sepa-
rating the background from the original HSI. No prepro-
cessing or postprocessing is involved in the reconstruction
process, making the detection process flexible.

The rest of this article is organized as follows. Detailed
description of the proposed method is in Section II. Experimental
setup and data analysis have been elaborated in Section III.
Finally, Section IV concludes the article.

II. PROPOSED METHOD

In this article, an autonomous dynamic negative-sampling AE
is proposed for hyperspectral anomaly detection. The flowchart
of the DNA-HAD is provided in Fig. 1, in which the left branches
and the right branches of the network denote the encoder and
the decoder, respectively. Some pixels are first randomly selected
from the original scene and altered as the negative samples which
follow the gaussian distribution. The altered HSI is sent into an
AE with skip connections. In this way, the entire background
can be reconstructed. The negative samples are suppressed via
the adaptive-adjusted loss function, making the network more
sensitive to the spectrally different pixels. The final detection
map is achieved by eliminating the background from the original
HSI.

There are three main modules in the proposed DNA-HAD,
including generation of the negative samples, reconstruction of
the background via AE with skip connections, and the adaptive-
adjusted loss function to enhance the sensitivity of the network
for the spectrally different pixels. Details of these three modules
are described as follows.

A. Dynamic Generation of the Negative Samples

Different from the target detection, there is no prior infor-
mation during the anomaly detection. The anomalies refer to
the pixels those are spectrally different from the background. In
this way, some pixels in the scene have been randomly selected
and altered via a Gaussian distribution. These altered pixels can
be viewed as some already known man-made “anomalies,” and
act as the negative samples for the training process, making
the network more sensitive to the spectrally different pixels.
Suppose the original HSI as H ∈ Rw×h×b, the ratio of the
selection is r. The number of the altered pixels can be calculated
as Na = floor(w ∗ h ∗ r). Na locations have been randomly
selected from the whole scene. Reflectance at the Na locations
are altered via a Gaussian distribution. The generation of the
input Ĥ can be denoted as

Ĥ = frand(H). (1)

Suppose all the locations except the Na altered ones come into
the set S, the pixels of Ĥ and H which belong to the S set are
the same.

B. Background Reconstruction via AE With Skip Connections

The HSI can be viewed as a combination of the background
and the anomalies. In this way, accurate reconstruction of the
background is crucial for the detection [47]. In this article, the
HSIs with randomly altered negative samples have been sent into
the AE with skip connections. It should be noted that the network
mainly contains a chain of convolutional layers and symmetric
deconvolutional layers, which is demonstrated in Fig. 1. The
left branch denotes the encoder, and contains four “M” modules.
There are three main submodules in each M module, which are 1)
the convolutional layers; 2) the leaky rectified linear unit (leaky
Relu) layer to enhance the nonlinearity; and 3) the Residual
block (ResB). The ResB can preserve the original information
and make the network deeper [48]. The M modules can be
viewed as the feature extractor, which aims at preserving the
main components of the scene and eliminating the abnormal
information. The right branch represents the decoder, and con-
tains four corresponding “DM” modules. There are also three
submodules in each DM module, including the deconvolutional
layer, the batch normalization layer, and the Relu layer.

The details of the convolutional layers in the four M modules
are listed in Table I, whose kernel sizes are 3, 4, 7, and 3. It
is noted that there are two convolutional layers in each ResB
of the M module. Their input channel and output channel are
the same as the output channel of its previous convolutional
layer. The kernel sizes are fixed at 3× 3.Corresponding for the
deconvolutional layers in the four DM modules are listed in
Table II.
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Fig. 1. Network architecture of the proposed DNA-HAD.

TABLE I
DETAILS OF THE FOUR M MODULES

TABLE II
DETAILS OF THE FOUR DM MODULES

Combination between the convolution layers and decon-
volution layers was first proved to be efficient for semantic
segmentation, such as the classical Unet for medical image
segmentation [49]. In the proposed method, the M module
which mainly consists of the convolutional operations, and

the DM module which mainly consists of deconvolutional op-
eration are concatenated. The concatenated features are sent
into the ResB for better information extraction. There are two
main advantages of this skip connections between the M mod-
ule and the DM module. First, as the network goes deeper,
there are more image details lost, making the deconvolution
more difficult. Connections between the convolution layers at
the shallow level and the deconvolution layers at the deep level
ensure that more information is utilized for recovering the scene.
Second, skip connections also provide a way for the gradient
being back-propagated to the bottom layers. This operation
makes the training process easier.

