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Target detection and tracking with heterogeneous
Sensors

Huiyu Zhou, Murtaza Taj, Andrea Cavallaro

Abstract—We present a multimodal detection and tracking
algorithm for sensors composed of a camera mounted between
two microphones. Target localization is performed on color-based
change detection in the video modality and on Time Difference of
Arrival (TDOA) estimation between the two microphones in the
audio modality. The TDOA is computed by multi-band General-
ized Cross Correlation (GCC) analysis. The estimated directions
of arrival are then post-processed using a Riccati Kalman filter.
The visual and audio estimates are finally integrated, at the
likelihood level, into a particle filter (PF) that uses a zero-order
motion model, and a Weighted Probabilistic Data Association
(WPDA) scheme. We demonstrate that the Kalman filtering (KF)
improves the accuracy of the audio source localization and that
the WPDA helps to enhance the tracking performance of sensor
fusion in reverberant scenarios. The combination of multi-band
GCC, KF and WPDA within the particle filtering framework
improves the performance of the algorithm in noisy scenarios. We
also show how the proposed audiovisual tracker summarizes the
observed scene by generating metadata that can be transmitted
to other network nodes instead of transmitting the raw images
and can be used for very low bit rate communication. Moreover,
the generated metadata can also be used to detect and monitor
events of interest.

Index Terms—Multimodal detection and tracking, Kalman
filter, particle filter, heterogeneous sensors, low bit rate com-
munication.

I. INTRODUCTION

Localization and object tracking using audiovisual measure-
ments is an important module in applications such as surveil-
lance and human-computer interaction. The effectiveness of
fusing video and audio features for tracking was demonstrated
in [1], [2], [3]. The success of the fusion strategy is mainly
because each modality may compensate for the weaknesses of
the other or can provide additional information ( [4], [5]). For
example, a speaker identified via audio detection may trigger
the camera zooming in a teleconference. The main challenges
for audiovisual localization are reverberations and background
noise. Therefore, the audiovisual sensor networks (with camera
and microphone arrays) have been used to address these
problems using a variety of sensor configurations. Fig. 1
shows a summary of these configurations, which range from
a single microphone-camera pair to single or stereo cameras
with stereo, circular arrays or linear arrays of microphones.
Camera-microphone pairs are used for speaker detection in
environments with limited reverberation under the assumption
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Fig. 1. Examples of sensor configurations for audiovisual object detection and
tracking (filled circles indicate microphones; empty circles indicate cameras):
(a) single microphone-camera pair; (b-c) Stereo Audio and Cycloptic Vision
(STAC) sensors; (d-e) circular microphone array with single camera; (f)
triangular microphone array with single camera; (g) linear microphone array
with single camera.

Q)

that the speakers face the microphone [6]; single or stereo
cameras with multiple microphones are used in meeting rooms
and teleconferencing ( [7], [8]). Gatica-Perez ef al. use cameras
and eight microphones to capture interactions in meeting
scenarios ( [9]). A Stereo Audio and Cycloptic Vision (STAC)
sensor, composed of a single camera mounted between two
microphones (Fig. 1(b-c)), makes the designed system simpler,
cheaper and portable and is used in this work. STAC sensors
are used to perform audiovisual tracking with a probabilistic
graph model and fusion by linear mapping ( [10]) or with
particle filtering ( [11]). The cost of using such a simple sensor
against an array of microphones is its sensitivity to noise and
reverberations.

In this paper, we present a target detection and tracking
algorithm based on the measurements of a STAC sensor. The
novelty of this approach is on the use of Kalman filter to
improve the accuracy of audio source localization and on
a new fusion strategy based on Weighted Probabilistic Data
Association filter (WPDA), which associates the hypotheses
and the measurements with a real target. WPDA takes into
account the weighted probability of the detections to increase
the importance of reliable audiovisual measurements in each
iteration. Furthermore, we also introduce a reverberation fil-
tering technique based on multi-band frequency analysis to
reduce the erroneous peaks due to noise and reverberations
in the Generalized Cross Correlation Phase Transform (GCC-
PHAT). To further smooth the audio source localization we
apply a Riccati Kalman filter. Moreover, image appearance (a
4D state space and color) of the objects in two-dimension is
used to further enhance the validation of a track. These two
processes are accommodated as independent observations in a
particle filter that applies a WPDA in the decision stage. Par-
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Fig. 2. Flowchart of the proposed audiovisual tracking algorithm.

ticle filtering is here applied due to its robust performance in
processing multimodal information ( [1]). The block diagram
of the proposed audiovisual detection and tracking algorithm
is shown in Fig. 2.

