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Abstract

A novel approach is presented to the detection of perigegiin DNA sequences. A DNA sequence can be
modelled as a nonstationary stochastic process that ¢éxhibrious statistical periodicities in different regions
The coding part of the DNA, for instance, exhibits statetiperiodicity with period three. Such regions in DNA
are modelled as generated from a collection of informationrses (with an underlying probability distribution)
in a cyclic manner, thus exhibiting cyclostationarity. Theaximum likelihood estimates are developed for the
distributions of the information sources and for the stati$ period of the DNA sequence. Such sequences are
further investigated for decomposition into constitueptliastationary sources. Since the symbolic sources do not
admit an algebraic structure, a composition of cyclostetig probabilistic sources is studied that models the point
mutations in gene sequences. This composition is shownvioarich mathematical structure on the collection of
cyclostationary sources and allows a uniqueness theorerhdéodecomposition of statistically periodic symbolic

sources.

Index Terms
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I. INTRODUCTION

YMBOLIC sequences consist of strings of elements drawn frofimige set, typically with no algebraic

tructure. In DNA sequences, economic indicator data, ahdraominal time series, the only mathemat-
ical structure is the set membership [1]. Such symbolic secpe may exhibit various kinds of repetitions and
regularities, and finding such features is fundamental terstdnding the structure of the sequences. In genomic
signal processing, locating hidden periodicities in DNAjsences is important since repetitions in DNA have been
shown to be correlated with several structural and funelioales [2]. For example, a base (symbol) periodicity

of 21 is associated witlw-helical formation for synthesized protein molecules [A8flaa base periodicity of three
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is identified with protein coding region of the DNA. Such invgations also find application in the diagnosis of
genetic disorders like Huntington’s disease [3], DNA faies and in the reconstruction of evolution history [4],
[5].

Symbolic periodicities in DNA sequences may be classified mmimologous, eroded, and latent [6]. Homologous
periodicities occur when short fragments of DNA are repatetandem to give periodic sequences. Imperfect
or eroded periodicities [7] result when some of the baseshé homologous sequence are replaced or altered
(including insertions and deletions), so that the tandepeats are not identical. Latent periodicities [8], [9] occur
when the repeating unit is not fixed but may change in a patlewsy. For instance, an observed latent period of
nucleotides may be

[(A/C) (T/G) (T/A) (GIT) (CIGIA) (GIA)], 1)

which specifies the first element as either A or C, the secondthsrél or G, and so on. The latent periods in
DNA sequences often provide insights into the nature ofyeatsion of the sequences. For instance, in mRNA,
the latent period (G)(C)(U) is believed to be sequence lfadsincient codons which dominated the earliest stages
of evolution [10]. Of course, this taxonomy of periodicgtiapplies to any symbolic sequence.

Symbolic random variables take values on a set calledalpbabet and its elements are callesiymbols
Most current approaches to detecting periodicities tmnsfthe symbolic sequences into numerical sequences
and compute Fourier transform [11], [9], [12], [13] or perfo exact periodic subspace decomposition (EPSD)
[14]. Though this is computationally convenient, it imposesnathematical structure that is not present in the
data. For instance, the mapping of DNA elements- (0, C= 1, A= 2, G= 3) suggested in [15] puts a total
order on the set; the complex representatioa=(A+ j, G= —1 + j, C= —1 — j, T=1 — j) used in [9], [16]
implies that the euclidean distance between A and C is gréhte the distance between A and T [17]. Such
numerical mappings may introduce artifacts in the spectofithe sequence. For example, consider the symbolic
sequence ACTACTACTACT with the numerical representationQ, C=1, A=2, G=3). Due to the order present in
the numerical representation, a mutation of any symbol tesslts in larger noise than other mutations. If the first
and the third occurrence of T both flip to G, the spectral enéegis from the bin corresponding to period three
resulting in a dominant peak corresponding to period two.il&martifacts may occur in the presence of noise

for other representations, some of which were reported 4i [A survey of various numerical mappings for DNA



sequences is presented in [18], most of which are aimed ghynzd the detection of homological periodicities [5],
[16], [14].

