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Abstract— Cognitive radios (CRs) have a great potential to layers. More recently, the FCC [8] suggested that any radio
improve spectrum utilization by enabling users to access the with adaptive spectrum awareness is to be referred to as a CR.
spectrum dynamically without disturbing licensed primary ra- Specifically, a CR should be able to adapt its transmission pa-

dios (PRs). A key challenge in operating these radios as a . .
network is how to implement an efficient medium access control rameters to the neighborhood environment. CRs are expected

(MAC) mechanism that can adaptively and efficiently allocate t0 be deployed in both military and commercial applications.
transmission powers and spectrum among CRs according to the ~ Several scenarios can be found for operating a cognitive
surrounding environment. Most existing works address this issue radio network (CRN). In this paper, we focus on appor-

via sub-optimal heuristic approaches or centralized solutions. In  nistic CRN where the CRs are secondary users that coexist

this paper, we propose a novel joint power/channel allocation . . . ,
scheme that improves the performance through a distributed with primary radios (PRs). The PRs are licensed to operate

pricing approach. In this scheme, the spectrum allocation prob- OVer certain frequency bands. They do not cooperate with or
lem is modeled as a non-cooperative game, with each CR pair even provide feedback to the CRs. CRs continuously sense the
acting as a player. A price-based iterative water-filling (PIWF)  channel and exploit spectrum “holes” for their transmissions.
algorithm is proposed, which enables CR users to reach a gpg of the main challenges in an opportunistic CRN is how

good Nash equilibrium (NE). This PIWF algorithm can be to desi fficient and adanti h | h that
implemented distributively with CRs repeatedly negotiating their 0 design an eflicient and adaptive channel access scheme tha

best transmission powers and spectrum. Simulation results show SUpports dynamic channel selection and power/rate allocation
that the social optimality of the NE solution is dramatically in a distributed (ad hoc) CRN environment. An efficient design
improved through pricing. Depending on the different orders js one that tries to maximize the CRN'’s performance without
according to which CRs take actions, we study sequential and gistyrping PR transmissions. A typical measure of efficiency

parallel versions of the PIWF algorithm. We show that the . th hievabl ¢ Il CR pairs. Unfortunatel
parallel version converges faster than the sequential version. IS the achievable sum-rate across a pairs. Untortunately,

We then propose a corresponding MAC protocol to implement the problem of maximizing the sum-rate over a multi-user,
our resource management schemes. The proposed MAC allowsinterference channel subject to individual power constraints
multiple CR pairs to be first involved in an admission phase, then js a non-convex optimization problem [29]. Such a problem
iteratively negotiate their fransmission powers and spectrum via pacomes even more intractable when we allow multiple CRs
control-packet exchanges. Following the negotiation phase, CRs .
proceed concurrently with their data transmissions. Simulations to sharg the same Channell, .as we now have to consider CR-
are used to study the performance of our protocol and demon- t0-CR interferences in addition to PR-to-CR and CR-to-PR
strate its effectiveness in terms of improving the overall network interferences.
throughput and reducing the average power consumption. Several attempts have been made to solve the aforemen-
tioned interference channel problem. One well-known resource
allocation scheme, callederative water-filling (IWF), was
first proposed in [31], where a non-cooperative game was used
The concept of @ognitive radio(CR) has recently triggered to model the spectrum management problem with each user
great interest within the research community (see [10] forigratively maximizing its own rate. This per-user optimization
comprehensive survey). The term “cognitive radio” was firgiroblem is convex and leads to a water-filling solution. For
coined by Mitola [16] as “the point in which wireless personahe two-user case, it was proven that tRash Equilibrium
digital assistants (PDAs) and the related networks are sufiNE) exists and the IWF algorithm converges to the NE under
ciently computationally intelligent about radio resources arwbrtain conditions. However, this NE is generally not Pareto
related computer-to-computer communications to: (a) detexitimal [20] and may be quite inefficient in term of sum-rate
user communications needs as a function of use context, §4H This is because in a non-cooperative game, each user only
(b) to provide radio resources and wireless services mdsts the incentive to maximize its own utility function without
appropriate to those needs.” Mitola’s definition, however, doesnsidering the overall system performance. A centralized
not specify the radio architecture for the physical and lingpectrum management scheme was proposed in [4], which
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greatly improves the system performance over the IWF scheseguentially, eventually converging to the NE. If the number
by utilizing a centralized spectrum management center (SM®¥. users in the network is large, sequential updating may
However, such an approach cannot be implemented in ansadfer from slow convergence. Therefore, we also discuss a
hoc opportunistic CRN, where none of the CRs has globadrallel PIWF algorithm (the parallel concept was introduced
knowledge of the entire CRN to function as the SMC. in [25]), which is an instance of the Jacobi scheme: At