This paper is organized as follows: Section II introduces
the related work. Section III presents the proposed audiovisual
tracking algorithm. This is followed by the description of the
experimental work in Section IV. Finally, conclusions and
future work are drawn in Section V.

II. RELATED WORK

A significant amount of work has been reported on detecting
and tracking single or multiple moving objects using Kalman
filter (KF) ( [12], [13]), particle filter (PF) ( [3], [14], [15]) and
variants of probabilistic data association (PDA) ( [16], [17]).
Multimodal multi-sensor configurations are used for object
tracking ( [14], [18], [19], [20]) to compensate for failure of
each modality. Tracking can be performed using the video
modality only ( [21]-[25]), the audio modality only ( [26]-
[29]) or using audio and video simultaneously ( [1], [3], [7],
[91, [14], [30]-{33D).

Many approaches are addressing audiovisual tracking for
smart multimodal meeting rooms ( [8], [9], [30], [31], [35],
[39]). Tracking of multiple non-simultaneous speakers is de-
scribed in [33] whereas in [30], [35] the authors track a single
speaker using variants of the classical particle filter in smart
rooms. In meeting scenarios, interaction of multiple speakers
is modeled using mixed-state dynamical graph models ( [9],
[39]). Similarly, turn taking events can be recognized by
semantic analysis of the scene using trajectories generated via
the audiovisual particle filter ( [31]). Moving speakers can be
tracked using Bayesian hidden variable sequence estimation
( [8]). This approach is equivalent to extending the Bayesian
network to a dynamic Bayesian network in order to account
for the dynamics of the state of the sound sources ( [8]). Face
and upper body parts can be detected using contour extraction
by performing edges and motion analysis and then combined
with audio detection in particle filter framework ( [1], [11],
[40]). Gehrig er al. ( [12]) apply audio detection to generate
face positions that could also be observed by multiple cameras.

Unlike meeting rooms, more challenging scenarios are
uncontrolled environments (e.g., indoor and outdoor surveil-
lance) where it is not practical to use complex microphone
configurations requiring sophisticated hardware for installation
and synchronization. Recently, simple configurations (e.g.,

-

one camera and two microphones) were adapted using Time-
Delay Neural Networks (TDNN) and Bayesian Networks (BN)
( [36]). Audio features are detected by computing the spec-
trogram coefficients of foot-step sounds via the Short-Time
Fourier Transform (STFT). TDNN are then used to fuse
the audio and visual features, where the latter is generated
using a modified background subtraction scheme. However,
it is unclear how object detection is achieved when visual
features are unavailable. Moreover, this algorithm rely on a
pre-training stage that leads to intensive processing. Sensors
similar to STAC sensors, with a pan, tilt and zoom (PTZ)
camera are used to detect speakers in the near field with
unscented particle filter for data fusion ( [35]). Since STAC
sensors are sensitive to reverberations, multi-band analysis and
precedence effect are used in [15] and [32] to preprocess the
audio signal before applying particle filter for data fusion.
When the target dynamics and measurements are linear and
Gaussian, a closed-form solution can be uniquely determined.
Such target dynamics can be modeled using the Kalman filter
to fuse the audio and video modalities ( [13]). The Kalman
filter cannot effectively handle nonlinear and non-Gaussian
models ( [13], [14], [17]), although an extended Kalman
filter can linearize models with weak nonlinearities around
the state estimate ( [17], [41]). Particle filter is a popular
choice to address nonlinearity and non-Gaussianity ( [1], [11],
[15], [35], [40]). Cevher et al. ( [3]) use a particle filter
to combine acoustic and video information in a single state
space. The Kullback-Leibler divergence measure is adopted
to decrease the probability of divergence of the individual
modalities. Vermaak et al. ( [1]) combine a particle filter
based head tracking with the acoustic time difference of arrival
(TDOA) measurements to track speakers in a room. Bregonzio
et al. ( [32]) use color-based change detection and TDOA
for generic object tracking. In most approaches the detection
mechanism uses TDOA or beamforming for audio detection.
Speakers can also be detected using a recognition mechanism.
In such case Mel-Frequency Cepstral Coefficients are used for
speech recognition and video recognition can be done using
linear subspace projection methods ( [38]). A summary of
multimodal tracking algorithms is presented in Table I.

