arXiv:0806.2228v1 [astro-ph] 13 Jun 2008

MULTI-SCALE CLEAN

Multi-Scale CLEAN deconvolution of radio
synthesis 1images

T.J. Cornwell

Abstract—Radio synthesis imaging is dependent upon deconvo-
lution algorithms to counteract the sparse sampling of the Fourier
plane. These deconvolution algorithms find an estimate of the true
sky brightness from the necessarily incomplete sampled visibility
data. The most widely used radio synthesis deconvolution method
is the CLEAN algorithm of Hoégbom. This algorithm works
extremely well for collections of point sources and surprisingly
well for extended objects. However, the performance for extended
objects can be improved by adopting a multi-scale approach. We
describe and demonstrate a conceptually simple and algorith-
mically straightforward extension to CLEAN that models the
sky brightness by the summation of components of emission
having different size scales. While previous multiscale algorithms
work sequentially on decreasing scale sizes, our algorithm works
simultaneously on a range of specified scales. Applications to both
real and simulated data sets are given.

1. INTRODUCTION

Radio synthesis imaging of astronomical sources was rev-
olutionized by the invention of the CLEAN algorithm (1).
This simple algorithm enabled synthesis imaging of complex
objects even with relatively poor Fourier plane coverage, such
as occurs with partial earth rotation synthesis or with arrays
composed of small numbers of antennas (see 2).

The algorithm is motivated by the observation that in the
image formed by simple Fourier inversion of the sampled
visibility data (the “dirty” image), each point on the sky is
represented by a suitably scaled and centered point spread
function. Hence one can find the brightest point source by
simply performing a cross-correlation of the dirty image with
the point spread function. Removing the effects of the brightest
point then enables one to find the next brightest, and so on.
This simple algorithm works very well for collections of point
sources, and surprisingly well for extended objects. Conver-
gence is slow for extended objects (as might be expected
since one is trying to identify a potentially large number of
pixels one by one), and instabilities occur (3). For this reason,
other deconvolution algorithms such as the Maximum Entropy
Method (4; 5) are often preferred. However, the CLEAN
algorithm remains attractive for many purposes so the natural
question arises as to how the basic algorithm can be improved
in convergence and stability while maintaining the advantages
of simplicity and noise behavior.

There are many different deconvolution algorithms in use
in various scientific domains but one thread common to many
of the best algorithms is the use of the multi-scale approach
(6). In multi-scale methods, the object to be recovered is
modelled as being composed of various different scale sizes.
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The reconstruction algorithm then has the task of estimating
the strengths of the various scales, instead of estimating the
strength of pixels. Thus the number of degrees of freedom
in the reconstruction can be significantly reduced with a
concomittant increase in various measures of performance,
such as robustness, stability, and signal to noise. Examples
of multi-scale methods are:

o Multi-Resolution CLEAN: (7) developed a simple strat-
egy for running the CLEAN algorithm emphasizing broad
emission first and then finer and finer resolution. The
dirty image and point spread function are smoothed and
decimated to emphasize the broad emission. The image
resulting from CLEANing this dirty image is then used
as an initial model for a CLEAN deconvolution of the
full resolution image.

« Multi-scale Maximum Entropy: (8), and (9) noted that
the performance of Maximum Entropy deconvolution
could be improved by decomposing the image to be
estimated into several channels of different resolutions.
A hierarchy of scale sizes is specified and an image
reconstructed by estimating pixels in the combined space
such that the convolution equation is satisfied.

« Wavelets Numerous authors have described the virtues
of wavelet analysis and its application to deconvolution.
The recent textbook by (10) provides an excellent sum-
mary and includes discussion of the connections between
Multi-Resolution CLEAN and wavelet analysis. Various
authors have described an extension of the Maximum En-
tropy Method to wavelets as basis functions (11; 12; 13).

«» Pixons (14) developed a method for estimating not only
pixel strengths but an associated scale size. The combi-
nation of strength and scale size, they dubbed a “pixon”.
The Pixon method has been extended considerably, and
the original algorithm drastically improved (15; 16). Per-
formance is extremely good, especially as measured by
the statistical whiteness of the residuals. However, there
has been no published success in applying the algorithm
to synthesis observations because a key assumption, that
the PSF is compact, does not hold for Fourier synthesis.

