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Abstract

Recent advances in signal processing have focused on thef sgarse representations in various
applications. A new field of interest based on sparsity hagnly emerged compressed sensing
This theory is a new sampling framework that provides anrmétiive to the well-known Shannon
sampling theory. In this paper we investigate hoempressed sensin@S) can provide new insights
into astronomical data compression and more generally hgaies the way for new conceptions in
astronomical remote sensing. We first give a brief overviéwhe compressed sensing theory which
provides very simple coding process with low computatioc@dt, thus favoring its use for real-time
applications often found on board space mission. We intte@dupractical and effective recovery algorithm
for decoding compressed data. In astronomy, physical pnimrmation is often crucial for devising
effective signal processing methods. We particularly pomt that a CS-based compression scheme is
flexible enough to account for such information. In this exttcompressed sensirig a new framework
in which data acquisition and data processing are mergedhd® also that CS provides a new fantastic
way to handle multiple observations of the same field vielawahg us to recover information at very
low signal-to-noise ratio, which is impossible with stardiaompression methods. This CS data fusion
concept could lead to an elegant and effective way to soleeptioblem ESA is faced with, for the
transmission to the earth of the data collected by PACS, dnbkeoinstruments on board the Herschel

spacecraft which will launched in 2008.
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INTRODUCTION

From year to year, the quantity of astronomical data in@eag an ever growing rate. In part this is
due to very large digital sky surveys in the optical and nefxared, which in turn has been made possible
by the development of digital imaging arrays such as CCDar@mrcoupled devices). The size of digital
arrays is continually growing, pushed by the demands obaetnical research for ever larger quantities
of data in ever shorter time periods. As a result, the astrocedl community is also confronted with
a rather desperate need for data compression techniqueaBStchniques have in fact been used, or
even developed, for astronomical data compression. f&lastudied lossless techniques. White et al. [2]
developed HCOMPRESS, based on the Haar wavelet transfadRi@ss et al. [3] developed FITSPRESS
based on the Daubechies wavelet transform. In additionst¢ientist must of course consider JPEG, a
general purpose standard. Effective and efficient comimedsased on the multiresolution Pyramidal
Median Transform (PMT) algorithm was developed by Starclalef4]. Huang and Bijaoui [5] used
mathematical morphology in MathMorph for astronomical gegrocessing.

For some projects, we need to achieve huge compressios,ratiich cannot be obtained by current
methods without introducing unacceptable distortiong. iRstance, it was shown [6] that if we wish to
extend the GAIA mission in order to make a high-spatial nesoh all-sky survey in the visible based on
a scanning satellite, then the main limitation is the amadmollected data to be transmitted. A solution
could be to introduce all our knowledge of both the sky andittstrument in order to compress only
the difference between what we know and what we observe [6jveder, errors on the point spread
functions, positions of stars, etc., must be under conBplahd the computation cost on board of the
satellite may be unacceptable. The Herschel saﬂell\'mblich will be launched in 2008, is faced with a
similar problem. Indeed the photometer data need to be asapd by a factor of6 to be transferred.
The yet implemented lossless compression scheme (basadropyecoding) yield a compression rate of
2.5. ESAH is in need of a compression ratio @fAs the CPU load has to be extremely small, conventional
compression methods cannot be used.

Recently, an alternative sampling theory has emerged whitdws that signals can be recovered
from far fewer samples (measurements) than what the Ny§highnon sampling theory states. This
new theory coinecdompressed sensir@ (compressive sensing) (CS) introduced in the seminaéngap

1Seehttp ://www.esa.int/science/herschel
2Seehttp ://iwww.esa.int



[71, [8], [9] relies on the compressibility of signals or neoprecisely on the property for some signals
to be sparsely represented. In a more general setting,ityparknown to entail effective estimation
(restoration, blind source separation etc.), efficient compression or dimension reduction. Fromen t
compressed sensing viewpoint, sparse signals could bdredd@conomically” (from a few samples)
without loss of informationlt introduces new conceptions in data acquisition and siagpt has been
shown that CS could be useful in many domains such as medizaing [10], biosensing [11], radar

imaging [12] or geophysical data analysis [13].

Scope of the paper We propose a new alternative approach for the transmisdiastoonomical
images, based on CS. Similarly to classical compressioamsehl, CS can be arranged as a “Coding-
Decoding” two-stage scheme. In practical situations (nqmadicularly for on board applications), CS
provides a particularly simple coding stage that only respiia low computational cost. Most of the
computational complexity is then carried by the decodirgpstin this context, we introduce a new
decoding algorithm that quickly and accurately provideselsolutions to the decoding problem. Sedfjon |
reviews the principle of the CS theory. Sectioh Il shows hd®/@&n be used in astronomy and presents
a decoding algorithm. More generally, we introduce a newception of astronomical remote sensing;
we particularly show that the CS framework is able to accdanspecific physical priors. It paves the
way for new instrument design in which data acquisition, pagssion and processing can be merged.
In sectionTI-C we show how CS offers us a new data fusion fr@onk when multiple observations of
the same field of view are available. This happens very oftesisironomical imaging when we need to
build a large map from a micro-scan or a raster-scan stragmptior Il emphasizes on the effectiveness
of the proposed CS-based compression for solving the Helrsiglta compression problem. Indeed, we

show the advantage of CS over the averaging approach whhden considered so far.