III. AUDIOVISUAL TRACKING

The problem of audiovisual tracking involves the estimation
of the arrival angle of the audio signal, video detection,
filtering and smoothing of the two modalities, fusion and
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TABLE I
MULTIMODAL TRACKING ALGORITHMS. (KEY: PF=PARTICLE FILTER, KF=KALMAN FILTER, DKF=DECENTRALIZED KF, LDA=LINEAR DISCRIMINANT
ANALYSIS, TDNN=TIME DELAY NEURAL NETWORKS, GM= GRAPHICAL MODELS, MFA=MULTI-FEATURE ANALYSIS, HCI=HUMAN COMPUTER

INTERACTION).
References Sensor types Algorithms | Application
[8] Stereo camera and circular microphone array PF Multimodal user interface
[33] 2 cameras and 4 microphone arrays PF Indoor multiple person tracking
[3] Camera and 10 element uniform circular array | PF Outdoor surveillance
[7] Panoramic camera and 4 omni-microphones MFA Face detection
[34] Wide-angle camera and a microphone array I-PF Meeting rooms
[35] PTZ camera and 2 microphones PF Teleconferencing
[6] Camera and microphone TDNN Lip reading, HCI
[10] GM Indoor environment
[36] Camera and 2 microphones TDNN Surveillance
[1], [11], [15], [32] PF Surveillance and teleconferencing
[12], [13], [37] KF, DKF Smart rooms
[38] Multiple cameras and microphone arrays LDA Smart rooms
[91, [30], [31], [39] PF Meeting rooms

finally joint state estimation. Let the target state be defined as
y(t) = (x,y,w, h,H), where (x,vy) is the center of the ellipse
approximating the object shape, (w,h) are the width and
height of the bounding box and H is the color histogram of the
object. Let the measurement equation be z(t) = Uy (t)+n(t),
where U is transition matrix and n(t) is an independent
and identically distributed stochastic process. Moreover, let
¥a = (x4) denote the audio only state, let z, denote the audio
only measurements and let y, = (z,,y,w, h,H) denote the
video only state.

The problem of multimodal tracking can be formulated as
a state estimation against time ¢, given the audio and visual
observations. Particle filters estimate an approximate state y ()
on the basis of all the previous and current observations
z(1 : t), which contain visual and audio features. The tracking
problem aims to estimate the posterior probability p(y (¢)|z(1
t)) using a recursive prediction and update strategy ( [42]). In
the prediction stage the prior probability distribution func-
tion is p(y(t + 1)]z(1: 1)) = [ ply(t + Dly(t))p(y(t)la(1
t))dy(t), where p(y(t + )|y( )) is determined if an obser-
vation is available, and p(y(¢)|z(1 : t)) is known from the
previous iteration.

The state update equation is a zero-order motion model
defined as y(t+1) = y(t) + N (p1, o), where NV is a Gaussian
noise. Given the measurements z(t), the update step is based
on the Bayes’ rule:

p(y(®)|z(1: 1)) =

pz(0)]y()p(y ()|z(1 : t — 1))
Jpz®)ly@)p(y()lz(1:t — 1))dY(t)(i)

The posterior probability p(y(¢)|z(1 : t)) can be approxi-
mated as a set of N Dirac functions: p(y(¢)|z(1 : t)) =
SN Wi)d(y(t) — yi(t)), where wi(t) are the weights as-
signed to the particles, computed as
(z(®)ly'(t = D)p(y' @ly'(t - 1))
a(y* )]y (t = 1),2(t)) ’
where ¢(-) is the proposal distribution. To avoid degeneracy
whilst discarding the particles with lower weights we apply re-

wi(t) o wh(t — 1)p (2)

sampling ( [43]). Then, we obtain the weights as &' (t — 1) =

wi(t—1)/(N-a*(t—1)), where a’(t—1) = w'(t — 1) because
of the uniformness constraint. Thus, we obtain
W' (t) o< p(z(t)]y' (1)), 3)

i.e., weights are proportional to the likelihood of the obser-
vations. The likelihood p(z(t)|y(t)) is the product of the
likelihood estimates of the various features (p(z(t)|y'(t))), as
detailed in Section III-C.

A. Audio source localization using Kalman filtering

The two microphones of a STAC sensor measure the
acoustic signals at different time instants (Fig. 3 and Fig. 4).
The arrival angle of this signal can be estimated using Time
Difference of Arrival (TDOA) or steered beamforming ( [3],
[26], [44]-[46]). Let us assume that one target at a time emits
sound and that the sound is generated in the direction of
the microphones. Then TDOA can be utilized to compute
the delay 7 of the wave between the reference microphone,
M, and the second microphone, My (Fig. 3). We preprocess
the audio signals before the estimation of the arrival angle
to reduce the effect of noise and reverberations. Similarly
to background modeling in video ( [47]), we assume that
the first 200ms of the audio signal contains changes that
are due to noise only. Next we filter unvoiced segments by
analyzing the zero-crossing rate ( [48]). For each windowed
audio segment, zero-crossings are counted and the mean, p,
and the standard deviation, o, are used to define high zero-
crossing rate as ¢ > u + «o, where ¢ is the zero-crossing rate
for the windowed segment and « is a weight dependent on the
sensor and the environment. Based on this threshold, unvoiced
signal segments are filtered, as shown in Fig. 5. Using the same
initial 200ms interval, we compute the signal noise level as