« Adaptive Scale Pixels (17) developed a method for fitting
extended components during a deconvolution process.
This has good deconvolution performance but is com-
putationally expensive.

Thus multi-scale methods have demonstrated advantages
in deconvolution, encouraging further development of multi-
scale algorithms. This conclusion is supported by the ex-
plosion of interest and technical advances in “compressive
sampling” (18; 19; 20; 21). Compressive Sampling (CS) theory
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shows that under quite general conditions, a sparse signal can
be reconstructed from a relatively small number of random
projections. This is reassuring for radio astronomers since
deconvolution of radio synthesis observations has been the
norm for about thirty years.

The recent growth of work in compressive sampling algo-
rithms holds great promise for new and efficient algorithms for
deconvolution of radio synthesis observations. However, here
we concentrate on a simple extension of the CLEAN algo-
rithm. We describe a conceptually and algorithmically straight-
forward multi-scale generalization of the CLEAN method that
improves convergence and stability (as well as some other
properties). This retains the pattern matching motivation of
the Hogbom algorithm but extends it to encompass extended
emission as well as point sources. Unlike the Multi-Resolution
CLEAN and Wavelet CLEAN, this algorithm selects among
scales considered simultaneously rather than sequentially. We
present some background in the next section, our multi-scale
algorithm in section 3, some demonstrations and comparisons
to other algorithms in section 4, and summarize our work in
section 5.

II. BACKGROUND

Radio synthesis arrays image the radio sky not through a
single large physical aperture but by synthesising a virtual
aperture of equivalent size and angular resolution. This is done
by invoking the van Cittert-Zernike theorem relating the spatial
coherence function (or “visibility”) of the electric field and the
sky brightness function (see 2).

A given pair of antennas, with baseline vector u,v,w (as
seen from the source) measures a single Fourier component
of the sky brightness I.

V(u,v) = f 1(x, )& ) dxdy

Given complete sampling of the Fourier space, the sky bright-
ness may be obtained by Fourier inversion of noise free
observations:

I(x,y) = f V(u, v)e 7 dudy

For a real array, the true, completely sampled, visibility
function V is not available and we have only noisy samples
of the visibility function at discrete locations in the Fourier
plane. Ignoring for the moment the effects of noise, we can
represent this by replacing V by the “sampled” visibility
function S (v, v)V(u,v), where the sampling function S (u,v)
is:

S(u,v) = Z wid(u — ug)o(v — vy)
k
Inserting this into the Fourier inverse, we then obtain the Dirty
image:
P =51(sV)

Applying the convolution theorem from Fourier transform
theory, we find that the dirty image is the convolution of the
true image / with a “Dirty” beam B:

IP=Bx«1I

where the Dirty Beam or Point Spread Function B = ' (S)
is given by:

B(x,y) = Z cos [ 27 (ugx + viy) | wy
k

Thus the deconvolution problem is to solve for / from knowl-
edge of the dirty image I”, and the point spread function B.

The CLEAN algorithm finds a solution to the convolution
equation by positing a model for the true sky brightness which
is a collection of point sources.

1€ =3 146(x = %000 = y)
q

The key aspect of the CLEAN algorithm is the way that it
solves iteratively for the positions and strengths of the CLEAN
components. Defining:

190m) = " 1,6(x = x)60 = ¥,)

q=1

The values for I, x,, y, are found by locating the peak in the
residual image:

R’n)y=1P-B«1°n-1)

In fact, a least squares fit for 1, x,,y, dictates that one find
the peak in B * I®(n). However, the difference between these
two is often minor and is nearly always neglected. On finding
the nth component, the residual image is simply updated by
subtracting a suitably scaled and centered copy of the point
spread function. Hence the main work in the algorithm is
(a) finding the location of the peak residual, and (b) shifting,
scaling, and subtracting the point spread function. Performance
of the deconvolution can be improved by restricting the search
to a “CLEAN window” wherein the image brightness is known
to be non-zero. Such support constraints aid deconvolution in
general by restricting the range of possible solutions.