I. AN OVERVIEW OF COMPRESSED SENSING THEORY

In this section, we give a brief and non exhaustive reviewarhpressed sensing and show how this
new sampling theory will probably lead to a “revolution” iilgeal processing and communication theory.
For more exhaustive tutorials in this field, we refer the eza the review papers [14], [15]. Assume
x € R! (written as a column vector with entries) such that we “observe” or “measure” odly < ¢

samples{yy}x=1.. v These measures are obtained by projecting the signah a set of so-called



measurement vectok®y, },—; ... ps as follows :

Yk = <96,9/<;> (1)

The backbone of compressed sensing relies on two major ptsc@ the data to compress are indeed
compressible; more precisely the datahave a “structured” content so that they can be sparsely
represented in some badls; ii) the measurement vectof®y }.—; ... »s are non adaptive (they should

not depend orx) and incoherent with the basis in whiahis assumed to be sparse.

A. The gist of compressed sensing

Compressibility: Most “natural” images or signals have highly structuredteats (.e. contours and
textures in image processing). Recent advances in harnamailysis have provided tools that efficiently
represent such structures (wavelets, ridgelets [16],alety [17], [18], contourlets [19], to name a few).
In this context, efficient representations mean sparseeseptations. Let's consider a signabf sizet.

Assume that: can be represented froffi > ¢ signal waveforms{¢; }i—1 ... 7 :

T
x = Z ;¢ (2
=1

This relation can be more conveniently recast in matrix fdation : z = ®«. The signalx is said

to be sparse in® if most entries of the so-called coefficient vecterare zero or close to zero and
thus only a few have significant amplitudes. Such signahn be efficiently approximated (with lo¥s
approximation error) from only a few significant coefficienin the extreme case,is K-sparse x can

be exactly synthesized frol{’ < t coefficients. Then such sparse signal is higbdynpressibleas the
knowledge of onlyK parameters is needed to perfectly reconstruct the signal

Note that, in the last decade, sparsity has emerged as ohe I&fatding concepts in a wide range of signal
processing applications (restoration [20], feature etiva [21], source separation [22], compression
([23], [24]), to name only a few).

Recently, a wide range of theoretical and practical stuldée® focused on sparse decomposition problems
in overcomplete (the casg > t) signal waveform dictionaries (see [25] and referencesethg In this
paper we will mainly focus on sparsity assumptions in ortraral base. Extensions to overcomplete
dictionary would be straightforward in the light of the afarentioned references.

From now we assume that have aK-sparse decomposition in the orthoba®is The datar are then



compressible ; the next problem then amounts to accountingidnal compressibility to devise efficient
non-adaptivesignal compression.

Incoherence of the measuremensss an intensive field of research, several works have already
addressed compressed sensing in various settings (see[T26]27] and references therein). In the
aforementioned references, the way the measurements signelé plays a crucial role. Let us assume
that the signalr € R? is a highly compressiblé<-sparse signal in the orthobasis. In compressed
sensing, measurements are simple linear projection$;—i1.. » : yx = <x,9k>. Historical works
considered measurements from random ensembles (see T26]8], [27] and references therein). In
these seminal papers, randomness is likely to proiwideherentprojections. Recall that the coherence

between two matrices is measured by their mutual cohereseae[@8], [15]) :
1e.s = Dg:cjt_XK@z, ¢j>‘ 3)

In practical situations, measurement vectors are desigpextlecting at random a set (indexed k) of

vectors from a deterministic ensemige as suggested in [29], [15]y = Opz.

B. Signal recovery

a) Exact solutions:The previous paragraph emphasized on the way the codirsiigestep should
be devised. The decoding step amounts to recover the drigigaal = out of the compressed signal
y = O x. Furthermorey is knowna priori to be K-sparse in® : x = ®a wherea is a sparse vector
of sizet. Then the recovery problem boils down to the following spadecomposition issue in the
overcomplete syster®,® :

min ||ally, St.y = O\ Pa (4)

In the last decade, sparse decomposition issues have beery active field. Strong recovery results
have been provided (see [28], [25], [30]). Classically, th@orm is substituted with the convéx-norm

to avoid the combinatorial nature of the problem in Equatn The recovery problem is then recast in
a convex optimization program :

min ||allg, St.y = Oy P« (5)
[e%

Equivalence between these problems has led to a considditebhture (see [25] and references therein).

At first sight, the decoding step in compressed sensing ivalgat to a sparse decomposition problem



in an overcomplete systenfr. Formally, the specificity of CS relies on the particulausture of the
overcomplete representation at han@® .= ©®,®. Several strong recovery results in the particular CS
framework have been proved based on specific assumptiohsravidtom measurement ensembles (see
[31], [26], [7], [32]). In practice, as stated earlier, messments are more conveniently devised from
random subsets of deterministic ensembles.

b) Approximate solutionstn practice, signals are seldom-sparse. Furthermore, the data are often

corrupted by noise. A more realistic compression model didod the following :
y=0Ox(r+n) (6)

wheren is a white Gaussian noise with varianeg. As the measurement matri®, is a sub-matrix
of the orthonormal matriX®, the projected noise, = ®,n is still white and Gaussian with the same
variances?. The projected data are then recast as folloys= © ,x + n,. The recovery step then boils

down to solving the next optimization problem :

min|lally, Sty — @a®all, < e )
wheree is an upper bound dfn||,,. Defininge = v/t + 2/2to,, provides a reasonable upper bound on

the noisels norm, with overwhelming probability. This problem is knowas the LASSO in statistics [33]
or Basis Pursuit denoising [34]. In the noiseless case (), it has been shown in [35] that the solution
to the problem in Equation{7) leads to an approximationresi@se to the optimal sparse approximation.
The optimal sparse approximations would be obtained bynstcactingz from its K most significant
coefficients in® (if they were known!). In the noiseless case, the solutiothéoproblem in Equatior{7)
is also shown to provide stable solutions.