Given the above, we are motivated to design a chaeach iteration, CRs update their strategies simultaneously,
nel/power/rate allocation scheme that overcomes the ineffiased on the interference measured in the previous iteration.
ciency of IWF and yet can be implemented in a distributeSimulations indicate that this parallel version converges faster
fashion. Specifically, we provide incentives to CR users sutiian the sequential PIWF algorithm. Both the sequential and
that they can reach a more socially efficient NE. A commonlyarallel PIWF algorithms require CRs to be synchronized and
used incentive technique in game theorypiiiing (a thorough the system parameters to be correctly estimated for each CR.
review is provided in [11]). Previously, pricing techniqgue§hese conditions may not be satisfied in practical systems.
have been implemented in various wireless networks suchTasovercome this problem, a “relaxed” update scheme can be
cellular networks, ad hoc networks, and peer-to-peer netwotksed (as in [2], [15], and [24]) and is studied in our work.
(e.g., [23], [5], [30], and [1]). In this paper, we apply pricFor the “relaxed” version of the PIWF algorithm, each CR is
ing techniques to CRNs. We proposepdce-based iterative required to remember its most recent policy choices together
water-filling (PIWF) algorithm, and show that this algorithmwith the choices of other users. The relaxed algorithm is more
maintains the simplicity and distributed operation of the IWFobust to inaccurate estimates and channel oscillations, but it
algorithm while achieving better bandwidth efficiency (i.e.imay impact the convergence speed.
higher sum-rate). The effectiveness of the pricing techniqueOur PIWF algorithms are then integrated into the design
depends on the selection of the “pricing functions,” which isef a distributed medium access (MAC) protocol for CRNSs.
challenging problem by itself. Although there may exist amhis protocol allows CRs to dynamically select channels and
“optimal” pricing function that allows the NE to convergeadapt to different transmission powers and rates. We discuss
to a Pareto-optimum solution, the search for such a pricit@w the various versions of PIWF impact the MAC design.
function generally requires a central controller and is hard &mulations are conducted to compare the performance of the
be implemented in a distributed manner. Some sub-optimmbposed protocol against other adaptive protocols.
pricing functions have been proposed in the literature. ForThe rest of this paper is organized as follows. The system
example, the authors in [5] proposed an auction-like pricingodel is described in Section 1. Section Il formulates the
scheme for mobile ad hoc networks (MANETS). The uniton-cooperative game and introduces the pricing techniques.
price in this scheme (uniform across all users) is graduaNye then discuss the PIWF algorithms for solving the NE in
increased until the system settles down at a feasible NE.Skction IV and design the corresponding MAC protocol in
similar approach was taken in [23], where the users of Section V. In Section VI, we provide simulation results of
wireless data network keep increasing their prices in a uniforhie PIWF algorithms and compare them with the classic IWF
fashion until one user begins to receive a decreasing utiliplgorithm. Finally, we draw conclusions and discuss future
Both of the previously mentioned pricing schemes achieestensions in Section VII.
feasible NEs and improve the system performance. However,
the achieved NEs are not guaranteed to be globally optimal,
which is partially caused by the fact that both of the two
approaches take a uniform unit price for all players in the We consider a hybrid network consisting of several PRNs
game. In our work, we determine wser-dependenpricing and one CRN. The CRN contain¥ CR pairs. The total
function, which not only improves the NE, but also achievespectrum consists af’ orthogonal frequency channels with
globally or locally optimal NE after a few iterations. Suctcentral frequencieds, f2, ..., fx, where K < N. Each PR
a pricing function can be determined by allowing each CR a PRN may operate over one or multiple channels. Let
user to distributively acquire its neighborhood information vi®@xy = {1,2,..., N} andQg = {1,2,..., K} denote the sets
control-packet exchanges. of CR links and channels, respectively.

Another problem of applying the IWF algorithm in [31] to Each CR may simultaneously transmit over multiple chan-
CRNss is that this algorithm only considers a total power comels. It can also receive over multiple channels (from the
straint for each user. In a CRN, PRs impose strict power casame transmitter) at the same time. However, we require that
straints over each frequency band, so CR users have to alddeh CR operates in a half-duplex manner, meaning that it
by frequency-dependemower constraints. Such constraint€annot receive while transmitting, and vice versa. L&{ fy)
will affect the response of each CR user and thus the achievdehote the total noise-plus-interference level measured by CR
NE. In this paper, we incorporate a frequency-dependent powaser i over channelk. This quantity includes the PR-to-CR
mask constraint into the optimization problem. interference, the CR-to-CR interference, and the thermal noise.

In our proposed algorithm, each user maximizes its owlte assume that when not transmitting, GRs capable of
utility function (which includes a pricing function) by perform-measuring;(f;,) over all channelsk € Q. Let M; £
ing a single-user price-based water-filling, while treating théZ;(f1), M;(f2),..., M;(fx)], which is used by CR; to
interference from other CR users at each sub-band as addifregform channel selection, power control, and rate allocation,
white Gaussian noise (AWGN). The same procedure iterat@s described later.

Il. SYSTEM MODEL



The motivation of using CR technology is to enhance [Prask(f1)s Pmask(f2)s - - - Pmask(fx)] to denote the
the spectrum utilization by allowing CR users to share the  power mask on all channels. In the following analysis,
spectrum with PRs. Some previous work [28] assumed that we assume thaP,,.s; iS given a priori.

CR transmissions do not interfere with each other, i.e., only3) Minimum signal-to-interference-and-noise ratio (SINR)
one CR user can operate over a given channel in a given constraint; If the received SINR over a given channel
neighborhood (along with the PRs). In this way, there is no is below the SINR threshold (SINR), the CR will not
spectrum sharing among CR users. Such schemes limit the use that channel.

number of admitted CR links, especially when the number we assume that the CRs are either static or are moving
of channels is small. In our work, we allow multiple CRslowly compared to the convergence time of the resource as-
users to share a particular channel. Figure 1 depicts a chargighment algorithms. This assumption is generally acceptable
allocation example for a CRN withl{ = 3 and N = 4. pecause our iterative algorithms operate on the time scale of
The dark square indicates that a channel is utilized by a Cfdw milliseconds, whereas pedestrian and vehicular mobility
For example, link 1 uses channels 1 and 2, while link 4 usgfipacts the network topology on the time scale of seconds. In
channel 1 only. We denote the set of utilized channels for Gdgidition, CRs are homogeneous, meaning that they follow the
link i as.S;. In the above example§; = {1,2} andS,; = {1}. same operation rules and have the same system constraints.
The transmission power vector of CR linkver all channels is

denoted byP; = [Pi(f1), Pi(f2),-- -, Pi(fk)], where P;( fi) [1l. PROBLEM FORMULATION

is the transmission power of CRon channek. If channelk

) In a “non-cooperative” CRN, each CR user is interested in
belongs toS;, P;(fx) > 0; otherwise,P;(fx) = 0.

maximizing its own achievable rate. Such a greedy behavior
can be modeled using game theory. Game theory analyzes the
interactions of players in decision-making processes. It can be
used to identify distributed optimal strategies for the players
4| > [18]. A normal gameg is expressed agy = {Q,P,{U;}},
whereQ = {1,2,..., N} is a finite set of rational players;
2 P =P x Py x...x Py is the action space wit; being
the action set for playef; andU; : P — R is the utility
(payoff) function of player, which depends on the strategies
of all players. We can model the channel/power allocation
4 problem in a CRN as a non-cooperative game, in which the
players are the CR users; their actions are the transmission
f. f, fs power vector (i.e., the action for useris given by P; =
[Pi(f1), Pi(f2),-.., Pi(fx)]); and their utility functions are
Fig. 1: Example of channel allocation for 4 CR links.  associated with their actions and the quality of the channels.
Note that a CR user in the game denotes a CR link consisting
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To ensure feasible spectrum sharing, we impose the follo@®f @ Pair of CRs.
ing constraints:

