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Abstract— Cognitive radios (CRs) have a great potential to
improve spectrum utilization by enabling users to access the
spectrum dynamically without disturbing licensed primary ra-
dios (PRs). A key challenge in operating these radios as a
network is how to implement an efficient medium access control
(MAC) mechanism that can adaptively and efficiently allocate
transmission powers and spectrum among CRs according to the
surrounding environment. Most existing works address this issue
via sub-optimal heuristic approaches or centralized solutions. In
this paper, we propose a novel joint power/channel allocation
scheme that improves the performance through a distributed
pricing approach. In this scheme, the spectrum allocation prob-
lem is modeled as a non-cooperative game, with each CR pair
acting as a player. A price-based iterative water-filling (PIWF)
algorithm is proposed, which enables CR users to reach a
good Nash equilibrium (NE). This PIWF algorithm can be
implemented distributively with CRs repeatedly negotiating their
best transmission powers and spectrum. Simulation results show
that the social optimality of the NE solution is dramatically
improved through pricing. Depending on the different orders
according to which CRs take actions, we study sequential and
parallel versions of the PIWF algorithm. We show that the
parallel version converges faster than the sequential version.
We then propose a corresponding MAC protocol to implement
our resource management schemes. The proposed MAC allows
multiple CR pairs to be first involved in an admission phase, then
iteratively negotiate their transmission powers and spectrum via
control-packet exchanges. Following the negotiation phase, CRs
proceed concurrently with their data transmissions. Simulations
are used to study the performance of our protocol and demon-
strate its effectiveness in terms of improving the overall network
throughput and reducing the average power consumption.

I. I NTRODUCTION

The concept of acognitive radio(CR) has recently triggered
great interest within the research community (see [10] for a
comprehensive survey). The term “cognitive radio” was first
coined by Mitola [16] as “the point in which wireless personal
digital assistants (PDAs) and the related networks are suffi-
ciently computationally intelligent about radio resources and
related computer-to-computer communications to: (a) detect
user communications needs as a function of use context, and
(b) to provide radio resources and wireless services most
appropriate to those needs.” Mitola’s definition, however, does
not specify the radio architecture for the physical and link

layers. More recently, the FCC [8] suggested that any radio
with adaptive spectrum awareness is to be referred to as a CR.
Specifically, a CR should be able to adapt its transmission pa-
rameters to the neighborhood environment. CRs are expected
to be deployed in both military and commercial applications.

Several scenarios can be found for operating a cognitive
radio network (CRN). In this paper, we focus on anoppor-
tunistic CRN where the CRs are secondary users that coexist
with primary radios (PRs). The PRs are licensed to operate
over certain frequency bands. They do not cooperate with or
even provide feedback to the CRs. CRs continuously sense the
channel and exploit spectrum “holes” for their transmissions.
One of the main challenges in an opportunistic CRN is how
to design an efficient and adaptive channel access scheme that
supports dynamic channel selection and power/rate allocation
in a distributed (ad hoc) CRN environment. An efficient design
is one that tries to maximize the CRN’s performance without
disturbing PR transmissions. A typical measure of efficiency
is the achievable sum-rate across all CR pairs. Unfortunately,
the problem of maximizing the sum-rate over a multi-user,
interference channel subject to individual power constraints
is a non-convex optimization problem [29]. Such a problem
becomes even more intractable when we allow multiple CRs
to share the same channel, as we now have to consider CR-
to-CR interferences in addition to PR-to-CR and CR-to-PR
interferences.

Several attempts have been made to solve the aforemen-
tioned interference channel problem. One well-known resource
allocation scheme, callediterative water-filling (IWF), was
first proposed in [31], where a non-cooperative game was used
to model the spectrum management problem with each user
iteratively maximizing its own rate. This per-user optimization
problem is convex and leads to a water-filling solution. For
the two-user case, it was proven that theNash Equilibrium
(NE) exists and the IWF algorithm converges to the NE under
certain conditions. However, this NE is generally not Pareto
optimal [20] and may be quite inefficient in term of sum-rate
[4]. This is because in a non-cooperative game, each user only
has the incentive to maximize its own utility function without
considering the overall system performance. A centralized
spectrum management scheme was proposed in [4], which
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greatly improves the system performance over the IWF scheme
by utilizing a centralized spectrum management center (SMC).
However, such an approach cannot be implemented in an ad
hoc opportunistic CRN, where none of the CRs has global
knowledge of the entire CRN to function as the SMC.

Given the above, we are motivated to design a chan-
nel/power/rate allocation scheme that overcomes the ineffi-
ciency of IWF and yet can be implemented in a distributed
fashion. Specifically, we provide incentives to CR users such
that they can reach a more socially efficient NE. A commonly
used incentive technique in game theory ispricing (a thorough
review is provided in [11]). Previously, pricing techniques
have been implemented in various wireless networks such as
cellular networks, ad hoc networks, and peer-to-peer networks
(e.g., [23], [5], [30], and [1]). In this paper, we apply pric-
ing techniques to CRNs. We propose aprice-based iterative
water-filling (PIWF) algorithm, and show that this algorithm
maintains the simplicity and distributed operation of the IWF
algorithm while achieving better bandwidth efficiency (i.e.,
higher sum-rate). The effectiveness of the pricing technique
depends on the selection of the “pricing functions,” which is a
challenging problem by itself. Although there may exist an
“optimal” pricing function that allows the NE to converge
to a Pareto-optimum solution, the search for such a pricing
function generally requires a central controller and is hard to
be implemented in a distributed manner. Some sub-optimal
pricing functions have been proposed in the literature. For
example, the authors in [5] proposed an auction-like pricing
scheme for mobile ad hoc networks (MANETs). The unit
price in this scheme (uniform across all users) is gradually
increased until the system settles down at a feasible NE. A
similar approach was taken in [23], where the users of a
wireless data network keep increasing their prices in a uniform
fashion until one user begins to receive a decreasing utility.
Both of the previously mentioned pricing schemes achieve
feasible NEs and improve the system performance. However,
the achieved NEs are not guaranteed to be globally optimal,
which is partially caused by the fact that both of the two
approaches take a uniform unit price for all players in the
game. In our work, we determine auser-dependentpricing
function, which not only improves the NE, but also achieves
globally or locally optimal NE after a few iterations. Such
a pricing function can be determined by allowing each CR
user to distributively acquire its neighborhood information via
control-packet exchanges.

Another problem of applying the IWF algorithm in [31] to
CRNs is that this algorithm only considers a total power con-
straint for each user. In a CRN, PRs impose strict power con-
straints over each frequency band, so CR users have to abide
by frequency-dependentpower constraints. Such constraints
will affect the response of each CR user and thus the achieved
NE. In this paper, we incorporate a frequency-dependent power
mask constraint into the optimization problem.