The Hogbom CLEAN algorithm is therefore simple to
understand and implement. For small images, the algorithm is
very fast. For larger images, (22) developed a faster algorithm
that uses a support-limited approximation to the point spread
function, followed by FFT-base convolution using the full
point spread function.

(23) has analyzed the Hogbom CLEAN algorithm in detail
and has developed a convergence proof. CLEAN is a greedy
algorithm: it consists of a sequence of iterations, and within
each iteration, the choice made depends only on information
available at the iteration (see 24, for a discussion of greedy al-
gorithms.) There is no guarantee that the result of the CLEAN
algorithm is globally optimal in any particular sense, although
there is a conjecture that the image L1 norm is minimized
(25). (26) has developed the interpretation of Hogbom Clean
in Compressive Sampling language as a matching pursuit
algorithm calculating residual vectors in image space.
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TABLE 1
MULTI-SCALE ALGORITHM

Initialize
+ Model: 1M =0
« Residual ITmage: I¥ = [P
« For each scale ay
— calculate scale-convolved residual IX = m(a) * IR
— calculate scale bias S(a) =1 — 0.6 * @/amax
« For each pair of scales a), @y, calculate cross term: Bxm(ap)*m(ay)
Repeat
1) For each scale, find strength and location of peak residual
2) Choose scale with maximum residual, after multiplying by scale-
dependent bias terms,
3) Add this component to current model, scaled by loop gain
4) Update all residual images using precomputed terms

Until

Either max(I¥) < threshold
Or Maximum number of components identified

Finalize

« Convolve current model by clean beam: Bg * IM
« Add residuals to get restored image: Bg * IM + IR

III. TeE Murri-ScALE CLEAN ALGORITHM

The Hogbom CLEAN algorithm performs surprisingly well
given that it chooses to model extended emission by point
sources (Dirac delta functions). Our extension is to use ex-
tended components to model the source. Our model is that that
the true sky brightness is a summation of appropriately scaled
and centered extended components. Denoting the component
width by a single parameter a,, we have that the model is:

™= Z Iim(x — x4,y = yg, @)
q
Following the greedy strategy used in the CLEAN algorithm,
we search for the nth component by looking for a peak in:

En)y=1°-B«Mn-1)

where the search is over I, x4,y,4, @,. In practice, the search
over the non-discrete axis @, could be quite time consuming.
However, we have found that searching only a few well-chosen
scale sizes works well in many cases.

In deciding which scale to select, we must apply a bias
towards smaller scales. To understand why, consider a source
which is dominated by a point source but which has a very
small amount of extended emission. If we don’t bias towards
smaller scales, the point source plus the small amount of
extended emission will result in selecting a large scale to
represent the emission. The residuals, however, will show
the point source nearly untouched, and a large negative bowl
around the point source, and it will take many iterations to
clean up this mess. In any one iteration, we evaluate the
maximum residual for a set of scale sizes, and choose that
scale size with the maximum adjusted residual. We have found
the following relation to work well:

S(a@) =1-0.6a/amax

In any iteration, the component selected is thus located at the
peak with the appropriate scale size. The magnitude of the

component is given by the loop gain times the peak. Unlike
delta-function clean algorithms which make errors in imaging
extended structure when the loop gain is much higher than
0.1, Multi-Scale CLEAN is able to produce good images with
a loop gain of 0.5 or even higher.

The algorithm can be made efficient by careful precompu-

tation of all terms that are needed for the update:

o Bxm(a,)

o Bxm(ay) = m(a,)

By using these precomputed images, the operations needed for
the CLEAN reduce to scaling, shifting, and subtracting, just
as for the Hogbom algorithm.

We now turn to the question of the shape of the components,

m(x,y,@). There are a number of considerations:

« Since the final image is composed of a summation of
these components, each individual component should be
astrophysically plausible (for example, without negative
brightness.)

« The component should be independent of pixel orienta-
tion, and therefore should be a function of +/x? + y? only.

o The component shape must allow a support constraint to
be used. This rules out Gaussians since the tails extend
over all space. However, too sharp a truncation in image
space will cause difficulties as well.

For these reasons, we have chosen a tapered, truncated

parabola as the component shape:

m(r, @) = ‘F(r)(l - (é)z)

where W is a prolate spheroidal wave function (calculated us-
ing an approximation provided by F. Schwab). The difference
between this function and a suitably scaled Gaussian is quite
minor, though, and use of a Gaussian will only be a problem
at high dynamic range or when using an image plane support
constraint.

