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Abstract—Diversity embedded codes are high-rate space–time
codes that have a high-diversity code embedded within them.
They allow a form of communication where the high-rate code
opportunistically takes advantage of good channel realizations
while the embedded high-diversity code provides guarantees that
at least part of the information is received reliably. Over the past
few years, code designs and fundamental limits of performance
for such codes have been developed. In this paper, we review
these ideas by giving the developments in a unified framework.
In particular, we present both the coding technique as well as
information-theoretic bounds in the context of Intersymbol Inter-
ference (ISI) channels. We investigate the systems implications of
diversity embedded codes by examining value to network utility
maximization, unequal error protection for wireless transmission,
rate opportunism and packet delay optimization.

Index Terms—Opportunistic communication, rate diversity,
tradeoff, unequal error protection, wireless communication.

I. INTRODUCTION

OVER the past decade, since the seminal work of [41], [26],
[43], multiple-antenna (space–time) codes have emerged

as a means of enabling reliable high-data rate wireless commu-
nications. There have been significant developments both in the
theory and practice of space–time codes over the past few years.
These have led to adoption of space–time codes in next-gener-
ation wireless communication standards such as 802.11n and
WiMAX. There is an inherent tension between rate and reli-
ability exemplified in space–time codes. This was explored in
the context of finite-rate (fixed alphabet size) codes in [43] and
in the context of information-theoretic rate growth in [46]. Both
of these results show that to achieve a high transmission rate,
one might need to sacrifice reliability (diversity) and vice-versa.
Therefore, the main question addressed by most researchers has
been on how to design transmission techniques that achieve a
particular point on the rate-reliability tradeoff curve. For ex-
ample, the emphasis in the coding literature has been the de-
sign of maximal-diversity codes, i.e., one extremal point in this
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tradeoff. In [41], [26], the focus is on obtaining the maximal spa-
tial multiplexing rate for ergodic channels. There are also codes
which achieve particular points on the rate-reliability tradeoff
curve (see for example, [36] and references therein for a history
of such codes).

Diversity embedded codes introduced in [12], [13] ask a dif-
ferent question where multiple levels of reliabilities (in terms of
error probability or diversity order) were sought for different
messages. Since then, there have been (algebraic) multilevel
constructions for diversity embedded codes [17], [23], an un-
derstanding of fundamental limits of such codes [15], [16], [22]
as well as its impact on network layer protocols [33], [19]. This
paper summarizes these ideas in a unified framework.

One motivation for providing such a physical layer charac-
teristic is the need for wireless networks to support a variety
of applications with different quality-of-service (QoS) require-
ments. For example, real-time (multimedia) applications need
lower delay and therefore higher reliability (diversity) as com-
pared to non-real-time applications. In particular, if we design
the overall system for a fixed rate-diversity operating point, we
might be over-provisioning a resource which could be flexibly
allocated to different applications. This thought process leads
to viewing diversity (reliability) as a systems resource that can
be allocated judiciously to satisfy the QoS requirements for the
different applications. This is the characteristic of diversity em-
bedded codes which can also be thought of as unequal error pro-
tection (UEP) codes designed for wireless fading channels. The
idea of UEP has a long and rich history (see for example [40],
[8] and references therein). UEP codes have been designed for
the binary Hamming distance metric (see for example [37]) and
for the Euclidean distance metric encountered in the Gaussian
channel (see for example [5]). Hence, diversity embedded codes
provide UEP with respect to the diversity metric suitable for
fading channels [17].

In transmitting over an unknown channel, whose capacity is
therefore not known a priori, one can envisage two strategies.
One strategy would be conservative where we design for the
worst channel for a given reliability (outage). Another strategy
would be opportunistic where we embed information in such a
manner so as to deliver part of the information if the channel
is bad, but more information when the channel is good. It is
clear that one would do better with a conservative strategy in
an adversarial situation, since it would ensure a higher rate in
the worst-case. However, wireless channels being random (as
opposed to adversarial), we can opportunistically gain rate in
the latter strategy. Therefore, another interpretation of diversity
embedded codes is in terms of opportunistic communications,
where one takes advantage of benign channels while giving
some guarantees when deep fades occur.

1932-4553/$25.00 © 2008 IEEE
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In this survey of diversity embedded codes, we focus our at-
tention on designs which are appropriate for broadband inter-
symbol interference (ISI) channels. However, the designs spe-
cialize to the flat-fading case, where sometimes a simpler code
would actually suffice. This simplification will be pointed out
in Sections IV and V. One important point to note is that if one
wants to take advantage of the multipath diversity offered by ISI
channels, we need to design codes specifically for ISI channels.
If one uses space–time codes suitable for flat fading channels,
we cannot guarantee in general that these codes would be ca-
pable of gathering more than the spatial diversity gains. This
becomes especially important in a rich multipath environment,
where we can design codes at a higher rate, and utilize the multi-
path (ISI) diversity to improve reliability. In fact this argument
motivates the importance of diversity embedded codes for ISI
channels, since such codes give flexibility in the design of the
rate-diversity performances needed.

One of the main classifications for the diversity embedded
codes is in terms of the constraints imposed on the design. In
many applications, the need to control transmit parameters (like
peak-to-average ratio) motivates a transmit alphabet constraint,
where the transmit symbol is restricted to come from a fixed set
(like -QAM, -PSK, etc.,). For such cases, there is a well-
defined tradeoff between rate and diversity (see Section II-B).
Therefore, designs of diversity embedded codes with transmit
alphabet constraints is the focus of Section IV. The multilevel
constructions given are natural generalizations of space–time
codes [43].

If we move away from transmit alphabet constraints, the
appropriate tradeoff to consider is the diversity-multiplexing
tradeoff introduced in [46]. In Section V, we design diversity
embedded codes appropriate to this regime and examine funda-
mental information-theoretic performance limits. In particular,
it is shown that when we have a single-degree of freedom
(i.e., when we have either one transmit antenna or one receive
antenna; SIMO/MISO), the diversity multiplexing tradeoff
is successively refinable [15], [22]. This means that one can
design diversity embedded codes such that the higher reliability
stream gets optimal performance (i.e., it is extremal on the di-
versity-multiplexing tradeoff), while the overall code (sum-rate
of messages) is also optimal. This implies that (asymptotically
in SNR) one can perfectly embed codes, therefore creating
ideal opportunistic codes that automatically adjust multiplexing
rate to that level supported by the channel (without a priori
channel knowledge). The intuition for this result through scalar
broadcast channels is illustrated in Section V.

The outline of the paper is as follows. We begin with the no-
tation and a presentation of results on the tradeoff between rate
and reliability in Section II. In Section III, we introduce the con-
cept of diversity embedding and give design criteria for finite
alphabet and rate growth codes. We present a class of linear
and multilevel diversity embedded code construction for the
transmit alphabet constraint case in Section IV. In Section V,
we focus on the information-theoretic limits of diversity em-
bedded codes and demonstrate the successive refinement prop-
erty. The networking implications (including wireless multi-
media delivery) and the benefits of the diversity embedded codes
are illustrated in Section VI.

II. PRELIMINARIES

Our focus is on the quasistatic fading channel where we
transmit information coded over transmit antennas with
antennas at the receiver. Throughout this paper, we assume that
the transmitter has no channel state information (CSI), whereas
the receiver is able to perfectly track the channel (a common
assumption, see for example [2], [43]). Differential decoding
schemes for diversity-embedding codes which do not require
receiver CSI were designed and analyzed in [38].