It is noted that no pooling layers are utilized in the net-
work. This is because of that pooling layers usually focus
on extracting the low-level features of the input by discard-
ing useful image details. This is different from the aim of
proposed method in reconstructing the background. During
reconstructing the background, it is of great significance to
eliminate the low-level noises while keeping the image de-
tails. Skip connections are connected symmetrically between
convolutional layers and deconvolutional layers, to make a
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TABLE III
OPTIMAL PARAMETERS OF VARIOUS DETECTORS IN DIFFERENT DATASETS

Fig. 2. Different percentages of the negative samples and the corresponding
average AUCs.

Fig. 3. Different λ and the corresponding average AUCs.

combination between the low-level features and the high-level
features.

The final concatenation between the input of the M0 and
the output of the DM0 is further sent into a M module, which
is shown in right bottom of the Fig. 1. This operation makes
a further extraction of the input HSI and the deep extracted
features, and obtains an image with the same size of the input
HSI. The obtained output HSI is referred as the reconstructed
background HSI.

C. Adaptive-Adjusted Loss Function

During the training process, the reconstruction error of the
original pixels in the scene is supposed to decrease. On the con-
trary, the reconstruction error of the dynamic negative samples is
expected to increase. Reconstruction errors of the original pixels
and negative samples are expected to follow different trends. In
the generation process of the negative samples, two variables
have been employed to mark the backgrounds and the altered
samples, respectively. These two matrices are utilized to control

the samples involved in the training process. Suppose the matrix
utilized for marking the background as W1, the matrix utilized
for marking the altered negative samples can be represented as
W0. The adding result between W1 and W0 is a matrix of unit
elements. In this way, the reconstruction error of the original
positive pixels can be expressed as

loss1 = ||W1. ∗ Ĥ −W1. ∗ H̃||2. (2)

H̃ is the output of the network, and loss1 is the error for the
original positive pixels. The reconstruction error of the altered
samples can be expressed as

loss2 = ||W2. ∗ Ĥ −W2. ∗ H̃||2. (3)

loss2 is the error for the negative-sampling pixels. During the
training process, the loss1 is supposed to decrease, and the loss2
is expected to increase. To make a unification of both the loss1
and loss2, the final loss function for the network is defined as

loss = loss1− lambda ∗ loss2. (4)

lambda is a positive variable which controls the loss2 to follow
an increasing tendency in the training process. Once every
iteration finished, there is a background being reconstructed.
The corresponding loss is calculated via the adaptive-adjusted
loss function eq. 4. The loss is then fed backward, and makes an
update of all the parameters in the network via the typical Adam
optimizer.

III. EXPERIMENTAL SETUP AND DATA ANALYSIS

To validate the effectiveness of the proposed DNA-HAD,
experiments have been conducted on six real HSIs with different
spatial resolutions. These HSIs are captured by three different
sensors. Meanwhile, both the experimental setup and the detec-
tion results are also introduced in the section. All the experiments
are conducted on an Intel Core i5-8400 CPU with 16 GM of
RAM, Geforce 1060.

A. Datasets

This article employs six HSIs which are captured by three
different sensors. The detailed descriptions of these datasets are
shown as follows.

SanDiego: This dataset was collected by the airborne visible/
infrared imaging spectrometer (AVIRIS) sensor, which partly
describes the different areas of the San Diego airport, CA, USA.
The spatial resolution of this image is 3.5 meters per pixel. There
are 224 spectral bands in the wavelength ranging from 370 to
2510 nm. Once removing the bands that are corresponding to
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Fig. 4. Visual detection maps of the SanDiego achieved by different detectors.

TABLE IV
ABLATION EXPERIMENTS OF THE MODULES IN THE DNA-HAD

Fig. 5. ROC curves of the SanDiego achieved by different detectors.

the water absorption region, low-signal noise ratio (SNR), and
bad bands, there are 189 bands are remaining. The spatial size is
100× 100. Three aircrafts are marked as the anomalies, which
consist of 134 pixels, respectively.