1) Maximum transmission power constraint: The totdf Utlity Function
transmission power of a CR over the selected channelsn our game, the utility function of user can be consid-
should not exceed’,az, i€, Y e, Pi(fi) < Praa- ered as the reward received by this user from the network.
Here, we assume that the total power constraint is tidis reward should depend on the user's acti®nand the
same for all users. It is easy to extend the treatment@dion set of all other users’ actiorB_;, where P_; =
the case wheré,, ., is user-dependent. [P1,....,Pi_1,Piy1,...,Py]T. While the selection of the
2) CR-to-PR power mask constraint: The transmissidufility function is not unique, the selected utility function must
power of CRi on channek is constrained by?;(f,) < have physical meaning for the particular application. A natural
Prask(fx), where P,,..x(fx) is the power mask on selection of the utility function for CR link (also used in [6],
channelk. Such a per-device power mask is easier #@4], [31]) is its transmission rate, given by:

verify at the design stage from a practical point of

view. For example, the power mask is often specified Ui(Pi, Py) = kZQ: ui(Pi(fr)) =

by FCC regulations. In this case, CR vendors need eHx

to design tk:etrhadilgcvvchile ensuringkitsSRFhtranﬁ_rlnissioh log, (1+ hai (fr) Pi(f) )
power meets the power mask. Such a philosop 2 B , (PR) 4

is often used in various wireless technologies (e.d:$2x jeg%#ihj’(f’“)Pj(fk)+Ml (fi) + Ni(fr)
UWB, Wi-Fi, Walkie-Talkies, etc.). Note that because (2)

the number of active CR links that share a given frewhere hj;(f;) denotes the channel gain between the trans-
quency band varies in time and space, it is impracticalitter of link ;7 and the receiver of link over channelk,
to design the hardware to account for a “neighborhooMi(PR)(fk) denotes the PR-to-CR interference at the receiver

dependent” power mask. We use the ved®y, ..« £ of CR link i over channek, and N, ( fi) denotes the received



thermal noise power on chanrel In the paper, this relation- and the additional power mask constraint. Thus, the existence

ship is taken as Shannon’s capacity formula. In a practigadoofs in [6] and [31] cannot be directly applied.

multi-rate wireless system, the power-rate relationship takesThe following proposition show that a NE solution always

the form of a staircase, and the user sets the transmissgxists for the above game.

rate to the maximum possible rate (among a finite set of Proposition 1: For any givenP,,,, and P,,... values,

rates) that satisfies the SNR threshold at the given transmissileere is at least one NE for the gar@en (5).

power value. It is straightforward to extend our design to  Proof: The game in our setup can be shown to be a

accommodate such a power-rate relationship. concave game if the following two properties are satisfied:
Given the utility function in (1), users select their trans- 1) The action spac® is a closed and bounded convex set;

mission powers to maximize their own utility functions, and 2) The utility function U;(P;,P_;) is concave over its
under certain conditions, they eventually reach at a NE after strategy set.
several iterations. As discussed in Section |, because of the . : .
non-cooperative nature of the game, each CR user beha})ég straightforward to show that the two properties are satis-
selfishly. Thus, the resulting NE may be far from the Pare F by the gamej. Because a concave game always admits
optimum [20]. In practice, we are interested in maximizing gt Ie_ast one N'_E [22], the pr0p05|t|0r_1 follows |mmed|ate_l.
weighted sum of the utilities of all users, defined as: Given the existence of a NE solution, we need to design an

algorithm for CR users to reach the NE. However, before we

do that, we first investigate the form of the optimal pricing

max Z w;U;(P;, P_;) = max Z w; Z ui (P (fr)) function.

1EQN I€EQN keEQK
&)

where w; denotes the weight assigned to CR ugewhich C. Optimal Pricing Function

may be interpreted in different ways (e.g., priority factor of pyicing is an idea that originated from economics (e.g.,

useri). Note that the power assignment that solves (2) is{1)). |t denotes the cost of commodities for individual de-

Pareto-optimum solution. _ cision makers. In the power control context (e.g., [23] and
To drive the NE towards the Pareto optimum boundary, W8q)), pricing is used as an incentive mechanism to improve

use pricing as an incentive for each selfish CR user to wofks efficiency of the NE. To illustrate, in Figure 2, we depict

in a cooperative manner. A new utility function with pricinga, example of the Pareto-optimal frontier and the NE for

is then defined as follows: a two-user game. In general, the NE is not Pareto optimal.

U;(P;,P_;) = Z @i (Py(f1)) ©) Previous pricing techniques usually improve the achieved NE
o (i.e., moving it closer to the Pareto-optimal frontier) using
. heuristic pricing functions, since an optimal pricing function
with generally requires global information and could hardly be
i (Pi(fr) & —ci(fr)+ (4) deployed in a distributed manner. For example, in [23] and
log (1 N hii (o) Pi(fx) ) [3Q], the_ pricing .fl.Jnction is a suboptimal linear function with
2 (ZjeQN,j;éi hji(fk)Pj(fk)) N Mi(PR)(fk) N a fixed linear pricing factor for all players.

where ¢;(fi) represents the pricing function for uséron Pareto-optimal
channelk. As discussed in Section I, our goal is to choose frontier
a user-dependent pricing function that can drive the CR users Pareto improvement
to converge to an efficient NE. How to define this pricing Rate of
function will be discussed in Section III-C. User 2 \

B. Game Formulaton | s

Given the price-based utility function in (4), each CR

user i iteratively selects its power vectd?; to maximize Rate of User 1
U;(P;,P_;) subject to the constraints listed in Section Il. This

results in the following non-cooperative garge Fig. 2: Nash equilibrium and Pareto-optimal Frontier.
H%)&X UZ(P“P_Z), Vi € Qn
s.t. The pricing function can take various forms. A linear pricing
Cl: Pi(fx) >0, VieQy andk € Q (5) function is commonly used because of its implementation
C2: S° Pi(fr) < Pras, Vi€ Qn simplicity. One contribution of our work is the proposition of a
keQx user-dependedinear pricing function that drives the NE close

C3: Pi(fk) < Prask(fr), Vi€ Qy andk € Qk to the Pareto optimal frontier with each player having only its

If there is a solution to the above game, then it would Hecal and certain neighborhood information. The neighborhood
the one that achieves the NE. Note that the above game diffél®rmation is acquired via control packets that are exchanged
from the game studied in [31] in the form of the utility functionduring the channel access process (see Section V for details).