The coding scheme is limited to one quasistatic transmission
block of large enough block size to be specified later.
The received vector at time after demodulation and sampling
can be written as

(1)

where is the received vector at time
represents the th matrix tap of the MIMO ISI

channel, is the space–time coded transmis-
sion vector at time with transmit power constraint and

is assumed to be additive white (temporally and
spatially) Gaussian noise with variance . The matrix
consists of fading coefficients which are i.i.d. and
fixed for the duration of the block length . For the special
case of a flat-fading channel, assuming the received
symbols over a block of length can be written as

(2)

where and
is the space–time-coded trans-

mission sequence.
For the channel models in (1) and (2), define the notion of

diversity order [43] as follows.
Definition 2.1: A coding scheme which has an average error

probability as a function of SNR that behaves as

(3)

is said to have a diversity order of .
In words, a scheme with diversity order has an error prob-

ability at high SNR behaving as . We use
the special symbol to denote exponential equality, i.e., we
write to denote

and and are defined similarly.

A. Review of Space–Time Code Design Criteria

For codes designed for a finite (and fixed) rate, one can
bound the error probability using pairwise error probability
(PEP) between two candidate codewords. This leads to the
now well-known rank criterion for determining the diversity
order of a space–time code [31], [43]. Considering a codeword
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sequence as defined in (2), the PEP between two codewords
and can be determined by the codeword difference matrix

[31], [43] as follows

(4)

For fixed-rate space–time codes, by using the simple union
bound argument, it can be shown that the diversity order is
given by [43] as,

(5)

The error probability is determined by both the coding gain and
the diversity order. Hence, the code design criterion prescribed
in [43] is to design the codebook so that the minimal rank
of the codeword difference matrix corresponds to the required
diversity order and the minimal determinant gives the corre-
sponding coding gain. For codes designed for multiplexing rate
an alternative design criterion [24] which bounds the minimum
determinant of the difference matrix is more appropriate. As-
suming and a communication rate of the crite-
rion is given by

(6)

and is referred to as the Non Vanishing Determinant (NVD)
criterion.

B. Tradeoff Between Rate and Reliability

For a given diversity order, it is natural to ask for upper
bounds on the achievable rate. For a flat Rayleigh fading
channel with a fixed transmit alphabet constraint, the tradeoff
has been examined in [43] where the following result was
obtained.

Theorem 2.2: (Transmit-alphabet constrained, rate-diversity
tradeoff for flat-fading channels) [35], [43] If a constellation of
size is used for transmission and the diversity order of the
system is , then the rate that can be achieved is bounded
as

(7)

in bits per transmission.
Another point-of-view explored in [46], allows the rate of the

codebook to increase with SNR, i.e., defines a multiplexing rate.
If we consider a sequence of coding schemes with transmission
rate as a function of SNR given by , then the multi-
plexing rate is defined as

(8)

Therefore, just as Theorem 2.2 shows the tension between
achieving high-rate and high-diversity for a fixed-transmit-al-
phabet constraint, there exists a tension between multiplexing
rate and diversity as well [46], a special case of which is
described next.

Theorem 2.3: (Diversity-Multiplexing (D-M) tradeoff for
flat-fading channels) [46] The diversity-multiplexing tradeoff

Fig. 1. Outage events in the classical setting and for diversity embedded
coding. (a) Classical setting and (b) Diversity embedded setting.

for flat-fading channels with a single degree of freedom i.e.,
, is given by

(9)

for .
Similarly, the D-M tradeoff for transmission over a SISO ISI

channel was established in [30].
Theorem 2.4: (D-M tradeoff for SISO ISI channels) [30] The

diversity multiplexing tradeoff for transmission over a SISO ISI
channel with taps for transmission over a period of time

is bounded by

(10)

for .
However, the D-M tradeoff for multiple antenna ISI channels

is still not known in general. One of the consequences of the
results in Section V is to establish the tradeoff for the MISO/
SIMO cases.

III. DIVERSITY EMBEDDING

The classical approach towards code design for channels is
to maximize the data rate given a desired level of reliability. A
natural setting to address this question is the outage formulation.
The classical outage formulation divides the set of channel real-
izations into an outage set and a nonoutage set : it requires
that a code has to be designed such that the transmitted message
can be decoded with arbitrary small error probability on all the
channels in the nonoutage set. Since the code must work for all
such channels, the data rate is limited by the worst channel in
the nonoutage set. Note that in this scenario, the communica-
tion strategy cannot take advantage of the opportunity when the
channel happens to be stronger than the worst channel in the
nonoutage set.

Diversity embedded coding takes advantage of the good
channel realizations by an opportunistic coding strategy. Con-
sider two streams of messages , the high priority message
stream, and , the low priority message stream. Diversity
embedded codes encode the streams such that the high-priority
stream is decoded with arbitrary small error probability
whenever the channel is not in outage and in addition the
lower-priority stream is decoded whenever the channel is in a
set of good channels (see Fig. 1).
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The decoder jointly decodes the two message sets and de-
fine two error probabilities, and , which
denote the average error probabilities for message sets and

, respectively. Then, analogous to Definition 2.1, the diversity
order for the messages can be written as

(11)

Denote and to be the supportable rates for the worst
channels in and , respectively. Then, we can characterize
the achievable tuple for the cases of finite-
alphabet and rate-growth codes for transmission over ISI and
flat-fading channels.

A. Diversity Embedding Coding Scheme for ISI Channels

For ISI channels, we will consider a transmission scheme in
which we transmit over a period and send (fixed) known
symbols1 for the last transmissions. For the period of commu-
nication we can equivalently write the received data as shown
in (12) at the bottom of the page, i.e.,

(13)

where
. Notice that the structure in

(13) is different from the flat-fading case as the channel im-
poses a banded Toeplitz structure on the equivalent space–time
codewords given in (12). Although this structure makes the
design of space–time codes different from the flat-fading case,
the analysis in [31], [43] can be easily extended to fading ISI

1Taken without loss of generality to be zero symbols. This plays the role
of isolating transmission blocks by eliminating inter block interference (due to
ISI).

channels and analogous to (5) the diversity order for a fixed
rate transmission over an ISI channel can be written as2

(14)

Note that here are matrices with struc-
ture given in (12). For reference, the space–time codeword is
completely determined by the matrix given by

(15)

and define a mapping of a matrix of dimension to
a matrix of dimension by (16), shown at the
bottom of the page.

For the case of a scalar ISI channel with taps and a
single transmit antenna, it can be shown by a simple argument
(see for example [44]) that an uncoded transmission scheme
can achieve a diversity order of . However, in the mul-
tiple-transmit-antenna case, it is not obvious that a space–time
code designed for a flat-fading channel can achieve such a

fold increase in the diversity order. Therefore, the design
of codes for fading ISI channels cannot be immediately done
by using the codes for flat-fading channels. A finite-alphabet
construction to exploit the available multipath diversity gains
from ISI channels with multiple transmit antennas was pro-
posed in [29] for the maximum-diversity case but the rate of
the code for this construction was as opposed to the max-
imal possible rate of 1, which is shown to be achievable in Sec-
tion IV. Similarly, there exist constructions of space–time fre-
quency codes achieving the full diversity point (see [25] and
references therein), but they do so at the cost of expanding the
transmit constellation size. This violates the finite alphabet con-
straint and the appropriate framework to analyze this is the rate
growth perspective in Section V.