The convex program (second-order cone program) in Equgfipthen provides an efficient and robust
mechanism to provide an approximate to the signalA wide range of optimization techniques (see
[36], [37], [38] to quote a few) providing fast algorithmsveabeen devised to solve the problem in
Equation [(T).

Il. COMPRESSED SENSING IMSTRONOMY

In the next sections, we focus on applying the compressesimggframework to astronomical remote

sensing. In Sectiof I[-A, we show that compressed sensirth raare precisely its way of coding



information provides alternatives to astronomical instemt design. Section I[iB gives emphasis on
the ability of CS decoding to easily account for physicabmsithus improving the whole compression

performances.

A. A new way of coding signals

In the compressed sensing framework, the coding step negaty bbw computational cost. Compressed
sensing is then very attractive in several situations : iyava transmission band (for remote sensing)
or/and ii) compressing large amount of data; for instancist scanning or wide field sensing. Indeed,
in the compressed sensing framework, the way of codingnmétion can impacts on instrumentation in
two ways as detailed hereafter.

1) Measuring physics : The philosophy of compressed sensing.(projecting onto incoherent mea-

surement ensembles) should be directly applied on the Wesithe detector. Devising an optical system
that directly “measures” incoherent projections of theuinimage would provide a compression system

that encodes in the analog domain. Compression would be matiee sensor itself!

Interestingly, such kind of measurement paradigm is fanfl@ing science-fiction. Indeed, in the field of
~-ray imaging, the so-called coded-masksee [39] and references therein) are used since the sagks
are currently operating in the ESA/Integral space mi&itmv-ray (high energy) imaging, coded masks
are used as aperture masks scattering the incomipigotons. More formally, the couple (coded aperture
mask and detector field) is equivalent to selecting someeptions in the Fourier space. In coded aperture
imaging, the way the mask is designed is likely to simulatirerent projections. Furthermorgray
data are often made of point sources that are almost spatbe ipixel domain. Fourier measurements
then provide near optimal incoherent projections. The fipgilication of compressed sensing then dates
back to the sixties! In the compressed sensing communigy,cided mask concept has inspired the
design of the celebrated “compressed sensing camera” ] drovide effective image compression
with a single pixel.

In coded aperture imaging, the decoding step is often peddr by iterative techniques based on
maximum entropy [41]. Applying a sparsity-based recoveghhique as advocated by the compressed

sensing theory would probably provide enhancements.

*We invite the interested readers to visit the following diet is devoted to coded aperture imagingttp ://astrophy-
sics.gsfc.nasa.gov/cai/
4Seehttp :// sci.esa.int/science-e/www/area/index.cfm 2dai=21



2) Coding information :: The second way of applying compressed sensing for astraabmimote

sensing is more conventional. As illustrated in Figure &, ¢bding stage mainly computes a few projec-
tions of the signak. For the sake of economy, computing these projections dhimellcomputationally
cheap. As stated in Sectign I-A, good measurements vectast be incoherent with the bas® in
which z is assumed to be sparse. Fortunately, most astronomicalgatsparsely represented in a wide
range of wavelet bases. In that context, as emphasized bgeSan [15], noiselets (see [42]) provide a
near optimal measurement ensemble for astronomical damaffractiveness of noiselets is twofold :
— Low computational cost : on board compression can afforsietet measurements as a fast transform
(requiring O (t) flops) is available.
— Non-adaptive coding : noiselets projections provide ‘ogdimal measurements with most astrono-
mical data that are sparsely represented in wavelet bases.
The coding process is non-adaptive : the measurement etes@nimay depend on the sparse represen-
tation @ but not directly on the data. In this context, the measurement ensen®lés efficient for a

wide class of signals (sparse in the orthobab)s

Noiselet
Projections
L Transform ! y

Fig. 1. The coding scheme.

B. Practical signal recovery

In contrast to the simplicity of the coding step, the decgdétep requires a more complex decom-
pression scheme. As emphasized in Secflon |, the decodépyistequivalent to solving the inverse
problem in Equation[(7). Practical situations involvinggla scale problems require the use of a fast and
accurate decoding algorithm. In this Section, we introdaiceew fast algorithm for solving the recovery
problem in Equation[{7). We particularly focus on the flekipiof the decoding step. Indeed, in the
compressed sensing framework, the decompression stepccanrd for physical priors thus entailing

higher performances.
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Fig. 2. The decoding scheme.

1) A practical and effective CS decoding algorithifhe decoding or recovery step amounts to solving

the following convex program :
min [laf, st |ly — ©r®al, < e 8)

The measurement matrix is composed of a sulbdsehdexing M = Card(A) row vectors of the
orthonormal matrix®. Let definel, as the diagonal matrix the entries of which are defined asvisl!:
1 ifieA
0 otherwise

whereI[i, ] is thei-th diagonal element of,. Let define the signaj? of sizet as follows :
vi =y andy}. =0 (10)
where A¢ is complement ofA in {1,--- ,¢t}. The problem in Equatiori8) is then recast as follows :

min ||a|lg, S-t. Hyti —I\®O®a| <e (11)
[e%

Lo

With an appropriate bijective re-parametrization, thexéste a constanty such that the problem in

Equation [(IlL) can be formulated as an augmented Lagrangian :

1
o = Arg min 3 Hyti —I,OP«
[e%

2
+9lalle (12)