In contrast, the formulation in this paper implies no math@oal structure on the alphabet and presents a
general approach to the detection of periodicities. Eachbsymf the sequence is assumed to be generated by an
information source with some underlying probability massdtion(pmf) and the sequence is generated by drawing
symbols from these sources in a cyclic manner. Thus, peiididn the symbols are represented by repetitions
of the pmfs. This can be pictured as in Figure 1. A rotating cseblabeled A) contain®v4 urns, each with its
own distribution of balls (which may be labeled A, G, C, or T} €ach timestep, a ball is drawn from the urn and
the carousel rotates one position. The output of the prosessti periodic; instead, the distribution from which
the symbols are chosen is periodic. This is caktatistical periodicityor strict sense cyclostationaritjd9]. The
number of sources is equal to the latent period in the seguéertte cyclic model is justified by observing that
it captures all three notions of periodicities in symbolaxgences: tandem repeats result in information sources
with trivial zero-one pmfs while the eroded and latent pdiddies correspond to pmfs that allow for flipping of

symbols.

Fig. 1. Each time a ball is removed from one of tNg urns (indicated by the arrow), platform A rotates, bringing a new urn iogtjon.
Similarly, carousel B contain®d’s urns, each with its own collection of balls. The urns are the informationcesuand the cyclostationary
sequences generated by draws from caroudedad B exhibit latent periodicities oN4 and Np respectively. Draws are made by combining

draws from the two aligned urns and results itNa Np statistical periodicity.

In DNA sequences, multiple periodicities have also beerentes! [7]. For example, latent periodicities t0



and 126 base-pairs were reported in various genes in [2]. Such lopgdpds that are multiples df tend to
occur in coding regions. As noted by Korotkov et. al. [7],9beeriodicities can be related to evolutionary origins
via multiple duplications. This paper creates a frameworkstodying multiple periodicities in symbolic random
sequences by defining compositions on the probability Higions associated with the sequences. One possibility is
to form a Bernoulli mixture of two symbolic sequences; fockehase location pick a symbol from the first sequence
with probability 6 and from the other with probability — 3. If p; andg¢; denote the distributions over the common
alphabet for the two sequences at locatipthe distribution for the composed sequence is givefas- (1 — 3)g;.

If the distributionsp; and ¢; exhibit periodicities, the Bernoulli mixture may exhibituttiple periodicities. The
parametels itself may vary with base location. This composition arisatirally from the underlying experiment, in
this case the Bernoulli mixture and the binary operatioraisilg extended to finite number of sequences. However,
the operation is not associative and the order in which tlj@esgces are composed is crucial.

This paper presents a (different) method of composition ialay with the DNA replication process. The
corresponding physical experiment is illustrated in Figliyevhich contains two rotating carousels A and B with
N4 and Np urns respectively. At each timestep, the two carouselderotdo position and an element is drawn
from each of the two aligned urns (indicated by the brackéfdshe elements with different labels are drawn, they
are returned to the urns and the draws continue until anigimair is drawn. If the drawn elements have the same
label, the output assumes that label. The urns then rotateh@ngrocess repeats. The motivation for this model
comes from the DNA replication process. DNA exists as a lygbnhtwined pair of strands in the shape of a helix.
DNA replication begins with helical unwinding and the twoastds are pulled apart like a zipper resulting into two
separate strands. The DNA sequence of the forked strandsriated by the enzymgolymerasdan accordance
with rules of complementary base pairing [20]. A substitaterror in the replication process causes a kink in the
DNA sequence due to an imbalance of the sizes of the purine&)Aand the pyrimidines (C, T). If a mismatch is
detected, the replication stops till the polymerase restdhne correct nucleotide [17]. The analogy between DNA
replication and the two carousel model is following: thenfer defines an event as complementary base pairs
attached to the two strands of new DNA sequence; the latferedean event as identical balls drawn from the two
urns. The analogy is strengthened since each nucleotideelgigetermines the complementary base. The evolved