2Note that when we consider multiplexing rate, the diversity order expression
would be different; see Section V.

...
. . .

...
(12)

...
. . .

...
(16)
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Fig. 2. Codeword clusters.

B. Design Criteria

To ensure embedding of diversity, the transmitted space–time
codewords can be divided into codeword clusters as
shown in Fig. 2, where the codeword clusters shown corre-
spond to all arising due to a particular message .
The joint decoding of the two message sets yields candidate
clusters and elements within the clusters. Given a desired tuple

, the rates and the design criteria
depend on the transmit alphabet size as follows:

• Finite Transmit Alphabet: For transmission from an
alphabet , we need to design message sets with sizes

and . Denote to be the codeword
corresponding to message on the stream and message

on the stream . For transmission over flat-fading and
ISI channels, the following code design criterion ensure
that the the diversities and are achieved

(17)

(18)

• Rate Growth: Let and , denote
the average error probabilities for message sets and

respectively. For each 4-tuple ,
define a corresponding as an achiev-
able rate-diversity tuple if there exists a sequence

such
that is an
achievable performance at each finite SNR and

(19)

(20)

To ensure this performance we will see in Section V that a
variation of the NVD criterion (6) is needed.

C. Glossary

Symbol Interpretation

Diversity order for the message stream .
Diversity order for the message stream .
Rate for the message stream , for transmission
from finite alphabet.
Rate for the message stream , for transmission
from finite alphabet.
Multiplexing rate for the message stream
(information theoretic) .
Multiplexing rate for the message stream
(information theoretic) .
Codeword corresponding to message and on the
streams and respectively.
Maps a matrix of dimension to a matrix of
dimension (16).

IV. DIVERSITY EMBEDDED CODES: FINITE ALPHABET

In this section we will construct diversity embedded codes
satisfying the code design criterion in Section III-B for trans-
mission from a finite alphabet. First, some linear code construc-
tions suitable for flat-fading channels are presented followed by
a multilevel coding scheme for ISI channels which maps rank
guarantees in the binary domain to rank guarantees in complex
domain. We give constructions of such sets of binary matrices
for transmission over an ISI channel and then specialize them
for the flat-fading channel.

A. Linear Code Constructions: Flat-Fading Channels

Linear additive codeword designs are amenable to computa-
tionally-efficient lattice decoding strategies, such as the sphere
decoder [9] and appear to be less susceptible to degradation in
performance at low-to-moderate SNR caused by the number of
nearest neighbors [7]. With this motivation, choosing the trans-
mitted signal to be additive of the following form

(21)

allowsthecompositecode tobe linear in thecomplexfieldaswell.
We give two code construction examples for . Construc-
tions for 2 and 3 transmit antennas are presented in [11] and [45].

Linear Code Examples: Assuming no restrictions on which
constellations are used to transmit codeword , start with
a baseline code derived from the rate- orthogonal design
based on Octonions [4], [42]. Therefore, the proofs of diversity
order are based on symbols from a complex field and do not use
properties of specific constellations.

Example 1: Here comes from the message set
and comes from . This

implies that , and .
The codewords can be written as

(22)
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Fig. 3. Schematic representation of the multilevel code construction.

This code can be shown to achieve full diversity of for the
message set and diversity for message set (see [17] for
proof details).

Example 2: Here comes from the message set
and the message set is given by

. This implies that
, and . The code can be written as

(23)

This code can be shown to achieve diversity of for message
set and diversity for message set . Therefore, this ex-
ample achieves the tuple,
(see [17] for proof details).

B. Multilevel Constructions

Given an L-level binary partition of a QAM or PSK
signal constellation, a space–time codeword is an array

determined by a sequence of binary
matrices where matrix specifies the space–time array at
level . A multilevel space–time code is defined by the choice
of the constituent sets of binary matrices
where . These sets of binary matrices provide rank
guarantees necessary to achieve the diversity orders required
for each message set.

With , given message sets , we define the
following mapping to the space–time codeword

...
...

...

...
...

... (24)

where the matrix is specified by ,
i.e., a length- binary string and . This construc-
tion is illustrated in Fig. 3 for a constellation size of bits. Note

that the dimension of the matrix or equivalently the dimen-
sion of the matrices can be chosen to be an arbitrary integer

.
In summary, given the channel and the message set, first

choose the sets of constituent matrices and
then the corresponding . The first mapping is
obtained by constructing the matrix whose
entries are constructed by concatenating the bits from the cor-
responding entries in the matrices into a length-
bit-string. This is then mapped to the space–time codeword
through the constellation mapper . For
QAM and PSK constellations, the mapping is defined next.

• For a QAM constellation, the point is a point in the con-
stellation given by

(25)

The constant for odd and
for even .

• Defining , points in the -PSK
constellation can be represented as

(26)

Using this sequence of matrices, the space–time codeword
can be obtained as seen in Fig. 3.

Choose the sets to have rank guarantees in
the binary domain such that for any distinct pair of matrices

the rank of is at least . The following
theorem shows that the corresponding bits can be given rank
guarantees in the complex-domain space–time code.

Theorem 4.1: [17] Let be a multilevel space–time code for
a QAM or PSK constellation of size of dimension ,
that is determined by constituent sets of binary matrices

, with binary rank guarantees . Con-
sider space–time codewords constructed from these sets using
the construction in (24). This codebook satisfies the property
that the minimum rank difference in the complex domain be-
tween two codewords corresponding to different input bits in
the th layer is at least .

Since the coding scheme in Section III-A is used, when trans-
mitting over an ISI channel with taps, we require that
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the mapping in (24) satisfies the constraint that the last en-
tries of the mapping lead to given alphabets (taken to be zero
without loss of generality). Note that since the received code-
word after transmission over the ISI channel can be effectively
written as in (12), we need to give guarantees on the rank of

for any distinct pair of matrices .
Denote to be the set of binary matrices such
that the last entries are zero and for , the rank of

is at least .
An obvious way to construct would be to take

a single matrix in each layer which satisfies these con-
straints. Then choosing , would give a rate of

on the th layer. Also from
Theorem 2.2 it is known that

(27)

The following lemma shows that for some fixed it is
possible to construct binary matrices which satisfy the structure
and rank guarantees with rate almost close to the maximum pos-
sible as in (27).

Lemma 4.2: [20] For block size
, we can construct sets of binary matrices

such that they satisfy the following properties.
• The last entries of all the rows are equal to zero.
• For any distinct pair of matrices the rank of

is at least .
• .
Combining Theorem 4.1 and Lemma 4.2, we can state the

formal construction guarantee for the diversity embedded code
for transmission over the ISI channel as follows.

Theorem 4.3: [20] Let be a multilevel space–time code
for a QAM or PSK constellation of size with transmit
antennas that is determined by constituent sets of binary ma-
trices , such that .
For joint maximum-likelihood decoding, the input bits that se-
lect the codeword from the th set are guaranteed diversity

in the complex domain when transmitted
over an ISI channel with taps.