In our proposed algorithm, each user maximizes its own
utility function (which includes a pricing function) by perform-
ing a single-user price-based water-filling, while treating the
interference from other CR users at each sub-band as additive
white Gaussian noise (AWGN). The same procedure iterates

sequentially, eventually converging to the NE. If the number
of users in the network is large, sequential updating may
suffer from slow convergence. Therefore, we also discuss a
parallel PIWF algorithm (the parallel concept was introduced
in [25]), which is an instance of the Jacobi scheme: At
each iteration, CRs update their strategies simultaneously,
based on the interference measured in the previous iteration.
Simulations indicate that this parallel version converges faster
than the sequential PIWF algorithm. Both the sequential and
parallel PIWF algorithms require CRs to be synchronized and
the system parameters to be correctly estimated for each CR.
These conditions may not be satisfied in practical systems.
To overcome this problem, a “relaxed” update scheme can be
used (as in [2], [15], and [24]) and is studied in our work.
For the “relaxed” version of the PIWF algorithm, each CR is
required to remember its most recent policy choices together
with the choices of other users. The relaxed algorithm is more
robust to inaccurate estimates and channel oscillations, but it
may impact the convergence speed.

Our PIWF algorithms are then integrated into the design
of a distributed medium access (MAC) protocol for CRNs.
This protocol allows CRs to dynamically select channels and
adapt to different transmission powers and rates. We discuss
how the various versions of PIWF impact the MAC design.
Simulations are conducted to compare the performance of the
proposed protocol against other adaptive protocols.

The rest of this paper is organized as follows. The system
model is described in Section II. Section III formulates the
non-cooperative game and introduces the pricing techniques.
We then discuss the PIWF algorithms for solving the NE in
Section IV and design the corresponding MAC protocol in
Section V. In Section VI, we provide simulation results of
the PIWF algorithms and compare them with the classic IWF
algorithm. Finally, we draw conclusions and discuss future
extensions in Section VII.

II. SYSTEM MODEL

We consider a hybrid network consisting of several PRNs
and one CRN. The CRN containsN CR pairs. The total
spectrum consists ofK orthogonal frequency channels with
central frequenciesf1, f2, . . . , fK , whereK < N . Each PR
in a PRN may operate over one or multiple channels. Let
ΩN = {1, 2, . . . , N} andΩK = {1, 2, . . . , K} denote the sets
of CR links and channels, respectively.

Each CR may simultaneously transmit over multiple chan-
nels. It can also receive over multiple channels (from the
same transmitter) at the same time. However, we require that
each CR operates in a half-duplex manner, meaning that it
cannot receive while transmitting, and vice versa. LetMi(fk)
denote the total noise-plus-interference level measured by CR
user i over channelk. This quantity includes the PR-to-CR
interference, the CR-to-CR interference, and the thermal noise.
We assume that when not transmitting, CRi is capable of
measuringMi(fk) over all channelsk ∈ ΩK . Let Mi

def=
[Mi(f1),Mi(f2), . . . , Mi(fK)], which is used by CRi to
perform channel selection, power control, and rate allocation,
as described later.
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The motivation of using CR technology is to enhance
the spectrum utilization by allowing CR users to share the
spectrum with PRs. Some previous work [28] assumed that
CR transmissions do not interfere with each other, i.e., only
one CR user can operate over a given channel in a given
neighborhood (along with the PRs). In this way, there is no
spectrum sharing among CR users. Such schemes limit the
number of admitted CR links, especially when the number
of channels is small. In our work, we allow multiple CR
users to share a particular channel. Figure 1 depicts a channel
allocation example for a CRN withK = 3 and N = 4.
The dark square indicates that a channel is utilized by a CR.
For example, link 1 uses channels 1 and 2, while link 4 uses
channel 1 only. We denote the set of utilized channels for CR
link i asSi. In the above example,S1 = {1, 2} andS4 = {1}.
The transmission power vector of CR linki over all channels is
denoted byPi = [Pi(f1), Pi(f2), . . . , Pi(fK)], wherePi(fk)
is the transmission power of CRi on channelk. If channelk
belongs toSi, Pi(fk) > 0; otherwise,Pi(fk) = 0.
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Fig. 1: Example of channel allocation for 4 CR links.

To ensure feasible spectrum sharing, we impose the follow-
ing constraints:

1) Maximum transmission power constraint: The total
transmission power of a CR over the selected channels
should not exceedPmax, i.e,

∑
k∈Si

Pi(fk) ≤ Pmax.
Here, we assume that the total power constraint is the
same for all users. It is easy to extend the treatment to
the case wherePmax is user-dependent.

2) CR-to-PR power mask constraint: The transmission
power of CRi on channelk is constrained byPi(fk) ≤
Pmask(fk), where Pmask(fk) is the power mask on
channelk. Such a per-device power mask is easier to
verify at the design stage from a practical point of
view. For example, the power mask is often specified
by FCC regulations. In this case, CR vendors need
to design the radio while ensuring its RF transmission
power meets the FCC power mask. Such a philosophy
is often used in various wireless technologies (e.g.,
UWB, Wi-Fi, Walkie-Talkies, etc.). Note that because
the number of active CR links that share a given fre-
quency band varies in time and space, it is impractical
to design the hardware to account for a “neighborhood-
dependent” power mask. We use the vectorPmask

def=

[Pmask(f1), Pmask(f2), . . . , Pmask(fK)] to denote the
power mask on all channels. In the following analysis,
we assume thatPmask is given a priori.

3) Minimum signal-to-interference-and-noise ratio (SINR)
constraint: If the received SINR over a given channel
is below the SINR threshold (SINRth), the CR will not
use that channel.

We assume that the CRs are either static or are moving
slowly compared to the convergence time of the resource as-
signment algorithms. This assumption is generally acceptable
because our iterative algorithms operate on the time scale of
few milliseconds, whereas pedestrian and vehicular mobility
impacts the network topology on the time scale of seconds. In
addition, CRs are homogeneous, meaning that they follow the
same operation rules and have the same system constraints.

III. PROBLEM FORMULATION

In a “non-cooperative” CRN, each CR user is interested in
maximizing its own achievable rate. Such a greedy behavior
can be modeled using game theory. Game theory analyzes the
interactions of players in decision-making processes. It can be
used to identify distributed optimal strategies for the players
[18]. A normal gameG is expressed as:G = {Ω,P, {Ui}},
where Ω = {1, 2, . . . , N} is a finite set of rational players;
P = P1 × P2 × . . . × PN is the action space withPi being
the action set for playeri; and Ui : P → R is the utility
(payoff) function of playeri, which depends on the strategies
of all players. We can model the channel/power allocation
problem in a CRN as a non-cooperative game, in which the
players are the CR users; their actions are the transmission
power vector (i.e., the action for useri is given by Pi =
[Pi(f1), Pi(f2), . . . , Pi(fK)]); and their utility functions are
associated with their actions and the quality of the channels.
Note that a CR user in the game denotes a CR link consisting
of a pair of CRs.