For zero a, this corresponds to a Dirac delta function. We
always include such a scale size to ensure that the finest scales
can be fit.

The use of extended components as well as delta functions
must be accommodated in any support constraint that is used.
If a window function w(x,y) is to be used then no emission
in the model can leak outside of this window. Hence each
scale size @ must be subject to a trimmed window function
w(x,y, @) such that a component centered within the trimmed
window function has no emission outside the window function
w(x,y). The trimmed window functions are simple to calculate.
However, clearly if « is too large, a trimmed window function
may not exist. This simply means that a component of a given
size cannot be fitted into the specified window function w(x, y).

A convergence proof can be constructed following that given
by (23). The most important limitation of Schwarz’s conver-
gence proof is that the PSF should be positive-semidefinite. If
the PSFs are calculated accurately and the component shape
is chosen appropriately, then convergence is assured.

The algorithm is relatively low in complexity and can
be implemented straightforwardly by augmenting an existing
CLEAN code. The only mildly difficult part is using the
precomputed cross terms correctly.
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We have implemented this algorithm in the AIPS++ (now
CASA) Package. It is available in the deconvolver and
imager tools. AIPS++ also supports the following algorithms:
Hogbom and Clark Clean, the Maximum Entropy Method (via
the Cornwell-Evans algorithm), and Multi-Resolution Clean
(via a trivial script.) In addition, AIPS++ supports an unpub-
lished algorithm called Maximum Emptiness developed by the
author about twenty years ago. This algorithm is identical to
MEM except that the entropy objective function is replaced
by a sech function. The motivation for this is to approximate
the minimization of the L1 norm. We include this algorithm
for comparison purposes.

Our Multi-Scale CLEAN algorithm is similar to the Multi-
Resolution Clean (7), the principal difference being that our
algorithm works simultaneously on all scales being considered
instead of sequentially. In other words, our algorithm is greedy
only with respect to component position and strength whereas
Multi-Resolution Clean is greedy with respect to component
scale, position, and strength. The main virtue of simultaneous
searching is that errors on selecting a scale size can be
corrected immediately rather than being frozen in.

The representation used in Multi-Scale CLEAN is similar to
that in the Pixon method but the algorithms are quite different.
The greedy Multi-Scale CLEAN approach cannot claim to find
a globally optimal solution (as the Pixon method does). A
global solution would be superior (less bias and more compact)
if it could be calculated for Fourier synthesis problems. Future
work would do well to investigate the possibility of adapting
Compressive Sampling algorithms to this particular domain
and representation.

The choice of rotationally symmetric components is re-
quired to cut down the dimension of the implicit search space
- it is possible to use representations such (27) as curvelets
to better represent sharp edges but the overhead in searching
would be very substantial. This points to a clear shortcoming in
our strategy of explicit and exhaustive search in the component
parameters.

In Multi-Scale CLEAN, the selection of scale sizes to eval-
uate over is admittedly ill-defined but usually not too crucial.
Too fine a range such as an arithmetic progression wastes
compute time, and too coarse can lead to poor convergence.
We have generally chosen a geometric progress such as 0, 2,
4, 8,16, 32 or 0, 3, 10, 30 pixels, terminating at or below the
largest scale expected. This is an area that could be improved
in future work.

Multi-Scale CLEAN is stable in the presence of a spatially
varying background provided sufficiently large scales are in-
cluded in the search. The large scale structure is then removed
first, leaving the fine scale structure to be estimated on an
largely empty background.

IV. DEMONSTRATIONS
A. Performance on real data

To illustrate one of the key motivations for the Multi-Scale
CLEAN algorithm, we show an application to a dirty image of
one spectral channel of a galaxy (NGC1058) observed in HI
emission with the Very Large Array in D configuration. Since

Fig. 1.
with the VLA. This shows the “dirty image” formed from inverse Fourier
transform of the observed data. The transfer function is truncated to show
the range -3mJy/beam to +3mJy/beam. The peak in the image is about
12mJy/beam.