Proposition 2: If there exists a NE for the gamé and are given by:
if this NE is Pareto optimal, then the linear pricing function a7 Ous (P O (P:
factor for useri should be: o) w; qgl(j E;f’;» + Z w; 7%}5 (}(J)Ck))
h (fk)P ( ) ij(fk) JEQN,jF1
fr)Pt = w; LB~ — 0.V
M E%R TN () (M (Fe) + gy () Py () ik =B = = 0,V € D andk € i
g (6) pi(fr) > 0,Vi e Qn andk € Q
where NBR denotes the set of neighbors for user i kpi(fr) =0,Vi € Qny andk € Q
Proof: By definition, a NE is the solution to the individ- Z (fir) —
ual utility optimization problem for each user given all other
users’ actions. In our formulation, each individual optimization
problem is a convex problem with the linear constraints C1-C3 Bi( Z Fi(fr) = Pmaz) = 0,Vi € Qn

in (5). So the Lagrangian function for usércan be written k€St
as: Pi(fx) — Pmask(fx) <0,Vi € Qx andk € Qg

- A Prias =0,Vie Qy andk € Q
Ji = w; Z a; (P (fr)) + Z a; 1 Pi(fx) Yik(Filfr) = k() o N K _
kEQk keQr By comparing K.K.T. conditions in (8) and (10), to obtain

—Bi( Z Pi(fi) — Z ik (Pif) = Prasi(f1)) the same solution, we must have:
keQx keQx l Ai(fk) _ _i Z w; aUJ(PJ(fk)) (11)
=w; Y [ui(Pi(fr)) = M) P(fl + Y cinPilfr) wi s 0 OB(fk)

keQgk keQg

_ﬁ ( Z (fk mou Z Vi, k Pmask(fk‘))(7)
kEQK kEQK M(fe) = 1 Z w, b (fie) P (fie)hij (fx) .
wherea; 4, B;, and~; ;. are the Lagrangian multipliers (non- wi s M) (M (fi) + Ry (fi) By (fi))
negative real numbers). The K.K.T. conditions [3] are given . ) ) . (12)
by: If the transmitter of link: and the receiver of linkj are
not neighbors, i.e., the transmission of linkat the maximum
0J; = w; Oui(Pi(fr)) _ wiki(fr) power cannot reach the receiver of ligk the channel gain
OP;(fr) OP;(f) hi;(fx) is set to zero. Thus, the optimal pricing factor for link
+aik — Bi — vk =0,k € Qg i only depends on its neighborhood information. We then have
pi(fi) >0,k € Qg the re;glt in Pro.position.2.. _ [ |
epi(f) = 0.k € O Intuitively, a higher pricing facton;(fx) will prevent user
ikPilJk) = K ¢ from using a large transmission power on charingh view

maI<OVZ€QN

keQk

(10)

By substitutingu; (P;(f%)) into (11), we have:

Z i (fx) = Praz <0 of (6), for link ¢ to determine its optimal pricing factor, the
keQx ®) following procedure is needed: If a neighbpiis to transmit
Z Pi(fr) = Prmaz) = over channel, it needs to broadcast its transmission power

ke P;(fr), the measured total noise and interfererde( fx),
Pi(f1) — Prask(fr) < 0,Vk € Qg and the channel gaih;;(f;) between the transmitter and the

receiver of linkj. The above information can be incorporated

ik (Pi(fr) = Prnask(f)) = 0,Vk € Qx into the control packets of the MAC protocol (details in

In contrast, to solve the social optimization problem (2) witfection V). In addition:;;(fx) can be measured from the
constraints C1-C3, the Lagrangian function can be written d€ceived signal power of the control packet.

/= g i kezﬂ wi(Pi(fi) + g; kezﬂ ixFi(fi) IV. | TERATIVE ALGORITHMS
7 N K 7 N K
From the propositions in the previous section, we can
- (A R - Pmaz . . .
ieg ’ kezﬂ (i) ) use the following iterative procedure to reach the NE. Each
y . individual CR user, say, first adjusts its linear pricing factor
o Z Z Visk Prask(fx)) i (fx) over all channels according to (6), and then determines

1€QN ke its best action [20], i.e., the optimal channel/power/rate combi-

= w; Z wi(Pi(fr)) + Z w; Z u;(Pj(fx)) nation, by measuring the total noise-plus-interference gl

keQ JEQN AT k€Qk over all channels. The best response of useto maximize its
n Z Z ai 1 Pi(fi) — Bi Z (Py(f1) — Pras) individual utility function (4) subject to the constraints C1-C3.
s ’ foryl The same procedure is repeated for all users in the network.
If such a procedure converges, then by definition, it has to
- Z Z Vi (Bi(fe) = Prask(fr)) ©) converge to a NE of the game in (5).
1€QN kEQK

Note that the utility function in (1) is monotonically in-
The K.K.T. conditions for the optimization problem in (2)creasing withP;(fx) given that the other users’ powers are



fixed, and the only condition that prevents usom choosing Algorithm 1 Sequential PIWF

infinitely large transmission power is the total power constrainb: Initialize P;(f;) = 0,Vi € Qn andk € Q,
C2. In our work, after adding the linear pricing function, theo: Initialize iteration count = 0.

utility function (4) now leads to finite optimal power settings 0: Repeat iterations:

even without the constraint C2. Ll=10+1,
Proposition 3: Treating other users’ transmissions as inter-2: for ¢ = 1 to N usersdo
ference, the best response of usés given by: 3. for k=1 to K channeldo
4: Estimate the total interference plus noise level
P; = BR;(P_;) = [BRi(P_;)(f1),..., BRi(P_;)(fK)] Mi(f);
ith (13) 5: Compute the pricing factok; (fx) using (6);
wi s 6: Estimate the channel gainy;(fx) using the received
1 M;(fr)] meskH® signal power of the control packet.
BR;(P_; = — 14 .
O _ (pd O] (I-1) (I=1)y.
. ) o P;” =BR;(P;’,....,P;”, P, 7,..., Py )
where [z]%, with b > a, denotes the Euclidean projection of ’ . , )
. ! b ; b . 9:  Transmit on selected channels usPé‘ .
x onto the intervala,b], i.e., [z]) = a If x < a, [z], =z If 10: end for
a <z <b, and[z]% =bif z > b. The water level3 is chosen PO Pl

11: until [ > L,,4. OF <eforallieQy.

to satisfy the total power constraint C2.