A. Utility Function

In our game, the utility function of useri can be consid-
ered as the reward received by this user from the network.
This reward should depend on the user’s actionPi and the
union set of all other users’ actionsP−i, where P−i

def=
[P1, . . . ,Pi−1,Pi+1, . . . ,PN ]T . While the selection of the
utility function is not unique, the selected utility function must
have physical meaning for the particular application. A natural
selection of the utility function for CR linki (also used in [6],
[24], [31]) is its transmission rate, given by:

Ui(Pi,P−i) =
∑

k∈ΩK

ui(Pi(fk)) =

∑

k∈ΩK

[
log2(1+

hii(fk)Pi(fk)
∑

j∈ΩN ,j 6=i

hji(fk)Pj(fk) + M
(PR)
i (fk) + Ni(fk)

)

]

(1)
where hji(fk) denotes the channel gain between the trans-
mitter of link j and the receiver of linki over channelk,
M

(PR)
i (fk) denotes the PR-to-CR interference at the receiver

of CR link i over channelk, andNi(fk) denotes the received
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thermal noise power on channelk. In the paper, this relation-
ship is taken as Shannon’s capacity formula. In a practical
multi-rate wireless system, the power-rate relationship takes
the form of a staircase, and the user sets the transmission
rate to the maximum possible rate (among a finite set of
rates) that satisfies the SNR threshold at the given transmission
power value. It is straightforward to extend our design to
accommodate such a power-rate relationship.

Given the utility function in (1), users select their trans-
mission powers to maximize their own utility functions, and
under certain conditions, they eventually reach at a NE after
several iterations. As discussed in Section I, because of the
non-cooperative nature of the game, each CR user behaves
selfishly. Thus, the resulting NE may be far from the Pareto
optimum [20]. In practice, we are interested in maximizing a
weighted sum of the utilities of all users, defined as:

max
P

∑

i∈ΩN

wiUi(Pi,P−i) = max
P

∑

i∈ΩN

wi

∑

k∈ΩK

ui(Pi(fk))

(2)
where wi denotes the weight assigned to CR useri, which
may be interpreted in different ways (e.g., priority factor of
user i). Note that the power assignment that solves (2) is a
Pareto-optimum solution.

To drive the NE towards the Pareto optimum boundary, we
use pricing as an incentive for each selfish CR user to work
in a cooperative manner. A new utility function with pricing
is then defined as follows:

Ũi(Pi,P−i) =
∑

k∈ΩK

ũi(Pi(fk)) (3)

with

ũi(Pi(fk)) def= −ci(fk)+ (4)

log2

(
1 +

hii(fk)Pi(fk)(∑
j∈ΩN ,j 6=i hji(fk)Pj(fk)

)
+ M

(PR)
i (fk) + Ni(fk)

)

where ci(fk) represents the pricing function for useri on
channelk. As discussed in Section I, our goal is to choose
a user-dependent pricing function that can drive the CR users
to converge to an efficient NE. How to define this pricing
function will be discussed in Section III-C.

B. Game Formulation

Given the price-based utility function in (4), each CR
user i iteratively selects its power vectorPi to maximize
Ũi(Pi,P−i) subject to the constraints listed in Section II. This
results in the following non-cooperative gameG:

max
Pi

Ũi(Pi,P−i), ∀i ∈ ΩN

s.t.
C1: Pi(fk) ≥ 0, ∀i ∈ ΩN andk ∈ ΩK

C2:
∑

k∈ΩK

Pi(fk) ≤ Pmax, ∀i ∈ ΩN

C3: Pi(fk) ≤ Pmask(fk), ∀i ∈ ΩN andk ∈ ΩK

(5)

If there is a solution to the above game, then it would be
the one that achieves the NE. Note that the above game differs
from the game studied in [31] in the form of the utility function

and the additional power mask constraint. Thus, the existence
proofs in [6] and [31] cannot be directly applied.

The following proposition show that a NE solution always
exists for the above game.

Proposition 1: For any givenPmax and Pmask values,
there is at least one NE for the gameG in (5).

Proof: The game in our setup can be shown to be a
concave game if the following two properties are satisfied:

1) The action spaceP is a closed and bounded convex set;
2) The utility function Ũi(Pi,P−i) is concave over its

strategy set.

It is straightforward to show that the two properties are satis-
fied by the gameG. Because a concave game always admits
at least one NE [22], the proposition follows immediately.

Given the existence of a NE solution, we need to design an
algorithm for CR users to reach the NE. However, before we
do that, we first investigate the form of the optimal pricing
function.

C. Optimal Pricing Function

Pricing is an idea that originated from economics (e.g.,
[11]). It denotes the cost of commodities for individual de-
cision makers. In the power control context (e.g., [23] and
[30]), pricing is used as an incentive mechanism to improve
the efficiency of the NE. To illustrate, in Figure 2, we depict
an example of the Pareto-optimal frontier and the NE for
a two-user game. In general, the NE is not Pareto optimal.
Previous pricing techniques usually improve the achieved NE
(i.e., moving it closer to the Pareto-optimal frontier) using
heuristic pricing functions, since an optimal pricing function
generally requires global information and could hardly be
deployed in a distributed manner. For example, in [23] and
[30], the pricing function is a suboptimal linear function with
a fixed linear pricing factor for all players.

NE


Pareto-optimal

frontier


Rate of User 1


Rate of

User 2


Pareto improvement

region


Fig. 2: Nash equilibrium and Pareto-optimal Frontier.

The pricing function can take various forms. A linear pricing
function is commonly used because of its implementation
simplicity. One contribution of our work is the proposition of a
user-dependentlinear pricing function that drives the NE close
to the Pareto optimal frontier with each player having only its
local and certain neighborhood information. The neighborhood
information is acquired via control packets that are exchanged
during the channel access process (see Section V for details).
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Proposition 2: If there exists a NE for the gameG and
if this NE is Pareto optimal, then the linear pricing function
factor for useri should be:

λi(fk)opt =
1
wi

∑

j∈NBRi

wj
hjj(fk)Pj(fk)hij(fk)

Mj(fk)(Mj(fk) + hjj(fk)Pj(fk))

(6)
where NBRi denotes the set of neighbors for useri.