Therefore, this construction for QAM constellations achieves
the rate-diversity tuple

, with the overall equivalent single-layer code achieving rate-
diversity point, . In particular, we can
construct a space–time code by choosing identical rank require-
ments for all the layers, i.e., . Hence, the
rate-diversity tradeoff for the ISI channel can be characterized
as follows.

Theorem 4.4: (Transmit-alphabet-constrained, rate-diversity
tradeoff for ISI channels) Consider transmission over a
tap ISI channel with transmit antennas from a QAM or PSK
signal constellation with and communication over
a time period such that . For diversity order

, the rate-diversity tradeoff is given by

where is the effective rate of transmission which includes
the overhead due to the zero padding.

Note that the bounds in the above theorem are tight as
. Thus, it follows that it is possible to achieve a -fold

increase in the diversity order for ISI channels for transmis-
sion over channels with multiple transmit antennas as well. The
tradeoff shows that it is possible to harness all the diversity in
the ISI channel with a very small rate penalty.

C. Binary Matrices

In Section IV.B we assumed the existence of sets of binary
matrices in Lemma 4.2. In this section, we describe the
construction of the sets and in particular give the proof
for .

Given a rate , define the linearized polynomial

(28)

where are elements of an extension field .
To develop the binary matrices define

(29)

where , and is a primitive element of
. Let and be the representations of

and in the basis , respectively
i.e., . A matrix representation

of can be obtained as

(30)

Note that the th row of is given by the binary expansion
of in terms of the basis .
The coefficients in this basis expansion can be obtained using
the trace operator described in standard textbooks on finite
fields [34].

Now, in order to get the structure required in Lemma 4.2, we
need to study the requirements on so that the last elements
in are 0 for all the rows. Using the trace3 function, the
admissible can be represented in terms of the set defined as

(31)

The cardinality of these binary sets can be shown to be lower
bounded in the following Theorem.

Theorem 4.5: [20] Considering , a
lower bound on the cardinality of the set is given by

, which implies a lower bound on the effective
rate of . Theorem
4.5 implies that not much is lost, in terms of rate, by the zero
padding at the end of the transmission block. Also, it can be
shown that as long as , defining ,
the set satisfies all the properties listed in Lemma 4.2.

3Note that for any element � 2 the trace of the element � relative to the
base field is defined as

Tr (�) = � + � + � + � � �+ � :
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Simplifications for Flat-Fading Channels: Note that for the
special case of flat-fading channels, constructions of matrices
exist which achieve the rate-diversity tradeoff exist for much
lower value of [28], [35]. In particular, it is possible to
construct sets of binary matrices with . This
significantly reduces the decoding complexity and the delay
while transmitting diversity embedded codes over a flat-fading
channel and the construction is summarized in the following
theorem.

Theorem 4.6: [28], [35] Given a rate , define the linearized
polynomial

(32)

where and is the primitive element of .
Associate the matrix with each such where

(33)

and . Defining , the minimum
rank distance between matrices in is equal to .

Although the only difference between the constructions in
Theorem 4.6 for flat-fading channels and the construction for
ISI channels [20] is in the evaluation points of the function ,
the proof techniques for the ISI case require a much more so-
phisticated argument. This is because of the structure and con-
straints on the binary matrices imposed by the ISI channel as
well as the fact that rank guarantees are required after the map-
ping defined in (16). Note that if space–time codes that achieve
diversity order over a flat-fading channel are used, all that
can be guaranteed is that we will still achieve diversity order

over a fading ISI channel [43]. In particular [20] provides an
example of a code which achieves particular points on rate-di-
versity tradeoff for flat-fading channels and fails to do so in the
case of ISI channels. Therefore, the design of codes for fading
ISI channels cannot be immediately done by using the codes for
flat-fading channels.

D. Maximal-Rank Binary Codes With Toeplitz (ISI)
Constraints

The proof that by choosing , the set
satisfies the rank properties in Lemma 4.2 for

involves sophisticated arguments on the null space of
for (see [20]). The proof simplifies for the case of

, or equivalently , since in this case
which enables us to write for .

Therefore, in this section we show that that if , then for
all and for the proof of the
general case please see [20]. In fact, for the case

is enough. Since , the last elements in
are 0 for all the rows. Therefore, is a cyclic shift by

positions of . Hence, for

(34)

where represents the matrix obtained by a cyclic shift of
all the rows of the matrix by positions. Therefore

(35)

Note that the codeword matrix can be ob-
tained by the representation of each element of in the basis

where

(36)

With this notation we can state the following theorem:
Theorem 4.7: (Maximal rank distance codes) Let

, as in (28) with and . Then for
defined in (31), over the

binary field.
Proof: The result can be proved by contradiction. Suppose

that has rank distance less than
, then there exists a vector for some such

that the corresponding binary matrix has binary
rank less than (as the code is linear). So there exists
a nontrivial binary vector space such that for
every

(37)

where is the th entry of and is used to
denote vector transpose. Since each row of is an expansion
of the rows of in the basis , we can write
as operations over

(38)

where the basis expansion is used. Due to the linear indepen-
dence of , it is clear from (37) and (38) that

(39)

Now, suppose that for ,

(40)
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Thus, for every the element
is a zero of

. Note that are linearly independent
for and as

. Therefore, there is only one trivial solution to
the (40) i.e., for .
This contradicts the fact that the null space is nontrivial since
we cannot have and . Hence, all matrices in
have rank equal to .

V. INFORMATION THEORETIC EMBEDDING

In the previous section, diversity embedding codes were de-
signed for transmission over MIMO flat-fading and ISI chan-
nels when the transmitted symbols were drawn from a finite al-
phabet. In this section, we consider the fundamental limits of
embedding for transmission over an ISI channel when the rate of
the codebook is allowed to increase with SNR. As was pointed
out in Section II-B, in this framework the tradeoff between rate
and reliability is captured by the D-M tradeoff. Here, we will
consider only two levels of reliability but our approach can be
easily generalized to any number of levels. For most of this sec-
tion, we focus our attention on channels with a single degree of
freedom, i.e., .

A. Successive Refinement

For transmission over flat-fading and ISI channels, we would
like to characterize the achievable D-M tuple
as described in Section III-B. If viewed as a single-layer code,
the diversity embedded code achieves rate-diversity pairs

and , where it is assumed that
. Since it is not possible to beat the single-layer

rate-diversity tradeoff, note that necessarily
and where is the optimal
single-layer diversity-multiplexing point corresponding to the
channel. Formalizing this notion, the following definition for
successive refinability can be stated:

Definition 5.1: [14] A channel is said to be successively refin-
able if the diversity-multiplexing tradeoff curve for transmission
is successively refinable, i.e., for any multiplexing gains and

such that , the diversity orders

(41)

are achievable, where is the optimal diversity order of
the channel.

The concept of successive refinability can be visualized as
in Fig. 4. For codes that are successively refinable this defini-
tion implies that one can perfectly embed a high diversity code
within a high rate code.

Notation: Let represent the th tap coefficient between
the th receive antenna and the th transmit antenna, and

be the symbol transmitted on the th transmit antenna
and the symbol received at the th receive antenna in the th
time instant, respectively. Also, let and be the sym-
bols transmitted on the th transmit antenna and received at the

th receive antenna over the time period to , i.e.,

Fig. 4. Successive refinement for a flat fading channel with M receive an-
tennas and one transmit antenna.