A similar result for the IWF algorithm is provided in [24].
Although we have an additional pricing function, a similar
analysis can be used to reach the result in Proposition 3. We L . . .
also provide an alternative proof in the Appendix using th s5%. If that condition is not satisfied aftdr,,, ., iterations,

sequential optimization technique as discussed in [7] and [2 e algorithm terminates. The above algorithm is akin to the

Note that without the power mask constraint and witho auss-$eidquocedure [13], where the players _takg theirturns
the pricing function (i.e.\(fs) — 0 for all k and 4), sequ_entlally and act on the most recent policy |nf0rn_1at|on
(13) becomes the classical water-filling solution. Figure z)btamed_from_ the other players. In a two-user scenario, the
graphically illustrates the difference between the tradition II+ 1)th iteration for user 1 can be expressed as:
water-filling [31] and the price-based water-filling solutiorpglﬂ) _ BRl(BRg(PY))) _ (BRl*BRg)(PY)) _ T(Pgl))
(13). The variable water level in the right-hand side of Figure 3 (15)

is because of the addition of the pricing factor in (14).  The Nash equilibrium is thus a fixed point [26] under the

_ mapping T(.). For the N-user case, the expression is more
Fixed water Variable water
level level
—
TX

complicated, but we will keep the notatidh as the mapping
Power

1—1
1Py

between the previous power vector and the current power
vector. For the IWF algorithm, to ensure convergence to
the NE, several sufficient conditions were proposed in the
literature. The convergence condition was first provided in [31]
for two-user cases and in [6] fa¥-user cases. More recently,

the convergence conditions have been further relaxed in [12]

and [24].
_illi channels Price-based . - . . .
Water-filling Water-filling channels  since the utility function (4) in our formulation possesses
an additional pricing function, the previous convergence proofs
Fig. 3: IWF versus PIWF. may not be applicable any more. In fact, since we are using

a time-varying pricing factor in Algorithm 1, the mapping

Several approaches are available for CR users to convergfdection T(.) is also time-varying. Thus, the fixed point
the NE according to the best response function defined in (18j€0rem that underlies the proofs in [12] and [24] can no
Naturally, CR users may make their decisions one after anotff¥f9€" be used. The convergence proof with a time-varying
or in parallel, which corresponds to sequential and paralf@2PPing function is challenging and will be left for a future

update procedures. The specific algorithms will be describ@@r- However, convergence is always observed in our sim-
next along with their convergence properties. ulations for various network conditions. Figure 4 depicts the

convergence behavior over several iterations with= 10

and K = 5. In the test network, ten CR pairs are randomly

. ~_placed in a square area. The figure shows the average sum-
If CR users are to make their best-response decisign§e improvement of the sequential PIWF over the classic IWF

sequentially according to a fixed order, we have a Sequer‘%{"f’éorithm for 1000 runs, with the starting sum-rate of the IWF

PIWF algorithm, and the algorithm can be generalized @fyorithm normalized to one. The two algorithms converge

follows: PO _p-1), at comparable speeds, but the NE solution for the sequential

The condition™ -t — <  is the stopping criteria for pjwr algorithm is much better than the NE of the classic IWF
the PIWF algorithm. Normallys is set to a small value, suchalgorithm.

A. Sequential Price-based lterative Water-filling



that the sequential update procedure converges to the unique
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Fig. 5: Example network with three CR links.
Fig. 4: Normalized system sum-rate versus iterations.
If the number of users in the network is large, the sequential

) ) ~_ update procedure may suffer from slow convergence. There-
Although the convergence proof for the time-varying pricingyre we now discuss parallel version of the PIWF algorithm.

function is difficult to establish, if the pricing factor remains
fixed over a few iterations, the convergence proof in [24] is ) _ -
still applicable. This is because adding a linear pricing functidh Parallel Price-based Iterative Water-filling

with a fixed pricing factor to the utility function in (1) has no Algorithm 2 describes a parallel update version of the PIWF
impact on the convergence proof in [24]. If we take the resuigorithm (the parallel IWF concept was first introduced in

in [24] and apply it to our CRN setting, we have the following25]). The stopping criteria for the parallel PIWF are the
proposition: same as those of the sequential PIWF. The parallel PIWF
Proposition 4: Given a linear pricing function with a fixed algorithm is related to thelacobi computational procedure
pricing factor over a few iterations, the sequential updaf8], where in each iteration CR users simultaneously perform
procedure converges to the unique NE if one of the twarice-based water-filling based on the interference generated
by the other users in the previous iterations. In a two-user

following sets of conditions is satisfied:
case, the counterpart of (15) is:

hyi(fr) ,
max ———= < 1,Vie 16
je%:mkem hii(fi) v U9 e pRp() - BR,(BRy(P)) - T(P)
’ (18)
th)<LWeQN (17) ,
Algorithm 2 Parallel PIWF

Z 4 kené?%(sj hii(fx)

1€EQN,

From (16) gnc?(l?), the convergence and the uniqueness of Initialize P;(f) = 0,Vi € Qny andk € Qf,
the NE are ensured if the CRs that share the same channel arelnitialize iteration count = 0.
far apart from each other, and thus cause weak interference Repeat iterations:
on one another. Figure 5 graphically illustrates these twa: [ =1+ 1;
conditions in a CRN that consists of three CR links. Eachp: for i = 1 to N usersdo
link is allocated two channels (e.g., nodes and B are 3. for k=1 to K channelsdo
allocated channel$ and 3). Condition (16) indicates that for a: Estimate the total interference plus noise level
]\/[L(fk)l

each CR receiver, the summation of the normalized channel
Compute the pricing factok; (fx) using (6);
Estimate the channel gainy;(f;) using the received

gains between that receiver and all interfering CR transmitters:
that share the same channel (normalized by the channel gaén
of the intended packet) is less thdn For example, for signal power of the control packet.
node B, this condition reduces t§<s)  hesls) 9 7. end for
aB(f1) A5 (fs) ' o (1-1) (1-1) (-1) (I—1)\.
& P;’=BR;P ",... P, P, .. Py )

Similarly, this condition is applied to receiver3 and F'. If
this condition is satisfied at all CR receivers, then according t@: end for

Proposition 4 the sequential update procedure converges to thefor ; = 1 to N usersdo
Transmit usinngl).

unique NE. The second condition (17) indicates that for each:
CR transmitter, the summation of the normalized channel gaias: end for O e
between that transmitter and unintended CR receivers sharityg until [ > L,,,, or % <cforallicQy.

the same channel is less thanFor example, for transmitter
A (17) reduces tgﬁ(’jggﬁg harlfs) ~ 1. Similarly, we can
In [24], it was proved that the convergence conditions for

: . e hiep( . -
derive this condition for fransmittef and E. If this condition
is satisfied at all CR transmitters, it is also sufficient to assdite parallel IWF and the sequential IWF are the same. For




a time-varying PIWF, the proof is not applicable. But if the More specifically, we can achieve a relaxed version of the
pricing factor of the linear pricing function remains fixed ovesequential PIWF algorithm if the best response function in
a few iterations, we can apply the corresponding proof aidgorithm 1 is replaced by:

arrive at the following corollary of Proposition 4. ) (i-1)

Corollary 1: If the conditions of Proposition 4 are satis- P}’ =wP;
fied, the parallel update procedure converges to the unique +(1 —w)BRy(P,...,PY P!V L PUY) (19)
NE of the game.