A wide range of optimization techniques, often based orafig thresholding, have been proposed to

solve this problem ( [43], [44] to quote a few). Recently, ang&l framework [45] for solving such
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problems has been introduced based on proximal projectionghe light of the proximal forward-
backward optimization techniques developed in [45], swvihe problem in Equatiof (112) can be done
by means of projected Landweber iterative algorithm. Atitien (1), the coefficientsr would be updated
as follows :

o) = Sy {a(h_l) +R <yjj — IAG)‘I’a(h_l))} (13)

where S, is the soft-thresholding operator with thresheldR is a relaxation descent-direction matrix
such that the spectral radius b~ MI,®® is bounded above by. ChoosingR = ®7@71, entails

appreciable simplifications :
a® =8 {<1>T oT [yﬁ - IAc®<I>a(h_1)} } (14)

Convergence conditions are given in [45].

a) Choosing the regularization parameter The choice of the regularization parameter is crucial
as it balances between the sparsity constraint and the hewdiation fits the data. Classical approaches
would advocate the use of cross-validation to estimate &imapvalue ofy. Nevertheless, cross-validation
is computationally expensive and thus not appropriatedayd scale problems.

From a different point of view, solving the initial problem Equation [(B) can be done, under mild
conditions, by homotopy continuation techniques (see,[#6]], [48] and references therein). Such
techniques iteratively selects coefficientdy managing active sets of coefficients. This kind of process
has the flavor of iterative hard-thresholding with decnegghresholdy. Inspired by such techniques,
the thresholdy is decreased at each iteration. It starts frof = |®8T@Tyf|,, and decreases towards
Ymin. The value ofyyi, is 0 in the noiseless case. When noise corrupts the gfata,.;, may depend on
the noise level. In Sectidnlll, numerical results are givienthese experiments, noise contamination is
assumed to be white Gaussian with zero mean and variaﬁ'lde this case, the final threshold is chosen
asymin = 30, Which gives an upper bound for noise coefficients with oveiwiing probability.

In practice, substituting the soft-thresholding operatdEquation [(I#) by the hard thresholding operator
provides better recovery performances. In the forthconeixggeriments, we use hard-thresholding rather
than soft-thresholding.

b) The ProxIT algorithm:The next panel introduces the ProxIT algorithm.



11

1. Set the number of iterations I,,. and threshold v(©) = || ®TOTy||... (¥ is set to zero.
2. While v is higher than a given lower bound ~min
e Compute the measurement projection of z(* =1 :
Y = T,@z,
o Estimate the current coefficients o™ :
(h) — TT |, ¢ _ . (h)
at™ =8 m {<I> (C) [y Y }}
e Get the new estimate of = by reconstructing from the selected coefficients o™ :

2 = 0da,

3. Decrease the threshold v following a given strategy.

c) Remark:Hereafter we enlighten some links between the ProxIT algoriand previous work.
When, the measurement ensemble is the canonical bags$ (® = I), the problem in Equatiod (11)

can be equivalently rewritten as follows :

min [|a|g, S.t. Hyti —MpOz|| <ewherezx =@« (15)
where M, is a binary mask of size such that :
1 ifieA
Vie{l, o th Myl = (16)

0 otherwise

This very special case of compressed sensing if equivadesnt interpolation known aapainting (filling
holes inz). Interestingly, the ProxIT algorithm has then the flavortioé MCA inpainting algorithm
introduced in [49]. From that viewpoint, the ProxIT genaas$ the former algorithm to a wider range

of measurement ensembles.

d) Recovery resultsin this Section we provide several recovery results obthimgng the ProxIT
algorithm. In this experiment, the original datais a 512 x 512 HS1H image. Like most astronomical
data, this signal is welli. sparsely) represented in a wavelet basis. Indeed, this diirdhta mostly
contains pointwise singularities (for instance stars dnfpsources) with smooth diffuse background. As
stated earlier, choosing an effective measurement ensdmilé down to finding an orthobad® that is
incoherent with the sparse representatibr{hereafter wavelets). Noiselets (see [42]) are an orthalgon
basis that is shown to be highly incoherent with a wide rarfgeactical sparse representations (wavelets,

5Seehttp :// hubblesite.org/
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Fourier to quote a few - see [15]). In the following experimehe datar are projected on a random subset
of noiselet projections. More preciselyhave been computed by randomly selecting coefficien®7%f.

In the ProxIT algorithm, the sparse representaffois an undecimated wavelet transform. The left picture
of Figure[3 shows the original signal The picture in the middle features the signatecovered using
the ProxIT algorithm from0.2 x ¢ random noiselet projections. Pictures in Figlfe 4 depietzbomed
version of these images. Visually, the ProxIT algorithmf@ens well as it provides solutions close to
the original datar. Both the pointwise structures and more diffuse featuresiss the gravitational arc
visible in Figure[4) are effectively restored. The ProxI§a@ithm has been performed on compressed
signals with varying relative number of noiselet projenqcompression ratg)= Card(A) /t. Figure[5
features the SNR of the recovery results whevaries from0.05 to 0.9. The ProxIT algorithm provides
reasonable solutions for compression rate higher than0.1. This experiment has been performed to
enlighten the efficiency of the ProxIT algorithm for commed sensing recovery issues. Performance

analysis in the framework of the Herschel project are prieseim Sectior 1l

Fig. 3. Left : Input image of siz&512 x 512. Middle : Reconstruction from noiselet-based projections inva\20% of the
available projections. The ProxIT algorithm has been us#d W... = 100. Right : Difference between the original image
and its CS-based reconstruction.