Proof: By definition, a NE is the solution to the individ-
ual utility optimization problem for each user given all other
users’ actions. In our formulation, each individual optimization
problem is a convex problem with the linear constraints C1-C3
in (5). So the Lagrangian function for useri can be written
as:

Ji = wi

∑

k∈ΩK

ũi(Pi(fk)) +
∑

k∈ΩK

αi,kPi(fk)

−βi(
∑

k∈ΩK

Pi(fk)− Pmax)−
∑

k∈ΩK

γi,k(Pi(fk)− Pmask(fk))

= wi

∑

k∈ΩK

[ui(Pi(fk))− λi(fk)Pi(fk)] +
∑

k∈ΩK

αi,kPi(fk)

−βi(
∑

k∈ΩK

Pi(fk)− Pmax)−
∑

k∈ΩK

γi,k(Pi(fk)− Pmask(fk))(7)

whereαi,k, βi, andγi,k are the Lagrangian multipliers (non-
negative real numbers). The K.K.T. conditions [3] are given
by:

∂Ji

∂Pi(fk)
= wi

∂ui(Pi(fk))
∂Pi(fk)

− wiλi(fk)

+αi,k − βi − γi,k = 0, ∀k ∈ ΩK

pi(fk) ≥ 0,∀k ∈ ΩK

αi,kpi(fk) = 0,∀k ∈ ΩK∑

k∈ΩK

Pi(fk)− Pmax ≤ 0

βi(
∑

k∈ΩK

Pi(fk)− Pmax) = 0

Pi(fk)− Pmask(fk) ≤ 0,∀k ∈ ΩK

γi,k(Pi(fk)− Pmask(fk)) = 0,∀k ∈ ΩK

(8)

In contrast, to solve the social optimization problem (2) with
constraints C1-C3, the Lagrangian function can be written as:

J =
∑

i∈ΩN

wi

∑

k∈ΩK

ui(Pi(fk)) +
∑

i∈ΩN

∑

k∈ΩK

αi,kPi(fk)

−
∑

i∈ΩN

βi

∑

k∈ΩK

(Pi(fk)− Pmax)

−
∑

i∈ΩN

∑

k∈ΩK

γi,k(Pi(fk)− Pmask(fk))

= wi

∑

k∈ΩK

ui(Pi(fk)) +
∑

j∈ΩN ,j 6=i

wj

∑

k∈ΩK

uj(Pj(fk))

+
∑

i∈ΩN

∑

k∈ΩK

αi,kPi(fk)− βi

∑

k∈ΩK

(Pi(fk)− Pmax)

−
∑

i∈ΩN

∑

k∈ΩK

γi,k(Pi(fk)− Pmask(fk)) (9)

The K.K.T. conditions for the optimization problem in (2)

are given by:

∂J

∂Pi(fk)
= wi

∂ui(Pi(fk))
∂Pi(fk)

+
∑

j∈ΩN ,j 6=i

wj
∂uj(Pj(fk))

Pi(fk)

+αi,k − βi − γi,k = 0,∀i ∈ ΩN andk ∈ ΩK

pi(fk) ≥ 0, ∀i ∈ ΩN andk ∈ ΩK

αi,kpi(fk) = 0, ∀i ∈ ΩN andk ∈ ΩK∑

k∈ΩK

Pi(fk)− Pmax ≤ 0, ∀i ∈ ΩN

βi(
∑

k∈ΩK

Pi(fk)− Pmax) = 0, ∀i ∈ ΩN

Pi(fk)− Pmask(fk) ≤ 0, ∀i ∈ ΩN andk ∈ ΩK

γi,k(Pi(fk)− Pmask(fk)) = 0, ∀i ∈ ΩN andk ∈ ΩK

(10)

By comparing K.K.T. conditions in (8) and (10), to obtain
the same solution, we must have:

λi(fk) = − 1
wi

∑

j∈ΩN ,j 6=i

wj
∂uj(Pj(fk))

∂Pi(fk)
(11)

By substitutinguj(Pj(fk)) into (11), we have:

λi(fk) =
1
wi

∑

j∈ΩN ,j 6=i

wj
hjj(fk)Pj(fk)hij(fk)

Mj(fk)(Mj(fk) + hjj(fk)Pj(fk))
.

(12)
If the transmitter of linki and the receiver of linkj are

not neighbors, i.e., the transmission of linki at the maximum
power cannot reach the receiver of linkj, the channel gain
hij(fk) is set to zero. Thus, the optimal pricing factor for link
i only depends on its neighborhood information. We then have
the result in Proposition 2.

Intuitively, a higher pricing factorλi(fk) will prevent user
i from using a large transmission power on channelk. In view
of (6), for link i to determine its optimal pricing factor, the
following procedure is needed: If a neighborj is to transmit
over channelk, it needs to broadcast its transmission power
Pj(fk), the measured total noise and interferenceMj(fk),
and the channel gainhjj(fk) between the transmitter and the
receiver of linkj. The above information can be incorporated
into the control packets of the MAC protocol (details in
Section V). In addition,hij(fk) can be measured from the
received signal power of the control packet.

IV. I TERATIVE ALGORITHMS

From the propositions in the previous section, we can
use the following iterative procedure to reach the NE. Each
individual CR user, sayi, first adjusts its linear pricing factor
λi(fk) over all channels according to (6), and then determines
its best action [20], i.e., the optimal channel/power/rate combi-
nation, by measuring the total noise-plus-interference levelMi

over all channels. The best response of useri is to maximize its
individual utility function (4) subject to the constraints C1-C3.
The same procedure is repeated for all users in the network.
If such a procedure converges, then by definition, it has to
converge to a NE of the game in (5).

Note that the utility function in (1) is monotonically in-
creasing withPi(fk) given that the other users’ powers are
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fixed, and the only condition that prevents useri from choosing
infinitely large transmission power is the total power constraint
C2. In our work, after adding the linear pricing function, the
utility function (4) now leads to finite optimal power settings
even without the constraint C2.

Proposition 3: Treating other users’ transmissions as inter-
ference, the best response of useri is given by:

Pi = BRi(P−i) = [BRi(P−i)(f1), . . . , BRi(P−i)(fK)]
(13)

with

BRi(P−i)(fk) =
[

1
β + λi(fk)

− Mi(fk)
hii(fk)

]Pmask(fk)

0

(14)

where [x]ba, with b > a, denotes the Euclidean projection of
x onto the interval[a, b], i.e., [x]ba = a if x < a, [x]ba = x if
a ≤ x ≤ b, and[x]ba = b if x > b. The water levelβ is chosen
to satisfy the total power constraint C2.

A similar result for the IWF algorithm is provided in [24].
Although we have an additional pricing function, a similar
analysis can be used to reach the result in Proposition 3. We
also provide an alternative proof in the Appendix using the
sequential optimization technique as discussed in [7] and [27].

Note that without the power mask constraint and without
the pricing function (i.e.,λi(fk) = 0 for all k and i),
(13) becomes the classical water-filling solution. Figure 3
graphically illustrates the difference between the traditional
water-filling [31] and the price-based water-filling solution
(13). The variable water level in the right-hand side of Figure 3
is because of the addition of the pricing factor in (14).

Water-filling
 channels


Fixed water

level


Tx

Power


Variable water

level


Price-based

Water-filling


channels


Tx

Power


Fig. 3: IWF versus PIWF.

Several approaches are available for CR users to converge to
the NE according to the best response function defined in (13).
Naturally, CR users may make their decisions one after another
or in parallel, which corresponds to sequential and parallel
update procedures. The specific algorithms will be described
next along with their convergence properties.