1 Fn  Sn
53 > anm
" pn=1m=1

with j =1,2  (4)
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speaker

Fig. 3. Source-receiver geometry for a STAC sensor in the far field. The
distance between the microphones M7 and My> is denoted by d and the arrival
angle by 6. The sound wave has to travel an additional distance of dsin 6 to
reach microphone M.

where F), is the number of audio frames, S,, is the number
of samples in a frame and g; is the audio frame from the
4t microphone containing 1764 (0.04 seconds at 44.1KHz)
samples. The noise level is then used to detect onset frames
with significant signal component without reverberation. The
apparent location of a sound source largely depends on the
initial onset of the sound, a phenomenon known as precedence
effect or law of the first wavefront ( [49]-[51]).

Let G; be the signal levels computed as:

s
1 n ) ) .
Gj(n) = 5 Zgj(z), with j =1,2. ®)
" i=1

The frames are considered as onset frames if G;(n) > BNs;,
where ( is the noise weight. After each onset detection, the
next th, = 6 frames are considered as signal component while
rest are assumed to be due to reverberation, and hence ignored
until a null frame (G;(n) < SNs;) is detected.

We estimate the arrival angle using a multi-band frequency
analysis to further reduce any residual reverberation effect.
The angular estimates are conducted in the low (0 — 400Hz),
middle (400 — 960Hz) and high-frequency (960 — 1600Hz)
bands. We then divide these bands into two groups, namely
Group 1 (middle frequency band) and Group 2 (low and high
frequency bands). This division is done as some materials
have higher absorptivity at high frequencies, whereas others
may have higher absorptivity at lower frequencies ( [52]). Let
the state and the observation vectors represent Group 1 and
Group 2, respectively. This means that the audio state vector
(i.e. the x position of the target) is obtained from the middle
frequency band whereas the observation vector is obtained
from the low and high frequency estimates. To determine the
audio state y, = (z,) using the estimated delay 7 we apply a
Riccati Kalman filter, as it offers better performance in noisy
environments ( [53]).

The Kalman filter works with a state space model consisting
of a process and an observation equation:

{7t 1) = A 4 109 ©
o(t) = ClH)yal) +0a(t)

Frequency (Hz)

Frequency (Hz)

Fig. 4. Sample spectrograms from (a) microphone 1 (M7) and (b)
microphone 2 (M2). The signal at M> is delayed and attenuated.

Fig. 5. Example of voiced/unvoiced segment detection for Sequence 1 (SC
1) using o« = 0.8. The original signal is shown in blue and the filtered signal
is shown in green.

where
A(t)“ _01], ™

and C = [1, 0] is the transition matrix. ¢ (¢) and ¢3(t) are two
noise terms that are assumed to be zero mean, white Gaussian
random vectors with covariance matrices defined by

U(g;(t)e;" (k) = { (?j(t) fort =k

otherwise

where j = 1,2; Q; is the covariance matrix of the process
noise, and Qs is the covariance matrix of the measurement
noise. ¢1(t) and ¢o(k) are statistically independent and there-
fore W(¢p;(t)¢;” (k)) = 0 for all t # k.

Let y!(¢|Z,(t—1)) be the predicted state estimate of y, (t)
deduced from all observations Z,(t—1) = (zn,);i;}J up to time
t — 1. The predicted observations is then expressed as

z) (t|Za(t — 1)) = C(t)ys (t|Za(t — 1)). 9)

; ()

The innovation is the difference between the actual and
predicted observations:

B(t) = za(t) — C(t)y, (tZa(t — 1)) (10)
The correlation matrix of the innovation sequence as
p(t) = C(H)Q(t,t — 1)CT(t) + Qa(t), (11)
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(a) (b) ()

Fig. 6. Examples of audio source mislocalization. (a): The speaker on the
left is talking, but the peak indicates the person on the right. (b) and (c): The
speaker on the right is talking, but the peak indicates the person on the left.

and the covariance matrix

Qt,t=1) = E[(ya(t) —ya (11 Ze-1)) (va(t) =¥ (t]1Ze-1)"].
(12)

The Kalman gain is defined as

K(t)=A(t+1,)Qtt—1DCTHP 1), (13)