Comparison with other methods:

— Linear programming in the seminal paper [34], the authors proposed to solvedheex/;-sparse

decomposition problem in Equatiohl (8) with linear programgnmethods such as interior point

methods. Several techniques based on linear programmiey been developed (see [37], [50] to
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Fig. 4. Left : Zoom of the input image of sizgl2 x 512. Middle: Zoom of the reconstruction from noiselet-based projestion
involving 20% of the available projections (Catdl) /¢t = 0.2). The ProxIT algorithm have been used with..x = 100. Right :
Zoom of the difference between the original image and itsb@Sed reconstruction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative number of noiselet projections

Fig. 5. Recovery Signal-to-noise ratio when the relativenbar of noiselet projections varies.

name a few).Unfortunately, linear programming-based pudghare computationally demanding and
thus not well suited to large-scale problems such as ours.

— Greedy algorithms the most popular greedy algorithm must be the Matching Russu its or-

thogonal version OMP [51]. Conditions have been given und@ch MP and OMP are proved to
solve the/; and ¢, sparse decomposition problems [52], [30], [53]. Greedyalgms have also
been proposed by the statistics community for solving Weigelection problems (LARS/LASSO
see [47], [33]). Homotopy-continuation algorithms haveoabeen introduced to solve the sparse

decomposition problem [46], [54], [55]. Interestingly, ecent work by Donoho [56] sheds light
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on the links between greedy algorithms such as OMP, vargdilection algorithms and homotopy.
Such greedy algorithms however suffer from high computatia@ost.

— lterative thresholding recently, iterative thresholding algorithms have beempsed to mitigate the

greediness of the aforementiorgt@pwisealgorithms. Iterative thresholding has first been intragtlic
for solving sparsity-based inverse problems (see [57]), [(BB], [45]). Some techniques based on
iterative thresholding have been devised for CS (see [59], [36] and references therein). The
attractiveness of the proposed ProxIT algorithm is its $citp : i) it is a fast algorithm as computing
O, ® (resp.®”, ®7) is performed by using implicit fast synthesie€p. analysis) transforms; ii)

the ProxIT algorithm can easily account for further coristeasuch as positivity.

Accounting for physical priorsin this section, we assume that the dathave been compressed using
compressed sensing. The “observed” datare then made ofi/ incoherent projections §y = Oxx.
In the compressed sensing framework, the conventionalndeassion scheme would require solving
the problem in Equation[8). In real-world applicationsrtiier a priori knowledge provides useful
information to describe the data For instance, in astronomical applications, the datae often photon
intensity. Positiveness is then a simple physical priouagdion to account for in the decoding step.
More generally, let assume that the useful datare observed through an “observation” map the

compressed data are then recast as follows :
y=0O\F(z)+n a7

wheren models projected instrumental noise or model imperfestidine “observation” mag can model

a wide range of physical or instrumental priors : physicalegating model, instrumental perturbations
(convolution, instrumental detector responsegtc.) to quote a few. In Sectignllll, the “observation” map
involves image shifts. In this context, accounting for speiors in the decoding step is desirable. The

problem in Equation[{8) is then rewritten as follows :
min [[afly, St [ly — OAF (a)ll, <€ (18)

The ProxIT algorithm can be adapted to solve this problencalseF is linear {.e. 7 () = Fx where
Fis at x t matrix - for instanceF' may model a convolution operator), extending the ProxIToalgm

to solve the problem in Equatioh (18) is straightforwardcéseF is non linear, the problem at hand gets
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far more difficult and will clearly depend on the expressidn7o Note that iterative thresholding-based
technigues involving special instances of non-linear nwbave been studied in [60]. In the next section,
we will consider the case of bijective possibly non-lineaaps.f.

To conclude this section, compressed sensing providest@attate compression scheme : i) the coding
step is simple with a very low computational cost, ii) the aliog step is able to account for physical

priors. Compressed sensing then fills the gap between dgtas#®on and data processing.

C. Compressed sensing versus Standard compression taekniq

CS-based compression have several advantages over stacawtapression techniques such as the
celebrated JP%‘Jcompression standard.

1) Computational complexityln case compressed sensing is used as a “conventional” essipn
technique, the CS projections (noiselets in the forthcgméramples), require no further encoding in
contrast to classical compression methods such as JPECE@G2IP0. Furthermore, the only computa-
tional cost required by a CS-based compression is the catiputof these projections. In case noiselets
are used, their computational cost evolves’3s$) thus involving a low CPU load which is lower than
the computational burden required by JPEGlog(t))). It can be even much faster if these projections
are made with an optical system.

2) Decoupling:In contrast to classical compression techniques, thereasrgplete decoupling between
the compression and the decompression in the CS framewbsiefore the decompression step can be
changed while keeping the same compressed data. This coald/éry nice property. Indeed, we have
seen that the quality of the decompressed data is relateteteparsity of the data in a given bads
If we discover in a few years a new dictionary which leads tcetidr sparsity of the data, then we can
still improve the quality of the decompressed data.