A. Sequential Price-based Iterative Water-filling

If CR users are to make their best-response decisions
sequentially according to a fixed order, we have a sequential
PIWF algorithm, and the algorithm can be generalized as
follows:

The condition||P
(l)
i −P

(l−1)
i ||

||P(l−1)
i || ≤ ε is the stopping criteria for

the PIWF algorithm. Normally,ε is set to a small value, such

Algorithm 1 Sequential PIWF

0: Initialize Pi(fk) = 0, ∀i ∈ ΩN andk ∈ ΩK ,
0: Initialize iteration countl = 0.
0: Repeat iterations:
1: l = l + 1;
2: for i = 1 to N usersdo
3: for k = 1 to K channelsdo
4: Estimate the total interference plus noise level

Mi(fk);
5: Compute the pricing factorλi(fk) using (6);
6: Estimate the channel gainhii(fk) using the received

signal power of the control packet.
7: end for
8: P(l)

i = BRi(P
(l)
1 , . . . ,P(l)

i−1,P
(l−1)
i+1 , . . . ,P(l−1)

N );
9: Transmit on selected channels usingP(l)

i .
10: end for
11: until l > Lmax or ||P

(l)
i −P

(l−1)
i ||

||P(l−1)
i || ≤ ε for all i ∈ ΩN .

as5%. If that condition is not satisfied afterLmax iterations,
the algorithm terminates. The above algorithm is akin to the
Gauss-Seidelprocedure [13], where the players take their turns
sequentially and act on the most recent policy information
obtained from the other players. In a two-user scenario, the
(l + 1)th iteration for user 1 can be expressed as:

P(l+1)
1 = BR1(BR2(P

(l)
1 )) = (BR1∗BR2)(P

(l)
1 ) = T(P(l)

1 )
(15)

The Nash equilibrium is thus a fixed point [26] under the
mappingT(.). For theN -user case, the expression is more
complicated, but we will keep the notationT as the mapping
between the previous power vector and the current power
vector. For the IWF algorithm, to ensure convergence to
the NE, several sufficient conditions were proposed in the
literature. The convergence condition was first provided in [31]
for two-user cases and in [6] forN -user cases. More recently,
the convergence conditions have been further relaxed in [12]
and [24].

Since the utility function (4) in our formulation possesses
an additional pricing function, the previous convergence proofs
may not be applicable any more. In fact, since we are using
a time-varying pricing factor in Algorithm 1, the mapping
function T(.) is also time-varying. Thus, the fixed point
theorem that underlies the proofs in [12] and [24] can no
longer be used. The convergence proof with a time-varying
mapping function is challenging and will be left for a future
work. However, convergence is always observed in our sim-
ulations for various network conditions. Figure 4 depicts the
convergence behavior over several iterations withN = 10
and K = 5. In the test network, ten CR pairs are randomly
placed in a square area. The figure shows the average sum-
rate improvement of the sequential PIWF over the classic IWF
algorithm for 1000 runs, with the starting sum-rate of the IWF
algorithm normalized to one. The two algorithms converge
at comparable speeds, but the NE solution for the sequential
PIWF algorithm is much better than the NE of the classic IWF
algorithm.
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Although the convergence proof for the time-varying pricing
function is difficult to establish, if the pricing factor remains
fixed over a few iterations, the convergence proof in [24] is
still applicable. This is because adding a linear pricing function
with a fixed pricing factor to the utility function in (1) has no
impact on the convergence proof in [24]. If we take the result
in [24] and apply it to our CRN setting, we have the following
proposition:

Proposition 4: Given a linear pricing function with a fixed
pricing factor over a few iterations, the sequential update
procedure converges to the unique NE if one of the two
following sets of conditions is satisfied:

∑

j∈ΩN ,j 6=i

max
k∈Si∩Sj

hji(fk)
hii(fk)

< 1,∀i ∈ ΩN (16)

∑

i∈ΩN ,i6=j

max
k∈Si∩Sj

hji(fk)
hii(fk)

< 1,∀j ∈ ΩN (17)

From (16) and (17), the convergence and the uniqueness of
the NE are ensured if the CRs that share the same channel are
far apart from each other, and thus cause weak interference
on one another. Figure 5 graphically illustrates these two
conditions in a CRN that consists of three CR links. Each
link is allocated two channels (e.g., nodesA and B are
allocated channels1 and3). Condition (16) indicates that for
each CR receiver, the summation of the normalized channel
gains between that receiver and all interfering CR transmitters
that share the same channel (normalized by the channel gain
of the intended packet) is less than1. For example, for
node B, this condition reduces tohCB(f1)

hAB(f1)
+ hEB(f3)

hAB(f3)
< 1.

Similarly, this condition is applied to receiversD and F . If
this condition is satisfied at all CR receivers, then according to
Proposition 4 the sequential update procedure converges to the
unique NE. The second condition (17) indicates that for each
CR transmitter, the summation of the normalized channel gains
between that transmitter and unintended CR receivers sharing
the same channel is less than1. For example, for transmitter
A (17) reduces tohAD(f1)

hCD(f1)
+ hAF (f3)

hEF (f3)
< 1. Similarly, we can

derive this condition for transmittersC andE. If this condition
is satisfied at all CR transmitters, it is also sufficient to assert

that the sequential update procedure converges to the unique
NE.
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Fig. 5: Example network with three CR links.

If the number of users in the network is large, the sequential
update procedure may suffer from slow convergence. There-
fore, we now discuss aparallel version of the PIWF algorithm.

B. Parallel Price-based Iterative Water-filling

Algorithm 2 describes a parallel update version of the PIWF
algorithm (the parallel IWF concept was first introduced in
[25]). The stopping criteria for the parallel PIWF are the
same as those of the sequential PIWF. The parallel PIWF
algorithm is related to theJacobi computational procedure
[9], where in each iteration CR users simultaneously perform
price-based water-filling based on the interference generated
by the other users in the previous iterations. In a two-user
case, the counterpart of (15) is:

P(l+2)
1 = BR1(P

(l+1)
2 ) = BR1(BR2(P

(l)
1 )) = T(P(l)

1 )
(18)

Algorithm 2 Parallel PIWF
0: Initialize Pi(fk) = 0, ∀i ∈ ΩN andk ∈ ΩK ,
0: Initialize iteration countl = 0.
0: Repeat iterations:
1: l = l + 1;
2: for i = 1 to N usersdo
3: for k = 1 to K channelsdo
4: Estimate the total interference plus noise level

Mi(fk);
5: Compute the pricing factorλi(fk) using (6);
6: Estimate the channel gainhii(fk) using the received

signal power of the control packet.
7: end for
8: P(l)

i = BRi(P
(l−1)
1 , . . . ,P(l−1)

i−1 ,P(l−1)
i+1 , . . . ,P(l−1)

N );
9: end for

10: for i = 1 to N usersdo
11: Transmit usingP(l)

i .
12: end for
13: until l > Lmax or ||P

(l)
i −P

(l−1)
i ||

||P(l−1)
i || ≤ ε for all i ∈ ΩN .