DNA sequence results from the original sequence and thendesgjuence of complementary nucleotides generated



by the polymerase. The mutations in the latter sequence esnifelf by altering the statistical periodicity profile
of the sequence. This method of composition defines a rich mmattieal structure (as detailed in Section V) in
which to study statistical periodicities with multiple klieh periodicities. In particular, the binary law is asstie@a
This makes the extension to a finite number of sequences obaimlishe order of composition irrelevant.

The paper is organized as follows. The problem of detectireptgberiodicities in general symbolic sequences
is formulated mathematically in the next section. The maximlikelihood estimate of the dominant period is
developed in Section II-A and the estimates are improved bgrporating a complexity term derived from the
minimum description length (MDL) principle likelihood fution in Section 1I-B. The model is then applied to
both simulated sequences and to DNA sequence data in SéleflorThe application of the method developed
to finding genes in DNA sequences and building probabiligigresentations for non-coding RNAs is presented
in section 1ll. Section IV presents the mathematical stngduneeded to make sense of multiple simultaneous
periodicities in symbolic sequences. The correspondingrg®/problem, how a cyclostationary symbolic sequence
can be decomposed into constituent cyclostationary sulesegs, is also addressed. While the DNA sequences
provides motivation for this work, the underlying matheiostis general enough to easily include any symbolic

set with any (finite) number of elements. Some parts of this pejgee previously presented in [21] and [22].

Il. STATISTICAL PERIODICITY

A given symbolic sequenc® = DD, ... can be denoted by the mappidg : N — X, from the natural
numbers to an alphabét. For DNA sequencesY = {A, G, C, T} where the symbols denote nucleotides Adenine,
Guanine, Cytosine and Thymine respectively. IBetdenote a probability distribution oA” and let X denote the
corresponding random variable (or information source). K&t denote then-fold cartesian product oft and
z™ € X™ denote a random sequence of lengthA probabilistic sourceis defined as a sequence of probability
distributions P, P(2) . on corresponding sequence of alphab&ts X2, ... such that for alln, and for all
" e X", P (g") = D yex PO (27 ).

If a symbolic sequenc® is generated by repeatedly picking subsequences from alpitisttic sourceP(”) and
concatenating, the statistical periodicity Bfis 7. In other words, the sequendég is generated by information
sources denoted a¥q,..., X7, in a cyclic fashion. The random variabl€; takes values on the alphabéat

according to an associated probability mass funcfignit generates thg!” symbol in X’ with probability P;(j) =



P(X; = &) for j=1,...,|X| where|X| is the cardinality of the alphabet (which is four for the DNégsiences).
The dominant periodof a 7 -periodic cyclostationary sequence is defined to be the slmbequenceD* =
(D3, ..., D%] of length7 such that thek!" symbol in every period is more likely to bB; than any other symbol
from the alphabet. Mathematically); = argmax,cFi(j). If Dj is not unique then the following notation is
adopted: the dominant peridé(G/C)(T)] denotes &-periodic cyclostationary sequence where the first symbol
is most likely A, the second symbol is equally likely to be a G@and the third symbol is always a T.

The number of complete statistical periodslinare M = |N/T |, where |x] denotes the largest integer that
is smaller than or equal to. Defineir = 1+ ((i — 1) mod T), where(z mod y) denotes the remainder after
division of z by y. Then forl < i < N, the symbolD;, i.e. thei*® symbol in the sequench, is generated by the
random variabl(—\XgT. The random variabIeX% forir =1,... ,T are assumed to be independent. The parameters
Py, ...,Pr, and T are unknown. Defin@® = {7,[Py,...,Pr]}. The search space for paramefEris the set

B={1,...,Ny}, for someN, < N and for the pmfdP;, ..., Pr] the search space is the subget [0, 1]I¥x7