B. Structural Observation

Consider the same coding scheme as in Section III.A but in-
stead of expressing the codeword as a Toeplitz matrix as in (12)
the channel matrix can be expressed as a circulant matrix as
follows:

...

...
...

...

...

...

(42)

i.e.,

(43)
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where
. Denote to be the

circulant matrix given by

...
...

. . .
...

(44)

Rearranging this equation by permuting the rows and columns
of (43), we get

...

...
...

...
(45)

where are circulant matrices given by

Since the are circulant matrices, they can be written using
the frequency-domain notation as where

are truncated DFT matrices and are
diagonal matrices with elements given by

(46)

for . The asymptotic behaviors of these
frequency-domain coefficients are related to the fading strength
of the time-domain taps by the following lemma:

Lemma 5.2: [18] Consider the taps in the frequency domain
in (46) given by

for and
. For , define the sets

and as

(47)

(48)

(49)

We have the following relations on the cardinality of these sets:
a) Letting represent the complement of the set

, we have . In other words,
at least of the taps in the frequency do-
main for each are (asymptotically) of magnitude

.
b) Given that , for MISO channel

(50)

and for a SIMO channel

(51)

Here is an intuition of why such a result will hold. Consider
the polynomial

which evaluates to the Fourier transform for .
Since the polynomial of degree is evaluated at

, for , at most values
can be zero and at least values are bounded away from
zero.

C. Successive Refinement of ISI Tradeoff,

For transmission over the ISI channel, we propose a generic
superposition coding scheme along the lines of the universal
codes constructed in [24] which simplifies for special cases like
the SIMO/SISO channel and flat-fading channels as shown in
the Section V-D. Consider the same coding scheme as above but
repeat the transmission over a period of length followed
by zeros for such blocks. With the same reasoning as in
(45), the received symbols over the period can be written
as (52), shown at the bottom of the page. Rearranging so

...
...

...
...

(52)
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that all the zero paddings are at the end, we will concentrate on
the design of

...
...

(53)

Choosing use superposition coding such that

where and and satisfy the fol-
lowing criterion:

1) For and defining , for
all it is required that

(54)

(55)

2) For , and defining .
for all it is required that

(56)

(57)

Using these superposition codes for transmission, the following
theorem shows that the ISI channel is almost successively re-
finable. The above constraints are related to the NVD criterion
and from [24] it is known that codes satisfying these constraints
exist.

Theorem 5.3: [15], [21] Consider a -tap point-to-
point ISI channel with a single degree of freedom, i.e.,

and . The diversity-multiplexing
tradeoff for this channel is successively refinable, i.e., for any
multiplexing gains and such that
the achievable diversity orders given by and
are bounded as

(58)

where and and
are finite and do not grow with SNR.

Hence, Theorem 5.3 shows that the best possible perfor-
mance can be achieved. This implies that for ISI fading channels
with a single degree of freedom, it is possible to design ideal
opportunistic codes. The existence of (almost) ideal oppor-
tunistic codes is surprising since one would have expected
the behavior for the ISI channel to be closer to the flat-fading
multiple-degrees-of-freedom case, where the D-M tradeoff
was not successively refinable [16]. Since ISI channels can be

viewed as a set of parallel fading channels albeit with correlated
fading, the correlations completely alter the characteristic of
the D-M tradeoff.

The inequalities in (58) becomes tight as is increased and
therefore the D-M tradeoff for the ISI channel with single degree
of freedom is successively refinable as in Definition 5.1. For the
flat-fading case, we can actually get successive refinement with
finite block length codes as seen in [15]. An intuition of suc-
cessive refinement for the flat fading channel with single degree
of freedom can be obtained by observing the achievable outage
plots using superposition coding in Fig. 5. We plot the achiev-
able points using superposition coding for different
values of and for a fixed SNR. Note that as
decreases the curve gets steeper. This implies that for a small
backoff in the rate on the higher priority layer, a significant im-
provement is obtained in the achievable rate on the lower pri-
ority layer. This gives us the intuition that the flat fading channel
with single degree of freedom is successively refinable. Note
that for the outage probability requirements become
orders of magnitude apart in the high SNR regime, and there-
fore diversity embedded codes are appropriate when we have
such disparate reliability requirements.

D. Special Cases

In this section, we show that the coding scheme in Sec-
tion V-C specializes to simpler cases for particular channels.
Thus, the inequalities in (55) and (57) are sufficient but not
necessary conditions for successive refinability.

• SISO/SIMO ISI channel: For the case of the SISO/SIMO
ISI channel, assume two streams with uncoded QAM
codebooks for each stream, as in [15], [18]. Let be
a QAM constellation of size with minimum dis-
tance . Similarly, let be a QAM
constellation of size with minimum distance

, where . Considering
coding with , it is easy to see that this constellation
satisfies the constraints in (55) and (57).

• MISO ISI channel: For transmission over the MISO ISI
channel, we need to design codebooks satisfying (55)
and (57). Taking it is possible to use sets of
codebooks satisfying these properties (for example [24]),
therefore establishing existence of codes with these prop-
erties. These codes satisfy the Non Vanishing Determinant
(NVD) property, which is a sufficient and necessary con-
dition for codebooks to achieve the D-M tradeoff for flat
fading channels.

The specialization for SISO/SIMO ISI channels shows that un-
coded QAM constellations are sufficient to achieve successive
refinement of D-M tradeoff.

VI. APPLICATIONS

In this section, network applications of diversity embedded
codes constructed in Section IV are explored and the benefits
of diversity embedded codes are illustrated. In [32], the authors
applied diversity-embedded codes to wireless multicasting and
quantified the achievable performance gains in terms of infor-
mation rate and coverage area.
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Fig. 5. Intuition for successive refinement of flat fading channels with single degree of freedom.

A. Network Utility Maximization

It is important and challenging to design a network which
accommodates diverse applications as different types of traffic
have very different requirements for rate, reliability and delay.
For example, real-time traffic needs lower delay, but non-real-
time traffic is delay insensitive. Therefore, traffic types with
different utility functions are encountered, some of them elastic
and some inelastic, all to be provisioned over the network.
Diversity embedded codes allow us to allocate the packets of
different traffic types to the sublinks with appropriate rate-
reliability characteristics, in a way that the traffic types match
the rate-reliability pairs, so that the utilities of different traffic
types can be jointly optimized. The problem of how to fully
utilize the different rate-reliability characteristics at the phys-
ical layer to support different types of traffic over a network
and to jointly maximize their utility by extending the current
framework of Network Utility Maximization (NUM) was
addressed in [33].

Basic NUM assumes that each link provides a fixed-size
transmission “pipe” and each user’s utility is only a function
of transmission rate. When the diversity-embedded codes are
brought into the NUM framework, one may think of a given
link as several parallel sub-links, each with different rate and
reliability levels. This provides the freedom to assign user’s
traffic to different sub-links so that users can have different
rates, reliabilities, and delays and we refer to this scheme as
capacity division. On the other hand, priority queuing puts
all the packets together but annotates them according to the
degree of delay sensitivity. We also modified the basic NUM
framework to incorporate the delay characteristics, in addition
to rate and reliability, into the utility objective function [33]. By

Fig. 6. Tradeoff between voice traffic and delay insensitive data traffic. Ala:
Alamouti (single-diversity), D-E: Diversity-Embedded, CD: Capacity Division,
PQ: Priority Queueing.

jointly controlling the source rates, forward error correction,
and ARQ, it is possible to amplify the benefits of the new codes
to delay-sensitive network applications.