Corollary 1 shows that stability under the Gauss-Sei
procedure coincides with stability under the Jacobi iteratiof).
Furthermore, following the argument in [24], one can pro O
that any asynchronous computation in which the players ggte_stlmatmn errors at .the cost of slower convergence.
at random and use the most recent available policy from Otr:g::Slmnarly, we can arrive at a relaxed version of the parallel

ctor. The larger the value af, the longer the memory of

d here the factow € [0,1) can be interpreted as the memory
\Ee algorithm. With a largew, the algorithm is more robust

players converges to a NE, as long as no players remain i |QNF algorithm if the best response in Algorithm 2 is replaced

for an infinite duration. Hence, the achieved NE based
asynchronous updates coincides with the NE achieved with p(®) — ,;p{/~1)

arallel or sequential updates. ’ -1 -1 -1 -1
P The paralle(lqand sequpential PIWF procedures are distributedH1 N w)BRi(P(l )’ o PZ('*l )’ P§+1 )’ e ’PEV ))(20)
algorithms that maximize the total achievable data rate. BothAs proved in [24], the relaxation algorithms converge to the
have the same implementation complexity of the traditionghique NE of the game for any € [0, 1) under the conditions
IWF. As shown in Figure 4, these two algorithms greatlyy Proposition 4.
outperform IWF. In Figure 6, we can see that the parallel All the above proposed iterative algorithms are rate-adaptive
PIWF converges faster than the sequential PIWF, especigiiyA), where the data rates of users are maximized under trans-
for a large number of users. In this simulation, we assumsission power constraints. Similarly, we can design “margin-
that CRs are randomly located in a square area and 5 chanaglaptive” (MA) algorithms where users attempt to minimize
are available for their transmissions. Whether the players aggir transmission powers while satisfying a target data rate.
sequentially or in parallel makes a difference in the MA®oth RA and MA algorithms follow similar mechanisms. Due
design. In Section V, we discuss the impact of the updaie space limitations, we do not discuss MA algorithms in this
procedure on the MAC design. paper.
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V. MAC PROTOCOLDESIGN

In this section, we describe a MAC protocol that allows
CR users to operate efficiently in an opportunistic CRN. This
protocol implements the distributed channel/power allocation
strategies discussed in the previous sections. It should be noted
that a number of multi-channel MAC protocols have been pro-
posed in the context of CRNs (e.g., [14], [33], [32], and [28]).
Most of them do not allow multiple CR transmissions within
the same neighborhood to overlap in frequency channels, so
there is no interference among CR users. Such a restriction
| simplifies the MAC design, but limits its spectrum efficiency.

7 ‘ ‘ ‘ ‘ ‘ ‘ A natural extension (analogous to the improvement offered
10 5 o O B.® 35 40 by the POWMAC protocol [17] over the classic CSMA/CA)

is to allow CR users to overlap in spectrum, provided that
Fig. 6: Convergence speed of the sequential/parallel PIWHheir mutual interference does not lead to collisions. The
IWF algorithm [31] and the no-regret algorithm [19] were
proposed as two possible enabling techniques. However, the
works in [31] and [19] provide only channel/power allocation

C. Relaxation Algorithms lorith dd off tical MAC desi
. . .algorithms and do not offer a practica esign.
Both the sequential and parallel PIWF algorithms require In this section, we incorporate our price-based chan-

th? system_parameters to be co r_rectl_y eSt'matEd for each Iér/power allocation algorithms into an operational MAC
This condition may not be satisfied in practical systems.

thi bl wrelaxed” upndat h SFotocol. Since the IWF algorithm is a special case of the pro-
overcome this problem, a relaxed” updale scheme can Lfqqy pyywg algorithm, our MAC protocol can be simplified to
used (as in [2], [15], and [24]), and will be discussed here fof. .11 qate the classic IWF algorithm, thus complementing
completeness. In such a “relaxed” version, each CR is requirttﬁti work in [31] '

to remember its most recent policy choices together with the

choices of other users. The relaxed algorithms are more robust )

to occasional estimation errors and channel oscillations, Bt ASSumptions

lead to certain degradation in the convergence speed. We consider a CRN setting with the following features:

Convergence Steps

w b o

al B a a ol (2]
. T T

w

N
4]
ol gl




Backoff

o A dedicated control channel or a coordinated control Duraon , slo

channel [32] is used to support a community of CR users. Lmi;@’ BADCiBADC

Control packets are transmitted over the control channedene | BOEWOM | ROROANA

using a pre-assigned power valig, ;. - AW ™Ww A—sB ]
o Channel gains between any two terminals are symmetrigine 1 C—D 1

Data Flows

« The channel gain is static for the duration of severalp..
control packets and a flow of data packets. chamnet2

A —»B 1|

cw DW

B rRTs [ cTS O ots

B. Protocol Overview Fig. 7: Overview of the MAC operation with two CR trans-

Our MAC protocol uses three types of control packets fanissions @ — B andC — D).
the handshaking between a CR transmitter and a CR receiver:
Request-to-Send (RTS), Clear-to-Send (CTS), and Decide-
to-Send (DTS). Unlike in the classic CSMA/CA SChem?andom amount of time, selected froff,{;,,, Thas], before
and other multi-channel MAC protocols for CRNs, these ' e Tmazd

control packets are not used #&xclusivelyreserve channels dccessing the channel.
P y The AW consists of a number of fixed-size slots. The size

(i.e., prevent neighboring CRs from accessing th(_e resgrvgpeach slot isT,,., plus the durations of the RTS, CTS
channels), but rather to exchange some information within

; : S . nd DTS packets, plus 3 SIFS durations (SIFS denotes the
the neighborhood. Such information is used by terminals . . .

; . o short interframe spacing between successive control packets).
determine their transmission parameters.