Imaging of one channel of an HI synthesis of NGC1058, observed

in this example, the signal-to-noise ratio is not high and the
source has very extended structure, the fine-scale sidelobes are
not as troublesome as the broader sidelobes. In the dirty image
(see figure 1), a broad negative bowl is seen surrounding the
emission. Although this may appear to be a largely cosmetic
defect, it does prevent accurate estimate of integrated emission
in cases such as this.

Classic Hogbom CLEAN (figure 2) is poor at correcting the
negative bowl because many point sources must be subtracted
to represent the broad emission. We applied Multi-Scale
CLEAN to this image, using 1000 iterations at loop gain
1.0, with scale sizes set to 0, 1.5, 3, 6, 12, 24 pixels. The
stopping criterion is that the peak residual flux reach 40. At
convergence, the integrated flux in the Multi-Scale CLEAN
image is 3.08Jy, and that in the Hogbom CLEAN image is
0.32Jy. For the Multi-Scale image, this value is robust to
changes in the integration region to beyond the nominal extent
of the source whereas for Hogbom CLEAN, the integrated
flux is highly dependent on the integration region (because
of the substantial negative bowl in emission left behind after
deconvolution).

There are a number of features worth emphasizing:

o The Multi-Scale CLEAN algorithm finds and detects
emission on the largest scales first, moving to finer and
finer detail as iteration proceeds. This is the opposite
behavior to Hogbom CLEAN where the fine detail is
removed first.

« At large numbers of iterations for Multi-Scale CLEAN,
the peak residuals for all scales become comparable.

o The Multi-Scale CLEAN algorithm converges to rela-
tively stable values of the flux on different scales. In
comparison, the Hdgbom CLEAN continues to find more
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Fig. 2. Deconvolution at low signal-to-noise: imaging of one channel of an HI
synthesis of NGC1058, observed with the VLA. (a) Hogbom CLEAN restored
image, (b) Hogbom CLEAN residual image, (c) Multi-Scale CLEAN restored
image, (d) Multi-Scale CLEAN residual image. All images are displayed with
the same transfer function -3mJy/beam to +3mJy/beam. The peak in the image
is about 12mJy/beam.

and more flux as iteration progresses.

« To extract more flux using the Hogbom CLEAN requires
CLEANIng deeper than 4¢-. This is possible, but is slow
and distorts the appearance of the noise.

B. Performance on simulated data

Now that we have seen how Multi-Scale CLEAN works on
real data, we turn to show behavior on simulated observations
in which the ground truth is known.

First we show simulations of VLA observations on a well-
known test image - the “M31” image used in many radio
simulation studies. This is of a moderately complex source.
In figure 3, we show the model at full resolution and also
smoothed with a typical CLEAN beam (as would occur in the
usual restoration process).

Using the AIPS++/CASA simulator tool, we simulated
VLA observations of this object in C configuration. The source
was taken to be at declination 45 degrees, and observations of
60 seconds were made every 5 minutes for hour angles from
-4 to +4 hours. This is therefore a well-sampled observation
with sufficient short spacings that the deconvolution should
perform quite well.

We performed deconvolutions with the Hogbom and Clark
CLEAN, and Maximum Entropy method, in addition to Multi-
Scale CLEAN. The Multi-Scale CLEAN used scales 0, 1.5, 3,
6, 12, and 24 pixels. In figure 4, we show the various restored
images, along with the error pattern. The latter is calculated by
subtracting the model image as smoothed with the appropriate
CLEAN beam.

Fig. 3. The image and PSF used in simulations. (a) Full resolution model
image (b) Smoothed model image. (c) Point spread function.

Fig. 4. Deconvolution of simulated VLA observations of the “M31”
image. (a) Clark CLEAN restored image, (b) Clark CLEAN residual image,
(c) Clark CLEAN error image, (d) Hogbom CLEAN restored image, (e)
Hogbom CLEAN residual image, (f) Hogbom CLEAN error image, (g)
Entropy restored image, (h) Entropy residual image, (i) Entropy error image,
(j) Multi-Resolution CLEAN restored image, (k) Multi-Resolution CLEAN
residual image, (1) Multi-Resolution CLEAN error image, (m) Multi-Scale
CLEAN restored image, (n) Multi-Scale CLEAN residual image, (o) Multi-
Scale CLEAN error image. The restored images are displayed with a transfer
function running from -0.050 to 10Jy/beam, the residual images from -
ImJy/beam to +1mJy/beam, and the the error images from -50mJy/beam to
+50mJy/beam
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TABLE II
PERFORMANCE OF DECONVOLUTION ALGORITHMS FOR “M31” SIMULATION.