The question on how to allocate the physical layer resources
to a mixture of traffic types, including VoIP and data traffic,
with appropriate rate-reliability characteristics so that their
utility are jointly maximized was answered in [33]. It was
shown that compared with the traditional channel codes, the
new diversity-embedded codes can provide higher network
utilities for each traffic type simultaneously, with or without
ARQ. This can be seen in Fig. 6, where we show the tradeoff
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Fig. 7. Concatenated space–time codes along with SPIHT image encoder/decoder. (a) Concatenated diversity embedded code matched with prioritized SPIHT
encoder. (b) Concatenated single layer space–time code.

between VoIP traffic and delay insensitive data traffic. Here
data traffic utility is throughput only. For capacity division,
we can see the tradeoff as the capacity assigned to voice (B)
varies, and for priority queueing, the tradeoff is shown as the
weight of voice traffic in the objective function varies. The
quality of VoIP is measured using the R-factor and the figure
shows that the network with diversity-embedded codes has
better tradeoff.

B. Wireless Image Transmission With Diversity-Embedded
Codes

As an application of diversity embedded codes, the UEP
property designed for wireless channels is used to match it with
a hierarchical source coding scheme which outputs layers of
bit-stream with different priorities. The SPIHT coder [39] is one
such powerful image compression algorithm that produces an
embedded bit stream from which the best reconstructed images
in the mean square error sense can be extracted at various bit
rates. However, the SPIHT source coder is not robust in that
the loss of a single bit in the stream renders the rest of the
bits completely useless. Therefore, when integrated with the
diversity embedded code, the structure needs to be designed so
that this property is taken into account.

The diversity embedded code is used as an inner code
along with an outer code that is designed for a particular error
probability and the overall structure is illustrated in Fig. 7(a).
The choice of the rate for this outer code is made by noting
that given an error probability of for transmission over a
-ary channel, the capacity is minimum when the channel is

symmetric i.e.,

The rate of the outer code can be designed to be close to
using an iterative code designed for the -ary channel

[1]. If the error probability of the inner code (which depends
on the channel realization ) exceeds , an outage is declared

otherwise the overall concatenated code operates reliably. This
outage probability is denoted by .

Assume that uniform 8-PSK signaling is used for the diversity
embedded code constructed using Example 1 in Section IV-A
and 16-PSK Octonion codes are used for the single-layer code.
Design the outer codes with rates and

for the first and second layers, respectively. Simi-
larly, for the single-layer, design the outer code with rate

. The outage probabilities of the first layer, second
layer and single layer are denoted as and , re-
spectively. For the diversity embedded code, assign the most im-
portant bits of the SPIHT encoder to layer 1 (highest diver-
sity order layer), and correspondingly the next bits to layer
2. In the single-layer space–time code, bits of the SPIHT
encoder are transmitted.

In Fig. 8(d), the performance of a SPIHT image transmission
over a slowly-fading channel when matched with a diversity em-
bedded coder is illustrated and the quality of the received image
is measured in terms of PSNR [27]. The performance of the
single-layer coder is shown as well for comparison. Fig. 8(d)
shows the advantage of the diversity embedded code in terms
of outage. Since this means that
with probability almost 0.4, there are channels for which the
single-layer coder completely fails, but the diversity embedded
encoder succeeds. Moreover, the design shows that even in the
regime where the single-layer scheme performs better, the dif-
ference is quite small. The PSNR results can be visualized as
shown in Fig. 8.

C. Rate-Delay Optimization

In this section, the delay behavior of a system integrating
a rudimentary ACK/NACK feedback about the transmitted
information along with space–time codes is studied. For the
single-layer code the traditional ARQ protocol is used wherein
if a packet is in error, it is re-transmitted. For the diver-
sity embedded code, since different parts of the informa-
tion receive unequal error protection, an alternative use of the
ARQ can be envisaged. For two diversity levels, assume that
ACK/NACK is received separately for each diversity layer.
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Fig. 8. Image reconstruction over a slowly fading channel. (a) Image reconstructed by decoding layer 1, with outage probability P . (b) Image reconstructed
by decoding layer 1 and layer 2, with outage probability maxfP ; P g. (c) Image reconstructed using single layer code with outage probability P . (d)
Image quality (PSNR) comparison for diversity embedded code and single layer code.

The proposed mechanism is illustrated in Fig. 9. The infor-
mation is sent along two streams, one on the higher-diversity
level and the other on the lower-diversity level. If the packet
on the higher-diversity level goes through but the lower-diver-
sity level fails, then in the next transmission, the failed packet
is sent on the higher-diversity level and therefore receives a
higher “priority.” Therefore, the lower-priority packet oppor-
tunistically rides along with the higher-priority packet thereby
reducing the delay.

Assume a stochastic arrival of packets to be delivered at
the encoder. We have an exponential inter-arrival time point

process carrying an input packet to be delivered with each
arrival. The average arrival rate of the packets is set to be 95%
of the average throughput of the full-diversity single-layer Oc-
tonion code. For such an arrival process, the impact of the ARQ
mechanism (Fig. 9) is illustrated in Fig.11 with comparison
to single-layer schemes. In Fig.11, both the single-layer and
the diversity embedded code are transmitted using the same
transmit 8-PSK alphabet. Assuming a packet size of 243 bits
the Octonion code is used for the single-layer and the code from
Example 1 in Section IV-A is used for the diversity embedded
transmission.
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Fig. 9. ARQ mechanism for diversity embedded codes using prioritized scheduling.

Fig. 10. Coverage increase for diversity embedded code for partial data de-
livery. The outermost two disks are the coverage areas for delivery of R ;R

respectively. The innermost disk is the coverage area forR .

Fig. 11(b) illustrates the delay histogram for these schemes
at an SNR of 19 dB which shows that the delay histogram is
also much better for diversity embedded codes as compared to
the single-layer codes. The transmission delay for diversity em-
bedded codes is larger, since the average time it takes to transmit
one packet is larger than the single-layer codes. This disadvan-
tage is compensated for by much better queuing delay charac-
teristics as seen in Fig. 11(d) resulting in a lower total average
delay, as seen in Fig. 11(a).

D. Coverage Extension

As seen in Section VI-B, it is possible to combine diversity
embedded codes with an application that gives a prioritized bit
stream. In this section, this functionality is examined in terms of
coverage of a base-station for such applications. For simplicity,
we consider a channel with only path loss and the potential range
extension obtained by partial data delivery is examined. Assume
a simplified path loss model where the attenuation (in dB) is
given by

(59)

where K depends on the channel attenuation, is a reference
distance, and is the path loss exponent.

For illustration, consider and 8-PSK constel-
lation and the Alamouti code with for the single
layer. The outer codes for the diversity-embedded code are of
rates and respectively.
For a particular choice of codeword design, the received SNR

for which the different layers can be decoded is given
in the following table. Correspondingly at a received SNR of
14.4 dB, the single-layer code with information rate
is decodable.

These results can be translated to range increases by using the
path loss model given in (59). In Fig. 10, an outdoor propaga-
tion model with is used, for a base-station transmitting at
50 W, with m. Given these parameters, for a partial de-
livery of bits, it is possible to get a range increase of
17% over a single-layer code operating at bits. The
range increase for partial delivery of bits over
the single-layer code is 9.5%. Therefore, diversity embedded
codes can improve the coverage distance of a base-station if an
application can allow partial data delivery.