To compute the Kalman gain, we need to estimate Q(¢+ 1,¢),
which is
Qt+1,1) = At + 1, QAT (t +1,1) + Q1(t)
Q(t) = [1— A1+ DK@ COJ(t 1 — 1)

where I is the identity matrix. Finally, the state estimate can be
updated according to the Kalman gain and innovation ( [54]),
that is

Ya (t+1|Za(t))

» (14)

= A+ 1y} (HZa(t - 1)) + KEB().
(15)

B. Weighted probabilistic data association

Although the Kalman filter reduces the localization dis-
crepancy, the estimated GCC peaks can deviate from the real
audio source positions due to various noise components. As
a result, the performance of the entire multimodal tracker
will deteriorate, especially in the presence of adjacent objects
(Fig. 6). To minimize the discrepancy between the real and the
estimated positions, we propose a strategy that associates the
hypotheses and the measurements with a real target, using a
Weighted Probabilistic Data Association (WPDA) algorithm.
Unlike PDA and Joint-PDA, WPDA takes into account a
weighted probability of the detections in each iteration to
increase the importance of reliable audiovisual measurements,
based on the prior estimates and on validation data, and
further weaken the unreliable hypotheses. The correspondence
between the audio and the video modality is done using a
Gaussian reliability window. Only the measurements falling
within this region are considered to be valid.

Let p’ denote the probability of the prediction T'(¢), given
the measurements z(t) up to time ¢:

p’ o p(T(t)|2(1)).

The prediction I'(¢t) can be obtained based on the prior
I'(t—1) and the association hypotheses =(¢—1) for the current

(16)

measurements. =(t— 1) associates each measurement z(t) with
a target. p' is intractable due to the unknown association.
Instead, we can estimate p(T'(t), Z(¢)|z(t)) using the Bayes’
rule as

p(T(8),E()]z(t)) =
= ap(@)[T(t),E()p(E@)T#))p(T (),

where ¢ is a normalizing factor and p(z(¢)|T'(¢), Z(t)) can be
expressed as

p(2(t)|T (), E(t)) oc TN p(n) =
= op(Dly(®))p(Cly(t))p(Aly (1)),

where () is an intermediate function, and M; is the number
of the measurements obtained by different sensors. Eq. (18)
shows that the conditional probability p(z(¢)|T'(¢),Z(t)) de-
pends on the multiplication of the posterior distributions of
different measurements.

The third term of the right hand side of Eq. (17),
p(E(¢)|T'(t)), is the probability of a current data association
hypotheses, given the previous prediction and estimation. Let
Np(t), N¢(t), and N, (t) be the measurements associated with
the prior, false and new targets respectively. Considering a
binomial distribution for N,(¢) and the positive side of a
Gaussian distribution for N (t) and N, (t), we can express
p(N, (1), Ny (£), Nu (DT (1)) as

amn

(18)

P(Np(t), Ny (1), Np(t)|L'(2)) =
P(Np ()T () (N (1), Nu(t)|Np(t),L'(2))
= p(Np(O)[L(8))p(Ny ()| Np(t), Nu(t), () x
Xp(Nn(t)[Np(t), Ny(t),T'(2)), (19)
where
p(Np(1)[L'(t)) =
= ( xfl((?) )pd@)““)(l—m(t))Nf“)Nd<t>,<20>

where N;(t) and Ny(t) are the numbers of previously known

and currently detected targets, respectively. py(t) can be

determined using its current probability pge)t( t) and prior

probability pEl e)t (t—1):

Q) e (D) )
_ pdet( ) if pyly (t-1) < pdet(t) 21
pa(?) { fie)t (t—1) otherwise D
PO (1) = p(Dilyi(t))p(Cily, (t))p(Aily:i(t)) 22)

S oDy ()p(Cily () p(Ailya(t)

This strategy considers the probabilities of the previous and
current measurements in addition to a normalized likelihood
for the contribution of the different sensors. The target with
the highest probability in a group of candidates will be the
one associated to the track. Due to the contribution of previous
measurements, this strategy can minimize the identity switches
when the available measurements are inaccurate due to noise
O errors.