3) Data Fusion:In astronomy, remote sensing data involving specific secansirategies (raster scans)
often provide redundant information which cannot be actedifor by standard compression techniques.
For instance, consider that the data are madebamages{z;},_, ... ;, such that each image; is the
noisy version of the original datum* : z; = z* + n; wheren; is a white Gaussian noise with variance
o2 = 1andVi # j; E{nm;} = 0. We assume that the original datum is a faint point source as
depicted at the top on the left of Figuré 6. The SNR of each emggis —26dB. The picture at the

5Seehttp ://iwww.jpeg.org/
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top on the right of Figurél6 depicts the first observed daiymEach image{xi}i:l,,,,,w is compressed
using JPEG and CS with a compression ratie: 0.25. The picture at the bottom on the left of Figlide 6
is the estimate of* which has been computed has the average ofltheompressed JPEG data. The
picture at the bottom on the left in Figuré 6 is the CS-baséichate of z* which has been provided by
using the ProxIT algorithm to solve the following decodingigem :

10
min [la*[lg, st ) [lyi — ©2®a*|, < (19)
=1

wherex* = ®a* andy; = O,xz;. The measurement ensemble is made of noisedets an isotropic
undecimated wavelet frame. Clearly, the JPEG compressiatis|to a catastrophic compression as the
faint point source is not detectable after compressionleathie CS-based compression technique is able
to retrieve the faint point source as illustrated in Figure 6

This huge difference for data fusion problems between bothpression strategies is the consequence
of a fundamental property of CShe linearity of the compression. In contrast to standard compression
technigues (such as JPEG), the CS-based compressionads [iffee data to transmit are indeed simple
linear projections iy = @,(z* + n) wheren models instrumental noise. Whatever the compression
rate {.e. Card(A) /t), the incoherence between the measurement ve®arand the data: is likely to
guarantee that* does not belong to the null space®f,. As a consequence, the compressed data always
contain a piece of information belonging #. Standard compression methods (which are non-linear)
do not verify this crucial property. For a faint source, anst@rd compression method will kill its noisy
high frequencies and they will never be recovered whatd@number of times this source is observed.
CS will increase the SNR of the source with growing number lodavvations. Compressed sensing is
flexible enough to take advantage (in the decompression sfeghe redundancy of these kind of data

to overcome the loss of SNR after compression.

[1l. EXPERIMENT : THE HERSCHEL PROJECT

Herschel is one of the cornerstone missions of the EuroppaoesAgency (ESA). This space telescope
has been designed to observe in the far-infrared and suipaetier wavelength range. Its launch is sche-
duled for the fall of 2008. The shortest wavelength band25@+.m, is covered by PACS (Photodetector

Array Camera and Spectrometer) [61], which provides low &dlimm resolution spectroscopy and dual-
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Fig. 6. Top - left : Input imagez™ of size 128 x 128. Top - right : First noisy input data;;. White Gaussian noise is added
with SNR = —26dB. Bottom-left : Estimate from the average of 10 images compressed by JPHGawibmpression rate
p = 0.25. Bottom-right : Estimate from10 pictures compressed by CS with a compression pate0.25.

band photometry. When PACS is used as a photometer, it willkaneously image with its two bolometer
arrays, ab4 x 32 and a32 x 16 matrix, both read out at 40 Hz. The ESA is faced with a challemng
problem : conventional low-cost compression techniquesichachieve a satisfactory compression rate.
In this Section, we propose a new CS-based compression scfeerthe Herschel/PACS data that yield

an elegant and effective way to overcome the Herschel casjoe dilemma.

A. The Herschel dilemma

The Herschel space telescope is partially hampered by th@wizess of the transmission band
compared to the large amount of data to be transferred. Tdnglibap stems from the limitation of
conventional compression techniques to provide adequemgiession rate with low computational cost,
given the high readout noise. More quantitatively, the daiee to be compressed in real time by a factor
of 16 with very low CPU power. The lossless compression §itadly based on entropy coding) that is
presently coded on board compresses the data by a fackos.dfip to now, the only acceptable solution

(with respect to computational cost and quality) to overeahis need for a higher compression rate is the
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average ofi consecutive images, typically 6 [62]. For pointed obseovet this strategy is near-optimal
as it increases the SNR by a factor @i without loss of spatial resolution. Moreover, computing th
mean ofi images is clearly computationally very cheap.
Nevertheless, observing wide sky areas requires fast sapstrategies. In that case, the shift between
consecutive images may reach approximately 1 pixel while the FWHM (full width at half maximum)
of the instrumental PSF (point spread functionyis: 3 pixels. Averagingé consecutive images yields
an increase of the equivalent point spread function aloegsttanning direction thus leading to a loss
of spatial resolution. This consequence can be catastrdphisome scientific programs. Furthermore,
averaging is far less optimal for noise reduction as the ulgadirt of the data is also spread when
consecutive images are averaged. An effective compressioeme would have to balance between the
following performance criteria :
— Spatial resolution : fast scan entails a low spatial resolution. An effective pagssion scheme
would provide a lower resolution loss.
— Sensitivity : assuming that between consecutive non-shifted imagesimsnhtal noise is inde-
pendent, averaging provides an optimal SNR. A lower noiie paovides a higher signal detection

ability.

B. Compressed sensing for the Herschel data

The Herschel/PACS mission needs a compression rate eqéalAdirst approach would amount to
compress independently each image. As stated earlier, tine prior information is accounted for, the
more effective the compression scheme is. Then, compgesgstonsecutive images jointly would be
more relevant. If we consider a stack@®tonsecutive imagegr; }i—o ... 5, the simplest generative model
is the following :

Vie{0,---,5}; a;="Tn, (z) +n (20)

where 7,, is an operator that shifts the original imageé with a shift ;. In practice,2* = z, and
Ao = 0. The signaln; models instrumental noise or model imperfections. Aceggdbd the compressed
sensing framework, each signal is projected onto the sulesaged by a subset of columns®@f Each

compressed observation is then obtained as follows :
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where the set§A;} are such that :

> 1y, =Tand CardA;) = C (22)