VII. DISCUSSION

Many fundamental questions about diversity embedded codes
still remain open. Characterization of optimal performance for
general MIMO ISI channels, both for alphabet constrained as
well as information theoretic rate growth codes is still unknown.
Therefore optimal code construction for the general case re-
mains to be found. Besides the theoretical questions, we be-
lieve that many more applications of this paradigm are yet to
be discovered.
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Fig. 11. Delay comparison of diversity embedded codes with single layer codes when used with ARQ. In the figures, the transmission alphabet is fixed to be
8-PSK. (a) Inverse average delay, (b) Delay histogram, (c) Inverse average transmission delay, (d) Inverse average queuing delay.

REFERENCES

[1] A. Barg and G. Zemor, “Error exponents of expander codes,”
IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1725–1729, Jun.
2002.

[2] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information-
theoretic and communications aspects,” IEEE Trans. Inform. Theory,
vol. 44, no. 6, pp. 2619–2692, Oct. 1998.

[3] A. R. Calderbank, “Multilevel codes and multistage decoding,” IEEE
Trans. Commun., vol. 37, no. 3, pp. 222–229, Mar. 1989.

[4] A. R. Calderbank and A. F. Naguib, “Orthogonal designs and third gen-
eration wireless communication,” in Surveys in Combinatorics 2001,
London Mathematical Society Lecture Note Series 288. Cambridge,
U.K.: Cambridge Univ. Press, 2001, pp. 75–107.

[5] A. R. Calderbank and N. Seshadri, “Multilevel codes for unequal error
protection,” IEEE Trans. Inform. Theory, vol. 39, no. 4, pp. 1234–1248,
Jul. 1993.

[6] A. R. Calderbank, S. N. Diggavi, and N. Al-Dhahir, “Space–time sig-
naling based on Kerdock and Delsarte-Goethals codes,” in IEEE In-
ternational Conference on Communications (ICC), Paris, France, Jun.
2004, pp. 483–487.



218 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 2, APRIL 2008

[7] J. Chui and A. R. Calderbank, “Effective coding gain for space–time
codes,” in IEEE Int. Symp. Inform. Theory (ISIT), Seattle, WA, Jul. 2006.

[8] R. V. Cox, J. Hagenauer, N. Seshadri, and C. E. W. Sundberg, “Sub-
band speech coding and matched convolutional channel coding for mo-
bile radio channels,” IEEE Trans. Signal Process., vol. 39, no. 8, pp.
1717–1731, Aug. 1991.

[9] M. O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice codes decoder
for space–time codes,” IEEE Commun. Lett., vol. 4, pp. 161–163, May
2000.

[10] S. Das, N. Al-Dhahir, S. Diggavi, and A. R. Calderbank, “Opportunistic
space–time block codes,” in IEEE Vehicular Technology Conf., Sept.
2005, pp. 2025–2029.

[11] S. Das and N. Al-Dhahir, “New diversity-embedding STBC construc-
tions,” in IEEE Workshop on Signal Processing Advances in Wireless
Communications, Jun. 2006.

[12] S. N. Diggavi, N. Al-Dhahir, and A. R. Calderbank, “Diversity em-
bedding in multiple antenna communications, advances in network In-
form. Theory,” DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, pp. 285–301, 2004.

[13] S. N. Diggavi, N. Al-Dhahir, and A. R. Calderbank, “Diversity em-
bedded space–time codes,” in IEEE GLOBECOM Conference, San
Francisco, Dec. 2003, pp. 1909–1914.

[14] S. N. Diggavi and D. Tse, “On successive refinement of diversity,” in
Allerton Conf., Oct. 2004.

[15] S. N. Diggavi and D. Tse, “Fundamental limits of diversity-embedded
codes over fading channels,” in IEEE Int. Symp. Inform. Theory (ISIT),
Sep. 2005, pp. 510–514.

[16] S. N. Diggavi and D. Tse, “On opportunistic codes and broadcast codes
with degraded message sets,” in IEEE Information Theory Workshop
(ITW), Mar. 2006, pp. 227–231.

[17] S. N. Diggavi, A. R. Calderbank, S. Dusad, and N. Al-Dhahir, “Diver-
sity embedded space–time codes,” IEEE Trans. Inform. Theory, vol.
54, no. 1, pp. 33–50, Jan. 2008.

[18] S. Dusad and S. N. Diggavi, “On successive refinement of diversity for
fading ISI channels,” in Proceedings of Allerton Conference on Com-
munication, Control, and Computing, Chicago, IL, Sept. 2006.

[19] S. Dusad, S. N. Diggavi, and A. R. Calderbank, “Cross layer utility of
diversity embedded codes,” CISS. Princeton, NJ, 2006.

[20] S. Dusad, S. N. Diggavi, and A. R. Calderbank, “Embedded rank dis-
tance codes for ISI channels,” IEEE Trans. Inform. Theory, Jul. 2007,
Submitted to.

[21] S. Dusad and S. N. Diggavi, “Successive refinement of diversity for
fading ISI MISO channels,” in IEEE Int. Symp. on Inform. Theory
(ISIT), 2008, Submitted to.

[22] S. Dusad and S. N. Diggavi, Successive Refinement of Diversity for
Fading ISI Channels With Single Degree of Freedom LICOS-RE-
PORT-2008-008, 2008.

[23] S. Dusad, S. N. Diggavi, and A. R. Calderbank, Embedded Rank
Distance Codes for ISI Channels LICOS-REPORT-2007-002, May
2007.

[24] P. Elia, K. Kumar, S. Pawar, P. V. Kumar, and H. F. Lu, “Explicit
space–time codes achieving the diversity multplexing gain tradeoff,”
IEEE Trans. Inform. Theory, vol. 52, no. 9, pp. 3869–3884, Sep.
2006.

[25] F. Fazel and H. Jafarkhani, “Quasi-orthogonal space–frequency and
space–time-frequency block codes for MIMO OFDM channels,” IEEE
Trans. Wireless Commun., Jan. 2008.

[26] G. J. Foschini, “Layered space–time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, Sep. 1996.

[27] J. E. Fowler, “An open source software library for quantization, com-
pression and coding,” Applications of Digital Image Processing XXIII,
Proc. SPIE 4115 pp. 294–301, Aug. 2000 [Online]. Available: http://
qccpack.sourceforge.net, see also

[28] E. Gabidulin, “Theory of codes with maximum rank distance,” Probl.
Per. Inform., vol. 21, pp. 3–16, Jan./Mar. 1985.

[29] H. E. Gamal, A. R. Hammons, Y. Liu, M. P. Fitz, and O. Y. Takeshita,
“On the design of space–time and space-frequency codes for MIMO
frequency selective fading channels,” IEEE Trans. Inform. Theory, vol.
49, no. 9, pp. 2277–2291, Sep. 2003.

[30] L. Grokop and D. N. C. Tse, “Diversity multiplexing tradeoff in ISI
channels,” in IEEE Int. Symp. Inform. Theory (ISIT), Chicago, IL, 2004,
p. 96.