Algorithm Time (s)  Total flux (Jy) RMS error (mJy/beam)
Hogbom&204 1474 8.8

Clark 50 1326 25.6
Multi-Resolution 147 1546 14.7
Multi-Scale 614 1495 4.9

Entropy 13 1486 2.5

The times taken for each deconvolution (on a 3.06GHz
Xeon) are shown in Table 2.

Some comments on the results:

« This simulation illustrated a difficult obstacle to the use
of Clark CLEAN on deep images. Schwarz’s (23) anal-
ysis of the CLEAN algorithm shows that the PSF must
be positive semi-definite (all eigenvalues non-negative).
There are two reasons why the actual PSF may violate this
requirement - first, the use of a gridded transform in place
of a Fourier sum and second, for the Clark algorithm, the
truncation of the PSE. Thus, at high iteration numbers,
the CLEAN algorithm in either form may diverge. In this
case, we found that the Clark CLEAN diverged above
300,000 CLEAN components at which point only 1391Jy
of the full 1495Jy were recovered. While some tuning of
the details of the major/minor cycles might have helped,
the point remains that Clark CLEAN is marginal at high
iteration numbers. The Hogbom CLEAN does converge
well. By comparison, the Multi-Scale CLEAN converges
quite well at only 5000 iterations.

« The structure in the residuals is quite obvious except for
the case of Multi-Scale CLEAN, for which the residuals
show little correlation with the source structure.

« Entropy, Hogbom CLEAN, and Multi-Scale CLEAN per-
form exceptionally well in recovering the full flux of
the object, whereas the Clark CLEAN is biased down
by about 7%. This is in agreement with the qualitative
results from the error images where the Clark CLEAN
image shows a substantial negative bowl - exactly the
effect Multi-Scale CLEAN was designed to avoid.

o Even when the CLEAN algorithms converge, the re-
sults are prone to show “fringing” on extended emission
(3; 28; 29). This fringing is due to poor interpolation
in holes and at the edge of the sampled Fourier plane.
The fringing is apparent in the error images (difference
from ground truth) but not in the residual images. These
simulations show that Multi-Scale CLEAN is also liable
to such effects but at a lower level.

« Entropy produces systematically biased residuals but the
error is much lower than for the various CLEAN algo-
rithms. In this case, the bias term causes an extra 2Jy
of flux in the overall 1495Jy flux. If thermal noise were
added to the simulations, MEM’s positivity bias would
increase.

To test on a structurally different object, we have simulated
VLA observations of Hydra A. Our model is an actual image
with noise removed. The observing scheme was as in the M31
simulation. The results are shown in figure 5.

Fig. 5. Deconvolution of simulated VLA observations of the “Hydra”
image. (a) Clark CLEAN restored image, (b) Clark CLEAN residual image,
(c) Clark CLEAN error image, (d) Hogbom CLEAN restored image, (e)
Hogbom CLEAN residual image, (f) Hogbom CLEAN error image, (g) Multi-
Scale CLEAN restored image, (h) Multi-Scale CLEAN residual image, (i)
Multi-Scale CLEAN error image. The restored images are displayed with a
transfer function running from -0.050 to 10Jy/beam, the residual images from
-lmJy/beam to +1mlJy/beam, and the the error images from -50mJy/beam to
+50mlJy/beam

C. Performance for varying source size and noise level

To gain a better understanding of the strengths and weak-
nesses of Multi-Scale CLEAN algorithm and compared to
other available deconvolution algorithms, we have investi-
gated the imaging numerically through simulations made with
systematically varying source size and thermal noise. These
simulations were made with the AIPS++/CASA simulator
tool. We put our model sources at declination 45 degrees
and observed them with the VLA C array at X band with
60 s integrations between hour angles of -1 and +1. For
models, we used both the “M31” brightness distribution and
a model derived from an optical image of the spiral galaxy
M51. Both images have been modified so that the brightness
distributions have well-defined edges and off-source pixels are
identically zero. From each model, we have produced a series
of models with the same pixel size, but with the linear size of
the source distribution decreased in a geometric series of V2.
To assess the image quality, we use two very simple measures
- recovered flux and dynamic range. The integrated flux itself
can be an important quantity in many observations. In the
context of these simulations, deviations from the true flux
indicate systematic imaging errors which will in some way
limit the usefulness of the reconstructed image in quantitative
endeavors.