The second and third terms of the right hand side of Eq. (19)
can be expressed as

PNy ()[Np(t), Nn(t),T'(t)) o< p(Nf ()| Nf(t — 1)) (23a)
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Fig. 7. Performance comparison of different tracking algorithms: (a) frame
157 (b) frame 435 and (c) frame 723. (Row 1): ground truth marked with
filled circles; (Row 2): GCC noisy audio estimates; (Row 3): estimated arrival
angles of speakers with the Kalman filter (dash lines) and without the Kalman
filter (dash dots); (Row 4): Particle filter and PDA-based audiovisual tracking;
(Row 5): Particle filter and WPDA-based audiovisual tracking.

and
P(Nn(t)[Np(t), N (), T(t)) o< p(Ny ()| Nn(t — 1)), (23b)
where

PNy ()| Ny (t = 1)) = Iy py(Ny, (1) Ny, (t = 1)) (24)

The right hand side of Eq. (23(a-b)) is modeled as a Gaussian
distribution. The mean and variance of these distributions are
computed based on Ny and N, respectively. The main steps
of the WPDA algorithm for each frame within the particle
filter framework are summarized in Algorithm 1.

Fig. 7 compares sample results from different object track-
ing strategies. It is possible to notice that the Kalman filter
leads to smaller errors in audio source localization (Fig. 7(a-
b)), and that despite the biased audio GCC estimates shown
on row 2, the WPDA locates the speaker due to the correct
likelihood estimation of the visual and the audio locations.

C. State and likelihood estimation

The overall likelihood is composed of visual and audio
components. The visual components depend on the color
histogram of the detected pixels associated to the object and

(a) (b)

Fig. 8. Sample images from the proposed audiovisual tracker. (Row 1):
position estimation using (a) video and (b) audio features; (Row 2): Likelihood
of the measurements: (a) visual measurements (two persons), (b) audio
detection showing the speaker under the green patch associated to the change
detection bounding box. The horizontal and vertical axes of the graphs in the
second row correspond to the width and the height of the image, respectively.
(Note that the images are tilted for improved visualization).

on a 4D state space defined by the components (z,,y,w, h)
of the bounding box associated to a detection.

Change detection is performed using a background subtrac-
tion algorithm based on absolute frame difference on each
channel of the RGB color space, and the results are integrated
with a logical OR. Median filtering and morphology are then
applied in order to post-process the detection result. The
color likelihood is then estimated using a three channel color
histogram H, uniformly quantized with 10x10x 10 bins

p(Cly (1)) = exp (- (LPTLANY,

g

(25)

where A is the reference histogram defining the target model,
o is the standard deviation and d(-) is the distance based on
the Bhattacharyya coefficient ( [55], [56]):

(26)

d(p(Yv>7 )‘) = 1- Z V pu<yv)>‘uy

where m is the number of bins and p(y,) is the color
histogram, computed as

pulye) = B Y Ko, (|| 2 )stcow - w,

27
where B is the normalization factor that ensures identity of
the sum of the histogram bins; W are the pixels on the target
and ((W;) associates each W/ to the corresponding histogram
bin; K. g, is the kernel profile with bandwidth Y ( [21]). To
make the model robust to pose or illumination changes, the
reference histogram is updated using a running average ( [57]).

Since four elements have been explicitly declared in the
state vector y (), we can compute the 4D state space likelihood
for change detection by applying a four dimensional multi-
variate Gaussian function:

p(Dly (1)) ~ N (), o)),

The audio state y, is estimated as explained in Sec. III(A-
B). The joint state likelihood of audio y,(¢) and visual y,(t)

(28)
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Algorithm 1 WPDA Algorithm

1: Create samples for the target states y;(t);

Compute the posterior distributions p(z(¢)|T'(¢), Z(t)) an
Compute the joint association probability p(T'(t), Z(¢)|z(
Calculate the marginal association probability as v =
Generate the target likelihood: p(z(t)|y(t)) = T4 171p(
Update the particle weights using Eq. (2);

A U

ﬂo.

S

e \H

p(E(t)|T(t)) using Egs. (18)-(19);

)) using Eq. (17);

P(T) (), 200 (1) 7 (1))

1
)lyu(t));

Apply resampling for each target to avoid the degeneracy of the particle sets.

components is
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where c is a constant, and p(A|y(t)) accounts for the audio
likelihood that is computed using a univariate Gaussian:

(ya(t) - zt)2)_

20%

p(Aly(t)) 31

1
exp ( —
oAV 2T
Note that if one of the measurements is unavailable (e.g.,
during occlusion or silence) then its corresponding probability
is set to 1. Sample results from the different steps of the
proposed audiovisual tracker are shown in Fig. 8.