HYDICE: This dataset was collected by the hyperspectral
digital imagery collection experiment (HYDICE) sensor, which
describes a suburban residential area of Michigan, USA. The
background landcovers types include the soil, parking lot, water,
and road. Ten man-made vehicles are marked as anomalies with
a total number of 17 pixels. This dataset is also collected ranging
from the visible 400 nm to the near-infrared 2500 nm. 162
spectral bands are retained for the detection. The spatial size of

this dataset is 80× 100, whose spatial resolution is 1.56 meters
per pixel.

Airport-1 and Airport-2: These two datasets were also cap-
tured by the AVIRIS sensor on 11/9/2011. Spatial resolution of
these two HSIs is 7.1 meters per pixel. Airplanes in the scene are
marked as anomalies, whose number is 144 pixels and 87 pixels.
Both HSIs are captured manually extracted from large images
downloaded from the AVIRIS website. Regions with a spatial
size of 100× 100 are utilized for the experiment [50].

Beach-4: This dataset was collected by the reflective optics
system imaging spectrometer (ROSIS) sensor, which mainly
depicts a bridge in the Pavia Center. The background includes
the bridge, river, bare soil, and buildings. The vehicles on the
bridge are marked as anomalies, including 68 pixels. There are
150× 150 pixels in the spatial domain, whose spatial resolution
is 1.3 meters per pixel.

Urban-2: This HSI captured by the AVIRIS sensor on 29 Au-
gust 2010. It depicts the Texas coast, in which the buildings are
marked as the anomalies. The spatial resolution is 17.2 meters
per pixel, which is the coarsest among all the experimental HSIs.

B. Experimental Setup

In order to validate the performance of proposed method,
the most widely used metrics receiver operating characteristics
(ROC) curves and the area under the curve (AUC) are employed
as the quantitatively metrics [51]. Meanwhile, the qualitative
detection maps via different detectors are exhibited to visually
distinguish the detection results.

To make a comprehensive evaluation of the proposed method,
there are seven competitors employed for the comparison,
including three statistical-based methods, two representation-
based detectors, and two deep learning-based detector. The three
statical-based methods include the Global-RX, the FrFE-RX,
and the 2S-GLRT. The representation-based methods are the
GTVLRR and the LSDM-MoG. The deep-learning based meth-
ods are the RGAE and the Auto-AD. For Global-RX, there are no
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Fig. 6. Visual detection maps of the HYDICE achieved by different detectors.

TABLE V
AUC VALUES OF THE SIX HSIS ACHIEVED BY DIFFERENT DETECTORS

Fig. 7. ROC curves of the HYDICE achieved by different detectors.

parameters to be adjusted. For the FrFT-RX, the optimal order is
autodetermined, except for the SanDiego and the beach-4. The
autodetermined orders correspond to dissatisfactory detection
accuracies for these two HSIs. Hence, we have iterated the
optimal order from 0.1 to 1.5 by a step of 0.1 to find the optimal
orders for these two HSIs. For the GTVLRR, there are several
parameters to be determined. According to the description in
the corresponding paper, the λ and β in the GTVLRR model
are empirically set as 0.5 and 0.2. the tradeoff parameter is fixed
as 0.05. The number of nearest neighbors is 10, and the scalar
parameter is set as 1. 20 pixels are selected from each cluster to
ensure sufficient diversity of the spectral signature. The number
of clusters M is iterated from 10 to 20 by a step of 5 to find

the optimal detection accuracy. For the LSDM-MoG, there are
two variables to be determined, including the initial rank and
the initial number of mixture Gaussian noise. According to the
descriptions in the paper, experiments have been conducted by
iterating the initial rank from 10 to 100 with an interval 10,
and the initial number of mixture Gaussian noise K ranging
from 1 to 10. For the 2S-GLRT, there is a double concentric
sliding window employed. There is a outer window and an
inner window whose size need to determined. According to the
paper, the outer window size varies from 5 to 25 by a step of
2, and the inner size ranges from 3 to 15. For the RGAE, it
embeds a super pixel segmentation-based graph regularization
term into the AE to preserve the geometric structure and the local
spatial consistency. There are three parameters to be adjusted,
including tradeoff parameter λ, the number of super pixels, and
the dimension of hidden layer. As described in the paper, the λ

is ranging from {10−4, 10−3, 10−2, 10−1}. The number of super
pixels is set to {50, 100, 150, 300, 500}. The dimension of the
hidden layer is set to {20, 40, 60, 80, 100, 120, 140, 160}. Itera-
tions have been done to find the optimal AUCs. For the Auto-AD,
it is an autonomous HAD detector, and all the parameters are
empirically set and fixed. There are no parameters to be adjusted.