The control packets are exchanged within a certain duratioIH each slot, CR nodes compete for admission following a

referred to as theontention windom(CW). A CW can be standard CSMA approach. . .
initiated asynchronously by any CR user that has packetsIf CR B su.ccessfullly. receves the RTS pa(.:ket frof it .
to transmit and that is not aware of any active CWs in i,[needs to dgc!de the initial char?nellpower policy for the link
neighborhood. Such a user is referred to amaster user B This is done_as follows: _ _
Other CR users that follow the schedule of an ongoing CW * First, nodeB estimates the channel gain between itself
are calledslave usersNote that the master/slave designation ~and nodeA (denoted byh455(fo)). This is facilitated by

of a user is dynamic, i.e., it changes with traffic and mobility ~knowledge of the RTS's transmission powéf.{,;) and
conditions. The objective of the CW is to allow several pairs of ~ the received power of the RTS. Fromp(fo), CR B

CR nodes to repeatedly negotiate their transmission channels COMputeshap(fx) for all k € Q. The determination of
and powers. As shown in Figure 7, the CW is divided into  has(fx) from hap(fo) is made possible by knowing the
two parts. The first part, referred to as thecess window carrier frequencies and by assuming a certain path-loss
(AW), is used by CR nodes to compete for admission to the Model. For example, under the two-ray model [21] and
CW and initialize their transmission policies. The second part, for @ given transmission poweh.as(fi) = has(fo) X
referred to as théraining window (TW), is used by the CR (fo/ fx)?, wherefy is the carrier frequency of the control
nodes to repeatedly negotiate their channel/power policies (as channel.

explained later). Note that the AW can be considered as ther Next,  node B~ measures Mg =

first iteration of the training process. CR nodes that have been [M5(/f1), M5 (f2), ..., Mp(fx)] over all data channels.
successfully admitted during the CW transmit a flow of data  Note that for the sequential PIWF algorithm, if there are
packets over one or multiple data channels (as determined Previous CTS/DTS packets that have been received in
during the CW) within adata window(DW). The durations for the same AWM is computed as the sum of the current
the AW and DW are changed adaptively, similar to the single- Mgz and the predicted CR-to-CR interference, which is
channel POWMAC protocol [17]. As for TW, its size (in slots) ~ ©btained by assuming that the neighboring links transmit
is dictated by the convergence speed of the iterative resource USing the channels/powers specified in their CTS/DTS.
allocation algorithm. In general, an unnecessarily large value* Then, nodeB determines the pricing factoxs(f) for
increases the overhead, but does not necessarily improve the &ll data channel#. For the sequential PIWF algorithm,
throughput (as shown in Figure 4). On the other hand, a small *5(/x) is computed using (6), where the neighbor-
value may give sub-optimal results. In Section VI, we study hood information is obtained from previously received

the performance of the MAC protocol under various TW sizes. CTS/DTS packets in the same AW. For the parallel PIWF
algorithm, A (fx) is initialized to 0.

_ _ « Finally, based on the above information, naledecides
C. Operation Details its best-response transmission policy according to Propo-

1) Access WindowwWhen a CR nodet intends to commu- sition 3.
nicate with another node, it first needs to contend during After the above procedures have been executed, r$de
the AW. If node A is not aware of any ongoing AW in its will send a CTS, announcing its channel/power allocation. The
neighborhood, it initiates a new AW (i.e., it becomes a maste&TS includesMp(fx) and hap(fi) for all k € Sp, which
user). Otherwise, nodd contends during one of the slots ofare used by neighboring CRs to update their best responses.
the ongoing AW. In either case, nodk first backs off by a Note that even if the set of selected chanrfglsis empty (i.e.,



the computed transmission power is zero for all channels), t8® users. Specifically, the admitted links in the previous AW
link A — B will still be admitted in the AW. This is becausewill contend in the current AW without backoff, according
the data transmissioA — B may later be allowed to proceedto their order in the previous AW, as long as they still have
after several iterations in the TW. packets to transmit. After these links have been admitted, other
If node A receives the CTS fronB, it will respond with a links compete for the remaining slots, following the backoff
DTS packet, repeating the information included in the CT#iechanism that was discussed in the previous section. Such
This DTS is used to alleviate tHedden terminalproblem as a design is meant to facilitate the convergence behavior. To
in [17]. ensure fairness among users, we set a liffjitopn the maxi-
The above steps are repeated by CR pairs in every AW slgtum number of continuously prioritized packets. Specifically,
2) Training Window:CR nodes that are admitted in the AWif one CR user acquires the channel in one session, it will have
iteratively negotiate their transmission parameters in the T\fiorities in accessing the control channel for the néxt 1
following the same order of their admissions in the AW. Ipacket transmission durations (as long as the user has packets
contrast to the AW, the TW is accessed in a TDMA manndg transmit). The parametdris selected to be larger than the
The TW consists of a number of slots (the TW size), whegonvergence time of the algorithm.
each slot is used to conduct one iteration of the channel/powerhe channel/power policies are updated in the AW following
allocation algorithm, using CTS and DTS packets. Note thaimilar procedures to the flow-based MAC. The only differ-
there is no need for the RTS during the TW, since ne@nce is that the interference-plus-noise level is now estimated
admissions are not allowed. from the previous DW, instead of the previous iteration in the
In each iteration, the receiver of a CR link updates thEW. In the next section, we compare the performance of this
transmission policies based on the policies of its neighboggsign with that of the flow-based MAC.
The updates are made based on either the sequential or the

paralle! scheme. Speci.ficglly, if the sequential PIWF algorith@_ Implementation of Relaxed Algorithms
is applied, the transmission policy of each CR user is made _ _ . ) _ _
based on the policies of all previous users in the same iteration' "€ |mplementgt|0n of th,e relaxed” version aIgonthms
(obtained from CTS/DTS packets) and those of the other us&fsth® MAC design is straightforward. Each CR receiver
in the previous iteration, as described in Algorithm 1. If th1€morizes its most recent policy, and makes decisions based
parallel PIWF algorithm is applied, the policy of each CR usé (19) for the sequential algorithm (or (20) for the parallel
is made based on the policies of other CR users in the previ@igerithm). Since the convergence speed of the “relaxed
iteration, as described in Algorithm 2. Note that the AW i§ IWF is slower, a Ir?lrger TW size is needed for the flow-based
regarded as the initial iteration of the training process. AftdffAC protocol. Similarly, for the packet-based MAC, a larger

each computation, the receiver sends a CTS, announcingni‘rgnber of data packets are transmitted before the convergence

transmission policy. Upon receiving the CTS, the transmittGAN P& achieved.
will send a DTS, repeating the information in the CTS.
3) Data Window: The last negotiated transmission policies VI. PERFORMANCEEVALUATION

in the TW are used by the CR nodes for data transmissionsro evaluate the effectiveness of the proposed MAC, we
in the DW. In the DW, a flow of data packets is transmittegonduct MATLAB-based simulations of a hybrid network with
from each CR transmitter. The length of the flow is selecteshe PRN and one CRN. Nodes in these networks are uniformly
such that the channel conditions remain static over the entgigtributed over a square area of length 100 meters. The PRN
flow. ObViOUSly, the DW size needs to be selected aCCOfdiBgerates in the 300 MHz band, Occupying five non-oveﬂapping

to the channel’'s coherence time. 1-MHz channels, with 10 PRs in each channel. The time is
divided into slots, each of length 10 ms. In each slot, each PR
D. Simplified Packet-based MAC Design attempts to transmit with a probability of, the PR’s activity