(2

The decoding step amounts to seeking the sigfias follows :

min |87 o, st Y ly — Ox, Ty, (247, < € anda* > 0 (23)
xT* ] 2
i=1,---,5

We propose solving this problem by using an adapted verdidineoProxIT algorithm we introduced in
Section[I-B. Furthermore, the content of astronomical dataften positive. Constraining the solution
to be positive would help solving the recovery problem. Asswg that the shifting operatof,, is
invertiblg, we substitute Equatiof (IL4) by the following Equation

() éésy ?7 Z:lz: 57_&- (®T [yf —I7:O7), (m*(h_l))]) @4

The positivity constraint is accounted for by projectingeatch iteration the solution of the previous
update equation on the cone generated by the vectors hawsitvp entries :2*® — Pg (m*(h)>

where the projectoP¢ is defined as follows :

. . x[i] if x[i] >0
Vi=1,---,t; Pol(x)[i]= (25)
0 otherwise

where P¢ (z) [¢] is thei-th entry of Po (z). In the next section, we illustrate the good performances of

the proposed non-linear decoding scheme.

Notations

In the next experiments, the data will made of pointwise sesir it is worth defining some useful
notations. Recall that we assume the telescope’s PSF toan&WHM equal tod. The shift between
the original datume* and thei-th datumz; is A;. The intensityf of the datumz* is defined as its total

"This assumption is true when shifting the image does noterideate the original signal.
8Note that if the operatof,, were linear {e. 7., (zr) = T,z), then this update would be recast as follows*" =
138, {<1>T > 7'e" [y§ o VSNl }

i=1,---,5
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Fig. 7. The proposed Herschel compression scheme.

flux :

F=> =" (26)

wherez[j] is the j-th entry. We also assume thé& has positive entries.

C. A toy-example

In the following experiments, the datumt is a128 x 128 image. The instrument is assumed to have a
FWHM § = 3 pixels. For the sake of simplicity, each shif = i pixels. White Gaussian noise is added
to account for the instrumental noise.

1) Detection performancesn this experiment, the datum contaid8 point sources that have been
uniformly scattered. The amplitude of each point sourceeisegated at random with a Gaussian distri-
bution. The top-left picture of Figuifd 8 shows the input dataThe additive Gaussian noise has a fixed
unit variance. The top-right panel of Figure 8 features th&d* contaminated with noise. Comparisons
between the MOG6 (“Mean of 6 images”) and CS methods are madevdlyating for varying intensity
value (from700 to 140000 ; it is equivalent to a SNR varying from13.2 to 33dB) the rate of detected

point sources. To avoid false detection, the same pre-psiug step is performed : i) “a trous” bspline
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wavelet transform (see [63]), oy, hard—thresholdirH;where oy i the residual standard deviation
estimated by a Median Absolute Deviation (MAD) at each welvstale, iii) reconstruction. The bottom-
left panel of Figurd B features such filtered decoded imageguke MOG6 strategy. The bottom-right
picture in Figurd B shows the filtered ProxIT solution. Instleixperiment the total intensity of the point
sources is set t8500. At first sight, both methods provide similar detection perfances. As expected,
the CS-based solution has a better spatial resolution.

Figure[9 shows the detection rate (with no false detectiéréagh method for intensities varying from
f = 700 to f = 140000. At high intensity (higher tharf = 10%), both MO6 and CS provide rather
similar detection performances. Interestingly, at loneitity, CS provides slightly better results. This
unexpected phenomenon is partly due to the spread thatsdsuh the average of shifted images.
MOG6 is theoretically (for low shifts) near-optimal for poisource detection. In contrast, this experiment

shows that CS can provide similar or better detection peréorces than MOG6.

Fig. 8. Top left : Original image of sizel28 x 128 the total intensity of which isf = 3500. Top right : First input noisy
map (out of6). White Gaussian with variance? = 1 was addedBottom left : Mean of the6 input imagesBottom right :
Reconstruction from noiselet-based CS projections. TlexIPralgorithm has been used with, .. = 100.

%Suchboyy is likely to avoid false detection as it defines a rather corative threshold.
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Fig. 9. Detection rate when the intensity of the input data varies : Solid line Resolution defined by the Rayleigh criterion
of the CS-based reconstruction.. Resolution of the solution provided by the mean6oimages.

2) Resolution: Spatial resolution is a crucial instrumental feature. Aging shifted images clearly
deteriorates the final spatial resolution of Hershel/PAIG$his experiment, the original datunt is made
of a couple of point sources. In the worst case, these pointes are aligned along the scan direction.
The top-left picture of Figure_10 features the original sign*. In the top-right panel of Figure 10, the
intensity of the point sources is set fo= 1000 while the noise variance is? = 1. The SNR of the
data to compress is equal 207dB. The MOG6 solutionresp.the CS-based solution) is shown on the left
(resp.right) at the bottom of Figure_10. As expected, the spatisblgion of the MO6 is clearly worse
than the resolution of the input datumi. Visually, the CS-based solution mitigate the resolutioss|
For different intensity of the datum* (from 100 to 2000), the spatial resolution is evaluated according
to the Rayleigh criterion. The Rayleigh criterion is the gealy accepted criterion for the minimum
resolvable detail : two point sources are resolved when teerfiinimum is lower than the amplitude at
half maximum of a single point source as illustrated in Fejlil. For a fixed intensity, the resolution
limit is evaluated by seeking the minimal distance betwdan fioint sources for which the Rayleigh
criterion is verified. For intensities varying frogh= 100 to f = 2000, the resolution limit is reported
in Table 1.
The CS-based compression scheme provides a solution withr lspatial resolution. At high intensity,
the resolution gain (in comparison with MOB6) is equal to adhaf the instrumental FWHM1( pixel).
At low intensity, the resolution gain provided by the CS+dxhsnethod slightly decreases.