Corresponding optimal parameters for different detectors
have been listed in Table III.

C. Parameter Setting

Experiments have been conducted to evaluate the parameter
sensitivity of percentage of the negative-sampling. It is noted
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Fig. 8. Visual detection maps of the airport-1 achieved by different detectors.

Fig. 9. ROC curves of the airport-1 achieved by different detectors.

that the anomalies usually refer to the pixels which occupy for
a small amount of the total pixels, such as the 1.34% of the
SanDiego, and the percentage of the negative sampling is ranged
from 1% to 5% by a step of 1%. Once the optimal percentage is
determined, the weighting parameter between the background
error and the negative-sampling error is to be determined, which
ranges from 0.1 to 0.5 by a step of 0.1.

Impact of the percentage on the detection accuracy has been
plotted in Fig. 2. The x axis denotes the percentage of the negative
sampling. The y axis represents the average AUC of the 6 test
HSIs. Seen from the average AUC value, it gradually increases as
the percentage grows at the first stage, and becomes the optimal
when p = 3%. In this way, the percentage is fixed as 3%.

Once the percentage p is determined, the weighting parameter
λ is ranged to find the optimal one. Corresponding values have
been listed in Fig. 3. It is seen that the DNA-HAD with the
adaptive-adjusted loss function always outperforms the DNA-
HAD whose λ is 0, which demonstrates the effectiveness of
the loss function. Meanwhile, the proposed method achieves the
optimal performance when λ is 0.1. In this way, λ is fixed as
0.1 in the experiments.

The other parameters, including the maximum iteration num-
ber, the negative slope of the leaky Relu, and the eps of the BN
layer are set as 1000, 0.2, and 0.8, respectively.

D. Ablation Experiment

Experiments have been conducted to illustrate the effec-
tiveness of each module in the proposed method, including
dynamic sampling of the negative samples, designation of the
loss function, and skip connections between the encoder and the
decoder. The corresponding average AUC of the six HSIs have
been listed in Table IV. Experiments have been first conducted
on the network without skipping connections and the negative-
sampling module. Because of there is no negative-sampling,
the adaptive-adjusted loss function is the same as the normal
loss function. In this way, the DNA-HAD degenerates into a
traditional AE, just with four M modules as the encoder and
another four DM modules as the decoder. The corresponding
average AUC is listed in the first row in Table IV.

The second row depicts the performance of the network in
which skip connections are made between the M modules of
the encoder and the DM modules of the decoder. But there is
no negative-sampling involved, and no adaptive-adjusted loss
function is set. Comparison between the first two rows has
demonstrated the effectiveness of the skip connection. Con-
catenation between the lower feature at the encoder and the
deeper feature at the decoder is benefit for reconstructing the
background.

The third row represents the situation that negative sampling
is involved, but the loss function just focuses on minimizing
the error between the input and the reconstructed HSI. The
weighting factor λ is set as 0, a loss function which neglects
the effects of the negative samples in the reconstruction process.
The fourth row corresponds to the performance of the proposed
DNA-HAD.

Comparison between the second row and the third row has
demonstrated the effectiveness of the negative-sampling. It is
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Fig. 10. Visual detection maps of the airport-2 achieved by different detectors.

Fig. 11. ROC curves of the airport-2 achieved by different detectors.

noted that with the fixed percentage of negative samples, the
network is more robust to the abnormal pixels in recovering
the background, making a detection accuracy enhancement.
Meanwhile, with the adaptive-adjusted loss function in the
DNA-HAD, which corresponds to the fourth row in Table IV,
the difference between the input negative samples and the re-
constructed ones is further enhanced. In this way, the detection
accuracy is further improved.

E. Data Analysis

Figs. 4, 6, 8, 10, 12, and 14 exhibit the visual detection
maps achieved by different detectors. The first two columns
represent the 100th band of the input HSI and the referenced
detection map. Red rectangles denote the regions that contain
the anomalies. Blue rectangles represent the regions those are
backgrounds.