In [24], it was proved that the convergence conditions for
the parallel IWF and the sequential IWF are the same. For
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a time-varying PIWF, the proof is not applicable. But if the
pricing factor of the linear pricing function remains fixed over
a few iterations, we can apply the corresponding proof and
arrive at the following corollary of Proposition 4.

Corollary 1: If the conditions of Proposition 4 are satis-
fied, the parallel update procedure converges to the unique
NE of the game.

Corollary 1 shows that stability under the Gauss-Seidel
procedure coincides with stability under the Jacobi iteration.
Furthermore, following the argument in [24], one can prove
that any asynchronous computation in which the players act
at random and use the most recent available policy from other
players converges to a NE, as long as no players remain idle
for an infinite duration. Hence, the achieved NE based on
asynchronous updates coincides with the NE achieved with
parallel or sequential updates.

The parallel and sequential PIWF procedures are distributed
algorithms that maximize the total achievable data rate. Both
have the same implementation complexity of the traditional
IWF. As shown in Figure 4, these two algorithms greatly
outperform IWF. In Figure 6, we can see that the parallel
PIWF converges faster than the sequential PIWF, especially
for a large number of users. In this simulation, we assume
that CRs are randomly located in a square area and 5 channels
are available for their transmissions. Whether the players act
sequentially or in parallel makes a difference in the MAC
design. In Section V, we discuss the impact of the update
procedure on the MAC design.
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Fig. 6: Convergence speed of the sequential/parallel PIWF.

C. Relaxation Algorithms

Both the sequential and parallel PIWF algorithms require
the system parameters to be correctly estimated for each CR.
This condition may not be satisfied in practical systems. To
overcome this problem, a “relaxed” update scheme can be
used (as in [2], [15], and [24]), and will be discussed here for
completeness. In such a “relaxed” version, each CR is required
to remember its most recent policy choices together with the
choices of other users. The relaxed algorithms are more robust
to occasional estimation errors and channel oscillations, but
lead to certain degradation in the convergence speed.

More specifically, we can achieve a relaxed version of the
sequential PIWF algorithm if the best response function in
Algorithm 1 is replaced by:

P(l)
i = ωP(l−1)

i

+(1− ω)BRi(P
(l)
1 , . . . ,P(l)

i−1,P
(l−1)
i+1 , . . . ,P(l−1)

N ) (19)

where the factorω ∈ [0, 1) can be interpreted as the memory
factor. The larger the value ofω, the longer the memory of
the algorithm. With a largerω, the algorithm is more robust
to estimation errors at the cost of slower convergence.

Similarly, we can arrive at a relaxed version of the parallel
PIWF algorithm if the best response in Algorithm 2 is replaced
by:

P(l)
i = ωP(l−1)

i

+(1− ω)BRi(P
(l−1)
1 , . . . ,P(l−1)

i−1 ,P(l−1)
i+1 , . . . ,P(l−1)

N ) (20)

As proved in [24], the relaxation algorithms converge to the
unique NE of the game for anyω ∈ [0, 1) under the conditions
in Proposition 4.

All the above proposed iterative algorithms are rate-adaptive
(RA), where the data rates of users are maximized under trans-
mission power constraints. Similarly, we can design “margin-
adaptive” (MA) algorithms where users attempt to minimize
their transmission powers while satisfying a target data rate.
Both RA and MA algorithms follow similar mechanisms. Due
to space limitations, we do not discuss MA algorithms in this
paper.

V. MAC PROTOCOLDESIGN

In this section, we describe a MAC protocol that allows
CR users to operate efficiently in an opportunistic CRN. This
protocol implements the distributed channel/power allocation
strategies discussed in the previous sections. It should be noted
that a number of multi-channel MAC protocols have been pro-
posed in the context of CRNs (e.g., [14], [33], [32], and [28]).
Most of them do not allow multiple CR transmissions within
the same neighborhood to overlap in frequency channels, so
there is no interference among CR users. Such a restriction
simplifies the MAC design, but limits its spectrum efficiency.
A natural extension (analogous to the improvement offered
by the POWMAC protocol [17] over the classic CSMA/CA)
is to allow CR users to overlap in spectrum, provided that
their mutual interference does not lead to collisions. The
IWF algorithm [31] and the no-regret algorithm [19] were
proposed as two possible enabling techniques. However, the
works in [31] and [19] provide only channel/power allocation
algorithms and do not offer a practical MAC design.

In this section, we incorporate our price-based chan-
nel/power allocation algorithms into an operational MAC
protocol. Since the IWF algorithm is a special case of the pro-
posed PIWF algorithm, our MAC protocol can be simplified to
accommodate the classic IWF algorithm, thus complementing
the work in [31].

A. Assumptions

We consider a CRN setting with the following features:
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• A dedicated control channel or a coordinated control
channel [32] is used to support a community of CR users.
Control packets are transmitted over the control channel
using a pre-assigned power valuePcont.

• Channel gains between any two terminals are symmetric.
• The channel gain is static for the duration of several

control packets and a flow of data packets.

B. Protocol Overview

Our MAC protocol uses three types of control packets for
the handshaking between a CR transmitter and a CR receiver:
Request-to-Send (RTS), Clear-to-Send (CTS), and Decide-
to-Send (DTS). Unlike in the classic CSMA/CA scheme
and other multi-channel MAC protocols for CRNs, these
control packets are not used toexclusivelyreserve channels
(i.e., prevent neighboring CRs from accessing the reserved
channels), but rather to exchange some information within
the neighborhood. Such information is used by terminals to
determine their transmission parameters.

The control packets are exchanged within a certain duration,
referred to as thecontention window(CW). A CW can be
initiated asynchronously by any CR user that has packets
to transmit and that is not aware of any active CWs in its
neighborhood. Such a user is referred to as amaster user.
Other CR users that follow the schedule of an ongoing CW
are calledslave users. Note that the master/slave designation
of a user is dynamic, i.e., it changes with traffic and mobility
conditions. The objective of the CW is to allow several pairs of
CR nodes to repeatedly negotiate their transmission channels
and powers. As shown in Figure 7, the CW is divided into
two parts. The first part, referred to as theaccess window
(AW), is used by CR nodes to compete for admission to the
CW and initialize their transmission policies. The second part,
referred to as thetraining window (TW), is used by the CR
nodes to repeatedly negotiate their channel/power policies (as
explained later). Note that the AW can be considered as the
first iteration of the training process. CR nodes that have been
successfully admitted during the CW transmit a flow of data
packets over one or multiple data channels (as determined
during the CW) within adata window(DW). The durations for
the AW and DW are changed adaptively, similar to the single-
channel POWMAC protocol [17]. As for TW, its size (in slots)
is dictated by the convergence speed of the iterative resource
allocation algorithm. In general, an unnecessarily large value
increases the overhead, but does not necessarily improve the
throughput (as shown in Figure 4). On the other hand, a small
value may give sub-optimal results. In Section VI, we study
the performance of the MAC protocol under various TW sizes.