This experiment shows that CS mitigates the resolution tesslting from the joint compression 6f
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consecutive images.
Fig. 10. Top left : Original image of sizel28 x 128 the total intensity of which ig® = 1000. Top right : First input noisy

map (out of6). White Gaussian with varianceZ = 1 was addedBottom left : Mean of the6 input imagesBottom right :
Reconstruction from noiselet-based CS projections. TloxIPralgorithm has been used with,.x = 100.

05 pommmmemm oML 054 -----focd b

Fig. 11. The Rayleigh criterion - Left : The point sources are not resolvediddle : Resolution limit.Right : Fully
resolved point sources.
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D. Realistic data

1) The data: Real Herschel/PACS data are more complex than those we atigauin the previous
experiments. The original datunt is contaminated with a slowly varying “flat field” component In
a short sequence @f consecutive images, the flat field component is almost fixedhis context, the

data{z;};—o .. 1 can then be modeled as follows :
xy =Ty, (&%) +n; +cf (27)

Assuming that; is known, the ProxIT algorithm can be updated by substiguBiquation[(2#) with the

following :

o = oS, { @7 i:lz,-;@,]-—)\i (07 [ 1@ (1 (+7) —r)]) 29

If ¢y is unknown, it can be estimated within the ProxIT algorithifie next Section focuses on the
resolution gain provided by the CS- based method in the sobpeal Herschel/PACS data. The data
have been designed by adding realistic pointwise sourcesalccalibration measurements performed in
mid-2007.

2) Resolution:Similarly to the experiments performed in Section IlI-Cw& added a couple of point
sources to Herschel/PACS data. The top-left picture of feifif features the original signat. In the
top-right panel of Figuré 12, the intensity of the point sms is set tof = 4500. The “flat field”
component overwhelms the useful part of the data sothdtas at best a level that &) times lower
than the “flat field” component. The MO6 solutiore¢p.the CS-based solution) is shown on the left
(resp.right) and at the bottom of Figufe 112 and all the results aes@mted in Table 2. Similarly to

the previous fully simulated experiment, the CS-basedralgo provides better resolution performances.

SNR —-17.3 -9.35 -3.3 0.21 2.7 4.7 6.2 7.6 8.7

Intensity 100 250 500 750 1000 1250 1500 1750 2000

MOG6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7

CS 2 2 1.7 1.7 1.7 1.7 1.7 1.7 1.7
TABLE |

SPATIAL RESOLUTION IN PIXELS: FOR VARYING DATUM FLUX, THE RESOLUTION LIMIT OF EACH COMPRESSION
TECHNIQUE IS REPORTED THE CS-BASED COMPRESSION ENTAILS A RESOLUTION GAIN EQUAL TO 80% OF THE SPATIAL

RESOLUTION PROVIDED BYMOG6.
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The resolution gain can reacfd% of the FWHM of the instrument’s PSF for a wide range of signal
intensities. This experiment illustrates the reliabilitfythe CS-based compression to deal with real-world

data compression.

Fig. 12. Top left : Original image of size32 x 64 with a total intensity off = 4500. Top right : First input noisy map
(out of 6). The PACS data already contains approximately Gaussiae.r®ottom left : Mean of the6 input imagesBottom
right : Reconstruction from noiselet-based CS projections. TlexIPralgorithm has been used with,.x = 100.

SNR —-17.3 —-9.35 —-3.3 0.21 2.7 4.7 6.2 7.6 8.7

Intensity 900 2250 4500 6750 9000 11250 13500 15750 18000

MOG6 3 3 3 3 3 3 3 3 3

CS 2.33 2.33 2 2 2 2 2 2 2
TABLE Il

SPATIAL RESOLUTION IN PIXELS: FOR VARYING DATUM FLUX, THE RESOLUTION LIMIT OF EACH COMPRESSION
TECHNIQUE IS REPORTEDTHE CS-BASED COMPRESSION ENTAILS A RESOLUTION GAIN EQUAL TO B0% OF THE SPATIAL
RESOLUTION PROVIDED BYMOG.

IV. CONCLUSION

In this paper, we overview the potential applications of poassed sensing (CS) in astronomical
imaging. The CS appeal in astronomy is twofold : i) it prowda very easy and computationally
cheap coding scheme for on-board astronomical remotergengithe decoding stage is flexible enough
to handle physical priors that lead to significant recovariagmcements. This paper introduces a new
recovery algorithm to deal with the decoding problem. Basedterative threshold, the ProxIT algorithm

provides efficient approximate solutions to the decodirapfgm. Furthermore, the proposed algorithm is
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easy to handle as it requires setting only a few parametegsshbw that the ProxIT algorithm is easily
adapted to account for physical priors thus entailing be&eovery results. We particularly point out the
huge advantage of compressed sensing over standard ceiopréschniques in the scope of multiple
scanning observations (observing the same sky area séweesl)). In this context, CS is able to provide
astounding recovery results by taking advantage of theneahcy of the data. We have shown that
compressed sensing data fusion can lead to astoundingverpemts compared to standard techniques.
Preliminary numerical experiments illustrate the reliapiof a CS-based compression scheme in the
scope of astronomical remote sensing such as the Herschet spission. We show that compressed
sensing provides an elegant and effective compressiomitpad that overcome the compression issue
ESA is faced with. In the next step we will focus on performimgre realistic experiments in the scope

of the Herschel space mission by adding more physical irdiciom.
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