For the detection maps of SanDiego in Fig. 4, it is noted that
the Global-RX, the GTVLRR, and the LSDM-MoG exhibit the
comparatively high responses for the right bottom background
regions, which will induce a high alarm rate. As to the anomalous

regions, the proposed DNA-HAD exhibits high responses to both
red rectangle regions. Even the FrFT exhibits high responses
for the left red region, the proposed DNA-HAD outperforms
it for the top-right anomalous region. Both the 2S-GLRT and
the Auto-AD exhibit the low responses to the whole scene.
Corresponding AUCs have been listed in Table V, it is noted that
the proposed method achieves the second-optimal one, whose
value is slightly smaller than the by 0.0072. All the optimal
and suboptimal values have been highlighted by the bold and
underline format. Fig. 5 plots the ROC curves of these detectors.
It is noted that the false alarm rate ranges from 0 to 0.5. Given a
false alarm rate larger than 0.5, most of detectors have detected
all the anomalies. The ROC curve of the proposed DNA-HAD
locates at the left-top region at the most cases, except for the
RGAE. It means the proposed method achieves the suboptimal
detection accuracy at most of the false alarm rate, which further
validates the superiority of the DNA-HAD.

As to the detection maps of HYDICE in Fig. 6, the ten vehicles
are randomly distributed in the scene, especially the ones in the
red rectangles. It can be seen that the Global-RX, FrFT-RX,
GTVLRR, LSDM-MoG, and RGAE all exhibit the high false
alarm rates, which cannot suppress the background effectively.
Given the small false alarm rate, such as values smaller than
0.01, the 2S-GLRT outperforms the Global-RX. Both the Auto-
AD and the DNA-HAD compress the background efficiently,
but the DNA-HAD outperforms the Auto-AD in detecting the
anomalies, such as both the red rectangles. Corresponding ROC
curves have been demonstrated in Fig. 7. Compared with the
SanDiego, all the detectors have detected all the anomalies with
a lower false alarm rate. In this way, the x axis of Fig. 7 is
focused from the range of 0 to 0.2. The curve of the DNA-HAD
still locates at the left-top region, which outperforms all the
rest detectors. Corresponding AUC values have been listed in
Table V, and the proposed DNA-HAD achieves the optimal one.

When it comes to the airport-1, anomalies of this HSI are more
than those of the SanDiego and HYDICE. Accurate detection
of the anomalies in this HSI is more difficult than detection of
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Fig. 12. Visual detection maps of the beach-4 achieved by different detectors.

Fig. 13. ROC curves of the beach-4 achieved by different detectors.

the others. Detection maps of this HSI are shown in Fig. 8. The
GTVLRR exhibits a high false alarm rate for the whole scene.
The RGAE mistakenly detects the top region as the anomalies,
and the anomalies in the red region have been missed. The
2S-GLRT detects the anomalies in the red region accurately,
but some neighboring backgrounds are also mistakenly detetced.
The LSDM-MoG exhibits a high false alarm rate for the top-right
region. As to the red rectangle, the proposed detector achieves
the best detection accuracy. Corresponding AUC curves have
been plotted in Fig. 9. The false alarm rate is nearly 0.8 when
the detection accuracy reaches 1. It is noted that given a detection
accuracy, the RGAE achieves the largest false alarm rate in
most cases, which is consistent to the low AUC in Table V.
The proposed method is still the most next to the left-top region
of the ROC curves.

As to the airport-2 in Fig. 10, the GTVLRR and the LSDM-
MoG still exhibit the high false alarm rates. The Global-RX, the
Auto-AD, and especially the RGAE achieve a comparatively
high response for the left blue rectangle. The FrFT-RX exhibits
low response for the blue rectangle, but it mistakenly regards
some other regions as the probable anomalies. The 2S-GLRT

shows a high detection accuracy for the red rectangle region,
and a good suppression ability for the blue rectangle region. The
ROC curves are plotted in Fig. 11. It is noted that the FrFT-RX
is with a smaller false alarm rate when the detection rate is from
0.85 to 0.9. However, when the detection rate is above 0.95, the
proposed DNA-HAD outperforms the FrFT-RX and the other
detectors, besides the 2S-GLRT. This is caused by the rectangle
region which locates at the right-bottom of the red anomalous
region. Objective AUC values are also listed in the fourth row
of Table V.