Figure 6 indicates how the Multi-Scale CLEAN, Maximum
Entropy Method (MEM), Maximum Emptiness, and Clark
CLEAN algorithms fail to recover all the flux as the source
structure becomes larger in the case of the M51 series of model
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Various Algorithms' Ability to Recover Flux
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Fig. 6. The fraction of the recovered flux as a function of simulated source
size (a) for various deconvolution algorithms, and (b) for Multi-Scale CLEAN
with a variety of scale sizes. In each case, four scale sizes were used, spanning
from a point source to the maximum listed in the figure (which ranges from
8 pixels, or 0.027 A/D, to 64 pixels, of 0.21 /D).

images. It is well known that MEM is superior to CLEAN at
imaging extended structure. These simulations show this, but
also that Multi-Scale CLEAN is nearly as good as MEM in
imaging very extended structure. Figure 6 also shows how
the recovered flux depends upon exactly which scale sizes
are used in the Multi-Scale CLEAN algorithm. For smallish
sources, the amount of flux recovered does not depend upon
the details of the scale sizes we used. However, for very large
sources (the sources at about 0.8 /D and 1 A/D are larger than
we should be able to accurately image in C array), using large
maximum scale sizes can appreciably increase the amount of
flux recovered.

One of the major problems of the Maximum Entropy
Method is positivity bias. Many extended sources which could
benefit from MEM’s superior ability to image large-scale
structure show weak diffuse structure at moderate to low SNR.
Figure 7 shows the results of a set of simulations done on
the M51 model scaled to 0.30 A/D — a size which is small
enough so that all algorithms do a fairly good job at recovering
all the flux. Varying amounts of Gaussian noise are added to
the visibilities, and the theoretical image plane SNR, defined
as the peak of the model image convolved with the CLEAN
beam divided by the image plane noise, is calculated. We
gauge the deconvolution algorithms’ response to noise first by
looking at the recovered flux in Figure 7a. Here, we see that
MEM’s positivity bias results in a significant overestimate of
the source flux starting with image plane SNR as high as 100.
CLEAN, Maximum Emptiness, and Multi-Scale CLEAN, do
not share this shortcoming, and reproduce accurate estimates
of the source flux down to SNR of about 4. Note that CLEAN
actually estimates the total flux reasonably well even when
the image plane SNR is below 1. Of course, if we were
to taper this image to lower resolution, we would increase
the amount of flux in the beam faster than we increase the
thermal noise. In other words, Hogbom CLEAN and Multi-
Scale CLEAN, are able to utilize the information in the
shorter baselines even when the source is totally undetected
at full resolution. Figure 7b shows the dynamic range of the
reconstructed images as a function of the image plane SNR.
For SNR-limited imaging, we would expect a straight line
with slope 1.0. At the high SNR end of the plot, we are just
beginning to see the curves flattening as the images become
limited by deconvolution errors. The flattening at the low SNR
end of the plot at a dynamic range of about 4 is indicitave of
the peak over the rms of an image dominated by thermal noise.

Figure 8 points to the complex interactions between the
maximum scale size used in Multi-Scale CLEAN, the tightness
of the imaging mask, and the resulting image quality. In this
case, a large model image (0.83 A/D) was used, and Multi-
Scale CLEAN was just starting to fail. As the plot indicates,
significant improvement in image quality can be obtained by
using a fairly large maximum scale size (about one quarter the
size of the object), and by using a very tight mask image.

V. SuMMARY

Multi-Scale CLEAN has been in use for 5-6 years. It seems
to work well in practice. For examples of the application of
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a model image of the M31 HII region which has been scaled to a size of
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