C. Operation Details

1) Access Window:When a CR nodeA intends to commu-
nicate with another nodeB, it first needs to contend during
the AW. If nodeA is not aware of any ongoing AW in its
neighborhood, it initiates a new AW (i.e., it becomes a master
user). Otherwise, nodeA contends during one of the slots of
the ongoing AW. In either case, nodeA first backs off by a

Control

Channel


Data

Channel 1


Data

Channel 2


Backoff

Duration


AW
 TW


DW
CW


A
 B
 B
A
D
C
 B
A
D
C


RTS
 CTS
 DTS


Data Flows


A
 B


A
 B


C
 D


{
 C
 D
{


slot


Fig. 7: Overview of the MAC operation with two CR trans-
missions (A → B andC → D).

random amount of time, selected from [Tmin, Tmax], before
accessing the channel.

The AW consists of a number of fixed-size slots. The size
of each slot isTmax plus the durations of the RTS, CTS
and DTS packets, plus 3 SIFS durations (SIFS denotes the
short interframe spacing between successive control packets).
In each slot, CR nodes compete for admission following a
standard CSMA approach.

If CR B successfully receives the RTS packet fromA, it
needs to decide the initial channel/power policy for the link
A → B. This is done as follows:

• First, nodeB estimates the channel gain between itself
and nodeA (denoted byhAB(f0)). This is facilitated by
knowledge of the RTS’s transmission power (Pcont) and
the received power of the RTS. FromhAB(f0), CR B
computeshAB(fk) for all k ∈ ΩK . The determination of
hAB(fk) from hAB(f0) is made possible by knowing the
carrier frequencies and by assuming a certain path-loss
model. For example, under the two-ray model [21] and
for a given transmission power,hAB(fk) = hAB(f0) ×
(f0/fk)2, wheref0 is the carrier frequency of the control
channel.

• Next, node B measures MB =
[MB(f1),MB(f2), . . . ,MB(fK)] over all data channels.
Note that for the sequential PIWF algorithm, if there are
previous CTS/DTS packets that have been received in
the same AW,MB is computed as the sum of the current
MB and the predicted CR-to-CR interference, which is
obtained by assuming that the neighboring links transmit
using the channels/powers specified in their CTS/DTS.

• Then, nodeB determines the pricing factorλB(fk) for
all data channelsk. For the sequential PIWF algorithm,
λB(fk) is computed using (6), where the neighbor-
hood information is obtained from previously received
CTS/DTS packets in the same AW. For the parallel PIWF
algorithm,λB(fk) is initialized to 0.

• Finally, based on the above information, nodeB decides
its best-response transmission policy according to Propo-
sition 3.

After the above procedures have been executed, nodeB
will send a CTS, announcing its channel/power allocation. The
CTS includesMB(fk) and hAB(fk) for all k ∈ SB , which
are used by neighboring CRs to update their best responses.
Note that even if the set of selected channelsSB is empty (i.e.,
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the computed transmission power is zero for all channels), the
link A → B will still be admitted in the AW. This is because
the data transmissionA → B may later be allowed to proceed
after several iterations in the TW.

If node A receives the CTS fromB, it will respond with a
DTS packet, repeating the information included in the CTS.
This DTS is used to alleviate thehidden terminalproblem as
in [17].

The above steps are repeated by CR pairs in every AW slot.
2) Training Window:CR nodes that are admitted in the AW

iteratively negotiate their transmission parameters in the TW,
following the same order of their admissions in the AW. In
contrast to the AW, the TW is accessed in a TDMA manner.
The TW consists of a number of slots (the TW size), where
each slot is used to conduct one iteration of the channel/power
allocation algorithm, using CTS and DTS packets. Note that
there is no need for the RTS during the TW, since new
admissions are not allowed.

In each iteration, the receiver of a CR link updates the
transmission policies based on the policies of its neighbors.
The updates are made based on either the sequential or the
parallel scheme. Specifically, if the sequential PIWF algorithm
is applied, the transmission policy of each CR user is made
based on the policies of all previous users in the same iteration
(obtained from CTS/DTS packets) and those of the other users
in the previous iteration, as described in Algorithm 1. If the
parallel PIWF algorithm is applied, the policy of each CR user
is made based on the policies of other CR users in the previous
iteration, as described in Algorithm 2. Note that the AW is
regarded as the initial iteration of the training process. After
each computation, the receiver sends a CTS, announcing its
transmission policy. Upon receiving the CTS, the transmitter
will send a DTS, repeating the information in the CTS.

3) Data Window:The last negotiated transmission policies
in the TW are used by the CR nodes for data transmissions
in the DW. In the DW, a flow of data packets is transmitted
from each CR transmitter. The length of the flow is selected
such that the channel conditions remain static over the entire
flow. Obviously, the DW size needs to be selected according
to the channel’s coherence time.

D. Simplified Packet-based MAC Design

The above MAC design can be used for flow-based channel
access, where a sequence of data packets are transmitted
using converged channel/power policies agreed upon during
the TW. Thus, the sum-rate of all competing CRs is likely to
be maximized if the channels remain static over the duration
of the data flow. However, if sum-rate optimality is not critical,
we can simplify the protocol by removing the TW and only
allow for a single data-packet transmission in the DW. This
design then becomes packet-based, and the convergence is now
achieved after several sessions of CW and DW (provided that
channel conditions remain static within this period).

Note that in the previous section, all CR nodes contend
in the AW with equal probability. In contrast, in the packet-
based MAC design, the admitted users in the previous AW
have priorities in accessing the control channel over other

CR users. Specifically, the admitted links in the previous AW
will contend in the current AW without backoff, according
to their order in the previous AW, as long as they still have
packets to transmit. After these links have been admitted, other
links compete for the remaining slots, following the backoff
mechanism that was discussed in the previous section. Such
a design is meant to facilitate the convergence behavior. To
ensure fairness among users, we set a limit (θ) on the maxi-
mum number of continuously prioritized packets. Specifically,
if one CR user acquires the channel in one session, it will have
priorities in accessing the control channel for the nextθ − 1
packet transmission durations (as long as the user has packets
to transmit). The parameterθ is selected to be larger than the
convergence time of the algorithm.

The channel/power policies are updated in the AW following
similar procedures to the flow-based MAC. The only differ-
ence is that the interference-plus-noise level is now estimated
from the previous DW, instead of the previous iteration in the
TW. In the next section, we compare the performance of this
design with that of the flow-based MAC.

E. Implementation of Relaxed Algorithms

The implementation of the “relaxed” version algorithms
to the MAC design is straightforward. Each CR receiver
memorizes its most recent policy, and makes decisions based
on (19) for the sequential algorithm (or (20) for the parallel
algorithm). Since the convergence speed of the “relaxed”
PIWF is slower, a larger TW size is needed for the flow-based
MAC protocol. Similarly, for the packet-based MAC, a larger
number of data packets are transmitted before the convergence
can be achieved.