IV. EXPERIMENTAL RESULTS

The proposed multimodal detection and tracking algorithm
is evaluated using data collected with a STAC sensor com-
posed of two Beyerdynamic MCE 530 condenser microphones
and a KOBI KF-31CD camera. The image resolution is
360x288 pixels (25Hz) and the audio is sampled at 44.1
KHz. The audiovisual synchronization is performed using a
VisioWave Discovery 300 Series recorder. We present two
types of setup: in type 1, the distance between the microphones
is 95 cm (experiment 1) or 124 cm (experiments 2 and 3)
and the video camera is located in the middle. In type 2,
the distance between the microphones is 124 cm and the
camera is placed 200 cm in front of the microphones. The
camera and the microphones have the same height from the
floor (170 cm). The distance between the sensors and the
speaker is larger than 500 cm. These datasets are available
at http://www.elec.qmul.ac.uk/staffinfo/andrea/stac.html.

For a quantitative evaluation of the results, we use two
scores: ¢, the one-dimensional Euclidean distance between the
detected x-coordinates and the ground truth, and ), the number
of lost tracks and identity switches over the entire sequence.
This score is computed as A = (LT + IS)/TF where LT
is the number of frames with lost tracks, .S is the number
of frames with identity switches, and T'F’ is the total number
of frames in the sequence. Hence the lower A, the better the
performance.

(a)

(b) (©)

Fig. 9. Comparison of tracking results for “l-room” (Frame numbers: (a)
814, (b) 926 and (c) 1010). (Row 1): PF; (Row 2): GM; (Row 3): GCC, (Row
4): KF-PF-P. The red bar indicates the true target position.

A. Type 1 experiments

Three indoor audiovisual datasets, namely “l-room”, “2-
lab-a” and “2-lab-b”, are used to compare the detection and
tracking performance of six different strategies: (1) vision only
by PF; (2) vision only by graph matching (GM) ( [58]); (3)
estimation of arrival angle only before and after Kalman filter-
ing (the former: AB-KF; the latter: AA-KF); (4) GCC-PHAT
arrival angle estimation and particle filter based audiovisual
tracker (GP-PF) ( [32]); (5) Kalman filtering audio detection
and the particle filter-based audiovisual tracker with PDA (KF-
PF-P) ( [15]); (6) the proposed arrival angle estimation using
Kalman filtering and particle filter based audiovisual tracker
with WPDA (KF-PF-WP).

In the dataset “l-room” (1077 frames), a person walks,
talks and hides himself behind a barrier for about 1 second.
The Kalman filter-based tracker for audio source detection
generates errors in the estimation of the target’s = location.
These errors are due to the violation of the initial assumptions
mentioned in Sec. III-A and due to the presence of a significant
background noise. Fig. 9 compares sample results using the
different techniques under analysis. The vision only methods
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TABLE II
PERFORMANCE COMPARISON OF THE TRACKERS UNDER ANALYSIS.
ABSOLUTE LOCATION ESTIMATION ERRORS (€: AVERAGE IN PIXELS.)

Seq. PF | GM | AB-KF | AA-KF | KF-PF-P | KF-PF-WP
I-room | 6.4 6.2 18.1 145 52 4.9
€ 2-lab-a | 5.7 59 23.6 21.3 52 4.7
2-lab-b | 7.3 6.8 25.2 23.1 5.5 5.4
TABLE III

PERFORMANCE COMPARISON OF THE TRACKERS UNDER ANALYSIS. LOST
TRACKS/IDENTITY SWITCHES (A: PERCENTAGE OVER AN ENTIRE

SEQUENCE).
Seq. PF GM | GP-PF | KF-PF-P | KF-PF-WP
T-room | 5.76 | 5.76 5.29 4.83 451
A%) | 2-lab-a | 1449 | 1455 | 1239 12.23 11.95
2-lab-b | 1136 | 1126 | 10.99 9.19 8.54

(rows 1 and 2) correctly localize the object only when it is ob-
servable. Row 3 shows the GCC estimates of the audio signals,
where the estimated peaks are close to the object’s position.
Row 4 shows that the KF-PF-P tracker has a good accuracy in
object detection and tracking (KF-PF-WP obtains comparable
results) and, unlike PF and GM, does not suffer from identity
switches (visualized as changes in color). Moreover, although
the GCC estimation at frame 814 is not next to the person
due to the violation of the initial assumptions (Sec. III-A)
and because of a reverberation peak that was not filtered, the
proposed tracker still estimates an accurate position of the
target due to the variances of the particles along the x-axis
(Eq. (31)).

The second (“2-lab-a”, 1856 frames) and third (“2-lab-b”,
1883 frames) experiments has a similar set-up; however the
difference is in the clothing of the targets. In these experiments
two persons walk from right to left and then meet in the half
way generating a full occlusion (both audio and visual). The
result has therefore a large number of identity switches as
compared to experiment 1 (Table III). This is again due to
violation of initial assumptions (Sec. III-A), however the pro-
posed approach has minimum number or identity switches and
localization error as compared to other approaches (Table II
and Table III).