, factor. The transmission power of each PR is 1 Watt when it
The above MAC design can be used for flow-based chanrely,  and the antenna length is 5 cm.

access, where a sequence of data packets are transmittgfe ,se the following signal propagation model to simulate
using converged channel/power policies agreed upon dur PR-to-CR and CR-to-CR interference over chargll]:
the TW. Thus, the sum-rate of all competing CRs is likely to

be maximized if the channels remain static over the duration d -
) S T . P, = Py, (fx) | — , for d > do(fx 21
of the data flow. However, if sum-rate optimality is not critical, (/i) % (i) (do(fk)) olfi) (1)

we can simplify the protocol by removing the TW and Onl)OVherePT(fk) is the received power over channield is the

allow for a single data-packet transmission in the DW. Thigistance between the transmitter and the receilg@r ) is the
design then becomes packet-based, and the convergence is e

: : ! ¥fence distanceP,, (f5) is the reference received power
achieved after .several sessions of CW an_d DW. (provided thﬁtdistancedo(fk) over channelk, and  is the path loss
channel conditions remain static within this period).

. ) ' exponent. We sefy(fx) = 1 meter,y = 4, and we compute
Note that in the previous section, all CR nodes conte . (f) as follows [21];

in the AW with equal probability. In contrast, in the packet-
based MAC design, the admitted users in the previous AW v(fx)

_ 2
have priorities in accessing the control channel over other Pa, (fu) = Pt(fk)Gt(fk)GT(f’“)(47rd0(fk)) (22)
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where P, ( fy) is the transmission power on chanielG,(fx) NE. However, as seen in Figure 4, 2-3 iterations are normally
andG,.(fr) are the transmitter and receiver antenna gains sofficient to reach a near-optimal sum-rate. The same behavior
channelk, andv (i) is the wavelength of the carrier frequencys observed from the MAC simulations. As seen in Figure
of channelk. For simplicity, we seG,(fx)G,(fx) = 1 for all 10(a), taking a TW of size 2 is enough to achieve 95% of the
channels. maximum system throughput in the simulation setup. Figure

We simulate 10 pairs of CRs. The maximum transmissidiO(b) shows the corresponding average power consumption.
power for CR is 1 Watt, which ensures that CRs are within
the maximum transmission range of each other. The AWGN o Fiow Dased PVWEMAC
noise levelNj is set to—70 dBm over all channels. Each CR iy Pkt s aAC |
transmitter generates burst of packets according to a Poisson
process with parametek burst/second. Each burst has an
exponentially distributed duration with meayiu second. The
traffic rate for CR is defined aa/u. We set the CR-to-PR
power mask to 0.5 Watt for all channels.

We compare the performance of the proposed flow-based
PIWF-MAC protocol with the packet-based PIWF-MAC pro-
tocol, against the flow-based IWF-MAC protocol. Since the
IWF algorithm is a special case of the PIWF algorithm, 15,‘
the proposed MAC protocols are also applicable to the IWF
algorithm. The DW for the flow-based MAC protocol allows 10 e o o5 o - o
10 data packets to be transmitted in a row. The comparison Traffic Rate
is in terms of the system throughput and the average power (a) System throughput vs. traffic rate.
consumption. The system throughput is defined as the average
volume of CR traffic bits that are transmitted in one second, 8 ‘ ‘ ‘ ‘ ‘ ‘ ‘
and the power consumption is calculated as average power B e e -
consumption by all CRs. | | Flow-based IWF-MAC M

The resulting performance is depicted in Figure 8 through
Figure 10. Figure 8(a) shows the system throughput versus the
traffic rate. As expected, the flow-based PIWF-MAC protocol
gives the highest throughput. This throughput improvement
over IWF-MAC becomes more significant at higher traffic
rates. It is interesting to see that the simplified packet-based
PIWF-MAC protocol exhibits comparable system throughput
with the flow-based PIWF-MAC protocol. Besides achieving a
higher system throughput, the PIWF-MAC protocols also save 1
transmission power, as shown in Figure 8(b). This is because
in IWF, users greedily maximize their own rates using the 01 02 03 04 08 06 07 08 09
maximum transmission power, while such greedy behaviors . .
are overcome by the pricing technique used in PIWF. Note that (b) Average power consumption vs. traffic rate.
although the packet-based PIWF-MAC consumes less energy Fig. 8: Performance whea = 0.1.
in control overhead than the flow-based PIWF-MAC, it con-
sumes more energy in data transmissions. This is because in
the packet-based PIWF-MAC, the optimal power assignment is VII. CONCLUSIONS
achieved after several packet transmissions (due to the absende this paper, we proposed a PIWF algorithm for spectrum
of a control-based training phase). The confluence of the twbaring in cognitive radio networks. Our PIWF algorithm can
energy-consumption factors still favors the flow-based PIWBe implemented distributively with CRs repeatedly negotiating
MAC. their transmission powers and spectrum. Simulation results

Figure 9(a) depicts the network throughput versus the PRkowed that the proposed algorithm greatly improves the NE
activity factor . As expected, a highex results in a higher compared with the one achieved using the IWF approach.
PR-to-CR interference, which negatively affects the througBased on the order by which CR nodes make their resource
put. Figure 9(b) shows the corresponding average powadlocation decisions, we studied sequential and parallel ver-
consumption. In all cases, PIWF-MAC protocols consume les®ns of the PIWF algorithm. The parallel update scheme was
power. shown to converge faster than the sequential update scheme,

Finally, Figure 10(a) shows the throughput versus the traiaspecially for a large number of users. We also presented
ing window size. Since the simplified packet-based PIWFrelaxed” versions of the PIWF algorithms, which are more
MAC does not employ a TW, we only compare the flowrobust to estimation errors and channel oscillations at the
based PIWF-MAC and flow-based IWF-MAC. Intuitively, acost of slower convergence. Based on the PIWF algorithms,
larger TW size will ensure that CR users will converge to thiiow-based and packet-based MAC protocols were designed.
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0.1.

Our simulation results showed that the PIWF-MAC protocah [7]). After bounding P*(fi) by Prask(fr), the remaining
achieves considerably higher system throughput compangever will be further water-filled over other channels, thus

with the IWF-MAC, with less energy consumption. reaching the result in (13). [ ]
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