The beach-4 was captured by the ROSIS sensor, whose spatial
resolution is 1.3 meters per pixel. The detection maps are shown
in Fig. 12. It is seen that the FrFT-RX, the GTVLRR, the
LSDM-MoG and the RGAE are mistakenly sensitive to the left-
bottom regions. For the rest detectors, the proposed DNA-HAD
exhibits the strongest responses for the red anomalous region.
Corresponding ROC curves are plotted in Fig. 13. It is noticed
that the DNA-HAD achieves the largest detection rate among
the others in most cases, when given a fixed false alarm rate.
The objective evaluation AUC values have been listed in the
fifth row of Table V.

When it comes to the urban-2 HSI which depicts the Texas
coast, the buildings in the scene are marked as the anomalies.
The detection maps are shown in Fig. 14. It is shown that the
right up region is with small responses in most of the detection
maps. For the red rectangle region, both the Global-RX and the
DNA-HAD achieve the acceptable responses. However, for the
right blue region, both the Global-RX and RGAE still exhibit
comparatively high responses. The ROC curves have been plot-
ted in Fig. 15. It is seen that when the alarm rate is set between
0.03 and 0.05, the FrFT-RX slightly outperforms the proposed
method. But if the false alarm rate is very strict, such as smaller
than 0.015, the proposed method will achieve a superiority over
all the other detectors, except for the RGAE. Even the RGAE
is robust to SanDiego and the urban-2, its performance for the
other HSIs are really unstable. The corresponding overall AUC
values have been listed in the last but two row of Table V. It is
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Fig. 14. Visual detection maps of the urban-2 achieved by different detectors.

TABLE VI
EXECUTION TIME OF VARIOUS ANOMALY DETECTORS USING DIFFERENT DATA SETS (UNIT: SECONDS)

Fig. 15. ROC curves of the urban-2 achieved by different detectors.

observed that the proposed method is still the second-optimal
detector for the urban-2 whose spatial resolution is more than
15 meters per pixel, which is just 0.003 smaller than the optimal
one.

Both the visual detection maps and the quantified AUC values
have demonstrated the effectiveness of the proposed method. By
importing the negative sampling strategy and the skip connec-
tion between the encoders and the decoders, the background
information can be well reconstructed. In this way, it is noted
from the detection maps achieved by the proposed DNA-HAD,

the false alarm rates are comparatively low. The detection rate
achieved by the DNA-HAD is satisfactory.

Table VI provides the computational costs of various detec-
tors. All the experiments have been conducted on the same
platform. It is noted that both the Global-RX and the FrFT-RX
requires little computational cost. For the Global-RX, the main
cost is caused by calculating the covariance matrix and the mean.
For the FrFT-RX, there is a preprocessing of autodetermining
the optimal fractional order. It is noted that the automatically
determined orders for the SanDiego and the beach-4 make the
dissatisfactory detection accuracy. Iterations have been done
from 0.1 to 1.5 by a step of 0.1, making the comparative high
computational cost of this detector.

For GTVLRR, LSDM-MoG, 2S-GLRT, and RGAE, there
are several parameters to be determined during the detection
process. In this way, the computational costs of these four
detectors are comparatively high.

For both the Auto-AD and the proposed DNA-HAD, all the
involved hyperparameters have been empirically set before the
detection process. In this way, the detection process is faster
than the detectors which involved iterations. It is noted that the
proposed DNA-HAD consumes much more time than the Auto-
AD. It is mainly caused by two reasons. First, the architecture
of the DNA-HAD is much deeper than that of the Auto-AD.
Second, fixed percentage of pixels have been selected from
the whole pixels in the preprocess, which also consumes some
costs.
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IV. CONCLUSION

In this article, a novel hyperspectral anomaly detection
method via dynamic negative sampling is proposed. Different
from the existing methods which reconstruct the background
by mainly utilizing the global and local homogeneous attribute
of the original HSI. Dynamic negative sampling and adaptive-
adjusted loss function are utilized to enhance the sensitivity of
the network for the anomalies. Meanwhile, skip connections
between the encoder and the decoder makes an insurance for
the combination between the lower feature and the deeper
feature, which make the reconstruction process more accurate.
Experiments on six HSIs which were captured by different
sensors and are with different resolutions have demonstrated
the effectiveness of the proposed method.
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