VI. PERFORMANCEEVALUATION

To evaluate the effectiveness of the proposed MAC, we
conduct MATLAB-based simulations of a hybrid network with
one PRN and one CRN. Nodes in these networks are uniformly
distributed over a square area of length 100 meters. The PRN
operates in the 300 MHz band, occupying five non-overlapping
1-MHz channels, with 10 PRs in each channel. The time is
divided into slots, each of length 10 ms. In each slot, each PR
attempts to transmit with a probability ofα, the PR’s activity
factor. The transmission power of each PR is 1 Watt when it
is on, and the antenna length is 5 cm.

We use the following signal propagation model to simulate
the PR-to-CR and CR-to-CR interference over channelk [21]:

Pr(fk) = Pd0(fk)
(

d

d0(fk)

)−γ

, for d > d0(fk) (21)

wherePr(fk) is the received power over channelk, d is the
distance between the transmitter and the receiver,d0(fk) is the
reference distance, Pd0(fk) is the reference received power
at distanced0(fk) over channelk, and γ is the path loss
exponent. We setd0(fk) = 1 meter,γ = 4, and we compute
Pd0(fk) as follows [21]:

Pd0(fk) = Pt(fk)Gt(fk)Gr(fk)(
ν(fk)

4πd0(fk)
)2 (22)
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wherePt(fk) is the transmission power on channelk, Gt(fk)
andGr(fk) are the transmitter and receiver antenna gains on
channelk, andν(fk) is the wavelength of the carrier frequency
of channelk. For simplicity, we setGt(fk)Gr(fk) = 1 for all
channels.

We simulate 10 pairs of CRs. The maximum transmission
power for CR is 1 Watt, which ensures that CRs are within
the maximum transmission range of each other. The AWGN
noise levelN0 is set to−70 dBm over all channels. Each CR
transmitter generates burst of packets according to a Poisson
process with parameterΛ burst/second. Each burst has an
exponentially distributed duration with mean1/µ second. The
traffic rate for CR is defined asΛ/µ. We set the CR-to-PR
power mask to 0.5 Watt for all channels.

We compare the performance of the proposed flow-based
PIWF-MAC protocol with the packet-based PIWF-MAC pro-
tocol, against the flow-based IWF-MAC protocol. Since the
IWF algorithm is a special case of the PIWF algorithm,
the proposed MAC protocols are also applicable to the IWF
algorithm. The DW for the flow-based MAC protocol allows
10 data packets to be transmitted in a row. The comparison
is in terms of the system throughput and the average power
consumption. The system throughput is defined as the average
volume of CR traffic bits that are transmitted in one second,
and the power consumption is calculated as average power
consumption by all CRs.

The resulting performance is depicted in Figure 8 through
Figure 10. Figure 8(a) shows the system throughput versus the
traffic rate. As expected, the flow-based PIWF-MAC protocol
gives the highest throughput. This throughput improvement
over IWF-MAC becomes more significant at higher traffic
rates. It is interesting to see that the simplified packet-based
PIWF-MAC protocol exhibits comparable system throughput
with the flow-based PIWF-MAC protocol. Besides achieving a
higher system throughput, the PIWF-MAC protocols also save
transmission power, as shown in Figure 8(b). This is because
in IWF, users greedily maximize their own rates using the
maximum transmission power, while such greedy behaviors
are overcome by the pricing technique used in PIWF. Note that
although the packet-based PIWF-MAC consumes less energy
in control overhead than the flow-based PIWF-MAC, it con-
sumes more energy in data transmissions. This is because in
the packet-based PIWF-MAC, the optimal power assignment is
achieved after several packet transmissions (due to the absence
of a control-based training phase). The confluence of the two
energy-consumption factors still favors the flow-based PIWF-
MAC.

Figure 9(a) depicts the network throughput versus the PR’s
activity factorα. As expected, a higherα results in a higher
PR-to-CR interference, which negatively affects the through-
put. Figure 9(b) shows the corresponding average power
consumption. In all cases, PIWF-MAC protocols consume less
power.

Finally, Figure 10(a) shows the throughput versus the train-
ing window size. Since the simplified packet-based PIWF-
MAC does not employ a TW, we only compare the flow-
based PIWF-MAC and flow-based IWF-MAC. Intuitively, a
larger TW size will ensure that CR users will converge to the

NE. However, as seen in Figure 4, 2-3 iterations are normally
sufficient to reach a near-optimal sum-rate. The same behavior
is observed from the MAC simulations. As seen in Figure
10(a), taking a TW of size 2 is enough to achieve 95% of the
maximum system throughput in the simulation setup. Figure
10(b) shows the corresponding average power consumption.
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Fig. 8: Performance whenα = 0.1.

VII. C ONCLUSIONS

In this paper, we proposed a PIWF algorithm for spectrum
sharing in cognitive radio networks. Our PIWF algorithm can
be implemented distributively with CRs repeatedly negotiating
their transmission powers and spectrum. Simulation results
showed that the proposed algorithm greatly improves the NE
compared with the one achieved using the IWF approach.
Based on the order by which CR nodes make their resource
allocation decisions, we studied sequential and parallel ver-
sions of the PIWF algorithm. The parallel update scheme was
shown to converge faster than the sequential update scheme,
especially for a large number of users. We also presented
“relaxed” versions of the PIWF algorithms, which are more
robust to estimation errors and channel oscillations at the
cost of slower convergence. Based on the PIWF algorithms,
flow-based and packet-based MAC protocols were designed.
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(a) System throughput vs. PR activity factor.
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Fig. 9: Performance under traffic rateΛ/µ = 0.5.

Our simulation results showed that the PIWF-MAC protocol
achieves considerably higher system throughput compared
with the IWF-MAC, with less energy consumption.

APPENDIX

A. Proof of Proposition 3

Proof: We first solve the optimization problem without
the power mask constraint C3, using the method of Lagrange
multipliers. This leads to a water-filling solution of the form
[31]:

P ∗i (fk) = [
1

β + λi(fk)
− Mi(fk)

hii(fk)
]+. (23)

If P ∗i (fk) is the optimal power allocation over channelk,
then the slope of the utility functionui(Pi(fk)) must be posi-
tive at the pointP ∗i (fk). Otherwise, a power vectorPi with a
smallerPi(fk) could reach a higher utilityUi(Pi), with all the
constraints satisfied. Thus, the utility functionui(Pi(fk)) is
monotonically increasing between 0 andP ∗i (fk). Accordingly,
if any of theP ∗i (fk) in (23) violates the upper bound C3, then
the corresponding bounded optimal solution must be the upper
boundPmask(fk) itself (a similar approach was also adopted
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(a) System throughput vs. TW size.
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(b) Average power consumption vs. TW size.

Fig. 10: Performance under traffic rateΛ/µ = 0.7 and α =
0.1.

in [7]). After boundingP ∗i (fk) by Pmask(fk), the remaining
power will be further water-filled over other channels, thus
reaching the result in (13).
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