Table II shows that KF-PF-P and KF-PF-WP have lower
average errors compared to AB-KF and AA-KF. Table III
shows that KF-PF-P and KF-PF-WP have the smallest lost
tracks/identity switches in the test sequences. It is worth
noticing that the lost tracks are mainly due to the absence
of both visual and audio signals and strong reverberations
existing in the scene. To enhance the proposed tracker in audio
detection, one could generate a model for the background
noise.

B. Type 2 experiments

We evaluate the performance of the proposed detection and
tracking algorithm (KF-PF-WP) in three sequences (SC 1,
SC 2 and SC 3) of a meeting scenario and show how metadata
generated automatically (object position and their sound activ-
ity) can be transferred to other sensors or multimedia receivers
(e.g., mobile phones) with limited bandwidth requirements.

The first sequence (SC 1) has three subjects (sample frames
and the corresponding results are shown in Fig. 10, row 1

TABLE IV
BANDWIDTH ESTIMATES OF DIFFERENT METHODOLOGIES ON SEQUENCE
1 (SC 1), SEQUENCE 2 (SC 2) AND SEQUENCE 3 (SC 3). UNITS:
KILOBYTES PER FRAME.

Seq. MPEG-1 MPEG-2 | MPEG-4 | Metadata Metadata
with audio
SC 1 7.61 7.82 6.39 0.21 1.15
SC2 6.74 7.26 5.75 0.48 1.42
SC 3 7.76 8.16 7.36 0.25 1.19
“ ® ® ® o e @ o

Fig. 11. Sample object animations and speaker detection created using the
generated metadata. (Row 1): sequence 1, (Row 2): sequence 2, (Row 3):
sequence 3. Colored circles denote the visual detection, white circles represent
the audio detection, and the axes show the original image size.

and 2) who initially are sitting and having pair-wise conversa-
tion. Next, the person sitting in the middle stands up, moves
and talks to the person on the left. This results in a difficult
audio detection, as he keeps changing the direction of his
face. The proposed tracking algorithm enables us to effectively
detect and track the speakers: for example, the second column
of row 1 and row 2 shows that the speaker sitting in the
middle is correctly detected and tracked. However, in column
4 the audiovisual tracker does not detect the real speaker
(the speaker on the left), due to a biased estimation of the
audio GCC estimates when the person faces away from the
microphones. In row 5 and 6, the proposed audiovisual tracker
correctly identifies the speaker despite large measurement
errors (third column of row 5 and 6). Although the audio de-
tection deviates from the correct position, the final audiovisual
result is accurate as the estimation of the speaker’s position
in the previous image frame is correct. In fact, this leads to a
larger posterior probability of detection of the speaker on the
left than that of the one on the right in the current frame, and
hence the estimated position settles on the person on the left.

Fig. 11 shows sample animations generated using the au-
tomatically extracted metadata. The comparison of the band-
width requirement when using different coding methodologies
is shown in Table IV for (1) MPEG-1, (2) MPEG-2, (3)
MPEG-4 and (4) the metadata generated by the proposed
multimodal tracker. The size of all the four formats also
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Fig. 10. Audiovisual speaker detection and tracking for sequence 1 (SC 1) (row 1 and 2), sequence 2 (SC 2) (row 3 and 4) and sequence 3 (SC 3) (row 5
and 6). Row 1,3 and 5: white circles with “speaker” indicate the detected audio source location and circles in other colors denote the visual detection and

tracking. Row 2, 4 and 6 show the audio GCC estimates.

contains the audio file size. These bandwidth requirements
correspond to the information to be transmitted when multiple
multimodal sensors exchange the position and the activities of
the observed objects.

V. CONCLUSIONS

We have presented a particle filter based tracking algorithm
that integrates measurements from heterogeneous sensors and
demonstrated it on audio and video signals. In order to
reduce the effects of reverberations and noise, we used a
Riccati Kalman filter that automatically updates the audio
measurements using the historic estimates in a least squares
sense as well as a WPDA scheme to associate the audio
detections to the visual measurements. Another feature of
the proposed framework is its modularity that allows us to
replace any blocks depending on the application at hand. The
experimental results demonstrated that the proposed strategy
improves classical audio or video approaches in terms of
tracking accuracy and performance. We have also shown
the bandwidth requirements for communicating the metadata
generated from the tracker to other sensors or remote devices.

Our current work addresses the use of the proposed audio-
visual tracker in a sensor network and its use for distributed
multimodal event detection. Moreover, we will investigate the
integration of techniques like source separation and speech
recognition to relax the current assumptions on the number of
sound sources and the direction of the sound.
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