[31] J. C. Guey, M. P. Fitz, M. R. Bell, and W. Y. Kuo, “Signal design for
transmitter diversity wireless communication systems over Rayleigh
fading channels,” IEEE Trans. Commun., vol. 47, no. 4, pp. 527–537,
Apr. 1999.

[32] K. M. Z. Islam and N. Al-Dhahir, “Hierarchical diversity-embedding
space–time block coding,” in Asilomar Conf. Signals, Systems, and
Computers, Nov. 2006, pp. 1274–1278.

[33] Y. Li, M. Chiang, A. R. Calderbank, and S. N. Diggavi, “Optimal
delay-rate-reliability tradeoff in networks with composite links,” IEEE
Trans. Commun., 2008, to be published.

[34] R. Lidl and H. Niederreiter, Finite Fields. Cambridge, U.K.: Cam-
bridge Univ. Press, 1997.

[35] H. F. Lu and P. V. Kumar, “Rate-diversity tradeoff of space–time codes
with fixed alphabet and optimal constructions for PSK modulation,”
IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2747–2752, Oct. 2003.

[36] H. F. Lu and P. V. Kumar, “A unified construction of space–time codes
with optimal rate-diversity tradeoff,” IEEE Trans. Inform. Theory, vol.
51, no. 5, pp. 1709–1730, May 2005.

[37] B. Masnick and J. K. Wolf, “On linear unequal error protection codes,”
IEEE Trans. Inform. Theory, vol. 13, no. 4, pp. 600–607, Oct. 1967.

[38] P. Rabiei and N. Al-Dhahir, “Differential diversity-embedding
space–time block coding,” in Asilomar Conf. Signals, Systems, and
Computers, Nov. 2006, pp. 1291–1295.

[39] A. Said and W. Pearlman, “A new fast and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 6, pp. 243–50, Jun. 1996.

[40] A. Seeger, “Hierarchical Channel Coding for Digital Video Broad-
casting,” Ph.D. Thesis, Technical Univ. Munich, Munich, Germany,
1999.

[41] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” Eur.
Trans. Telecommun., vol. 10, no. 6, pp. 585–596, Nov.–Dec. 1999.

[42] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block
codes from orthogonal designs,” IEEE Trans. Inform. Theory, pp.
1456–1467, July 1999.

[43] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes
for high data rate wireless communications: Performance criterion and
code construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp.
744–765, Mar. 1998.

[44] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
: Cambridge Univ. Press, 2005.

[45] D. Wang, H. Minn, and N. Al-Dhahir, “An opportunistic STBC-OFDM
scheme with reduced PAR in the presence of frequency offset,” in IEEE
Int. Conf. Acoustics, Speech, and Signal Processing, Apr. 2007, pp.
369–372.

[46] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental
tradeoff in multiple antenna channels,” IEEE Trans. Inform. Theory,
vol. 49, no. 5, pp. 1073–1096, May 2003.

Sanket Dusad received the B.Tech. degree in
electrical engineering from Indian Institute of Tech-
nology, Bombay, in 2002 and the M.S. degree from
the University of Illinois at Urbana-Champaign in
December 2003. He is currently pursuing the Ph.D.
degree at EPFL, Lausanne, Switzerland. His research
interests are in the area of wireless communications
and information and coding theory. Specific subjects
include design of space–time codes, multiple-input
multiple-output (MIMO) communication, and
low-density parity-check (LDPC) codes.

Suhas N. Diggavi (M’99) received the B.Tech. de-
gree in electrical engineering from the Indian Insti-
tute of Technology, Delhi, India, and the Ph.D. de-
gree in electrical engineering from Stanford Univer-
sity, Stanford, CA, in 1998.

From fall 1998, he was a Principal Member Tech-
nical Staff in the Information Sciences Center, AT&T
Shannon Laboratories, Florham Park, NJ. He is cur-
rently with the faculty of the School of Computer and
Communication Sciences, EPFL, where he heads the
Laboratory for Information and Communication Sys-

tems (LICOS). His research interests include wireless communications, Inform.
Theory, source coding and signal processing.

Dr. Diggavi is a recipient of the 2006 IEEE Donald Fink prize paper award,
2005 IEEE Vehicular Technology Conference best paper award and the Okawa
foundation research award.



DUSAD et al.: DIVERSITY EMBEDDED CODES: THEORY AND PRACTICE 219

Naofal Al-Dhahir (F’08) received the M.S. and
Ph.D. degrees in electrical engineering from Stan-
ford University, Stanford, CA, in 1990 and 1994,
respectively.

He was an Instructor at Stanford University in
1993. From 1994 to 1999, he was Member of the
Technical Staff at GE R&D Center, Niskayuna,
NY, where he worked on satellite communication
systems design and anti-jam GPS receivers. From
1999 to 2003, he was a principal member of technical
staff at AT&T Shannon Laboratory, Florham Park,

NJ, where he worked on space–time coding and signal processing. In 2003, he
joined the University of texas at Dallas, Richardson, as an Associate Professor
and became a full Professor in 2007. He has served as a consultant to the
telecommunications industry. His current research interests include space–time
coding and signal processing, OFDM, wireless networks, and digital subscriber
line technology. He has authored over 180 journal and conference papers and
holds 22 U.S. patents.

Dr. Al-Dhahir is a member of the IEEE SP4COM and SPTM technical
committees. He served as Editor for IEEE TRANSACTIONS ON SIGNAL

PROCESSING and IEEE COMMUNICATIONS LETTERS and is currently an Editor
for IEEE TRANSACTIONS ON COMMUNICATIONS. He served as co-chair of the
Communication Theory Symposium at Globecom’04 and is Tutorial Co-Chair
for ICASSP’08. He is co-author of the book Doppler Applications for LEO
Satellite Systems, Springer 2002. He is co-recipient of the IEEE VTC Fall
2005 best paper award, the 2005 IEEE signal processing society young author
best paper award and the 2006 IEEE Donald G. Fink best paper award.

A. R. Calderbank (F’98) received the B.Sc. degree
in 1975 from Warwick University, U.K., the M.Sc.
degree in 1976 from Oxford University, U.K., and the
Ph.D. degree in 1980 from the California Institute of
Technology, Pasadena, all in mathematics.

He is Professor of electrical engineering and Math-
ematics at Princeton University, Princeton, NJ, where
he directs the Program in Applied and Computational
Mathematics. He joined Bell Telephone Laboratories
as Member of Technical Staff in 1980, and retired
from AT&T in 2003 as Vice President of Research.

He has made significant contributions to a wide range of research areas, from
algebraic coding theory and quantum computing to wireless communication and
active sensing.

Dr. Calderbank served as Editor in Chief of the IEEE TRANSACTIONS ON

INFORMATION THEORY from 1995 to 1998, and as Associate Editor for Coding
Techniques from 1986 to 1989. He was a member of the Board of Governors of
the IEEE Information Theory Society from 1991 to 1996 and began a second
term in 2006. He was honored by the IEEE Information Theory Prize Paper
Award in 1995 for his work on the Z4 linearity of Kerdock and Preparata Codes
(joint with A. R. Hammons Jr., P. V. Kumar, N. J. A. Sloane, and P. Sole), and
again in 1999 for the invention of space–time codes (joint with V.Tarokh and N.
Seshadri). He received the 2006 IEEE Donald G. Fink Prize Paper Award and
the IEEE Millennium Medal, and was elected to the U.S. National Academy of
Engineering in 2005.