¥

of column stochastic matrices (fét € Q, P;; € [0,1] and .~

Pji=1fori=1,...,7). Letp = B x Q denote

the search space for the paramegerGiven the data, the maximum aposteriori (MAP) estimate ofipeter® is
Omap = argmax P(0|D).
Ocp

By Bayes rule the posterior probability is

P(D|O)P(©)

P(BID) = =5,

where, by independence of;’s,
N
P(D©) = [[P(X;, = DilO)
=1

is the likelihood. Note that the probabilit(D) = [*_ P(D|©)P(©)do is a constant and thus, assuming a
uniform prior on©,

@MAP = argmax 'P(D’@) == @ML'
Ocp

In words, the MAP estimate is same as the maximum likelihaithnate under the uniform prior assumption. The
maximum likelihood estimates (MLE) for the unknown paranetare developed in the next section. However,
as seen from the experimental results on simulated segsiemak real gene data, the MLE tends to overfit the

data. To address the problem of over-fitting, a penalized maxi likelihood estimator is suggested in section



II-B. The estimator is not ad-hoc; it is derived using the refimsinimum description length (MDL) principles.
The penalization then corresponds to assuming the univerisalon the parameters and refined MDL estimator is

essentially the MAP estimator with respect to the univepsar.

A. The Maximum Likelihood Estimate

The derivation of the MLE is greatly simplified by adopting thidawing notation. Represent the data-sequence

D = [D,...,Dy] by a sequence of vectold = [wy,...,wy] where eachw; is a|X| x 1 vector with
1 D; =&,
Wi = . (2)
0 otherwise

For DNA sequences, if thé" symbol in the sequencB is C, i.e. the third symbol of the alphabat, then thei*"
vectorw; in the sequenc® is [0 01 0 ). Also define dX|x7 stochastic matri\ with entriesd j; = P(X; = &}).
The columns of the matriA denote the pmfs of the information sources; the eatfydenotes the probability that

the i'" source generates th&" symbol of the alphabet. Write the unknown parameté = [A,7]. Then

P(X:, = Di|A,T) = lf[' (Aﬁ )W’” .

JvT
Jj=1

The likelihood can therefore be written as

N
PWIA,T) = HP(X;T:DAA,T)

N |X|
= TIIT (#5.)™

i=1j=1
B M T |X R Wﬂ(k) MT |X| Wi (M+1) 3
- ;};[1;}_:[131;[1( jn) }_[1 }j( m) ©

wherei®) = (k — 1)T +i7. Note that the first term on the right hand side of (3) captunesabservations id/
complete periods (given the peridd) while the second product captures the observation ovelagidncomplete

cycle. The corresponding log-likelihood is

7 X

logP(W|A,T) Z Z ZW]M) log ( JZT)

k= 1ZT 1J=1
N—MT |X|

30X o log (A, ) (4)

ir=1 J=1



The MLE for A is first derived and then substituted in (4) to form the plugraximum-likelihood-estimator for

7. For a fixed7, the MLE for A is given as

AL =arg max log P(WIA, T). (5)
Equivalently,
Al =arg glelg —logPOW|A, T). (6)
The log-likelihood in (4) is a concave function of variabl&]s% which also satisfy the constraintg‘ji ‘1 AﬁT =1
for iz = 1,...,7. Constrained optimization using Lagrange multipliers gitlee (j,?f[)th element of the matrix
A, as
i e Wi, dr=1,...,N—MT
A (i) = @
Ly wiw, ir=N-MT,...,N
for j = 1,...,|X|. The MLE for the probability mass functions of the random Jales, given the period, is

quite intuitive. Given the period i, it amounts to segmentation of the data sequence Tntoon-overlapping
subsequences. Then the pmf of 8 information source is given by the relative frequency ofteagmbol in
the k" subsequence. For instance, if the hypothesized statigigzaod in a gene sequence 3sthen the MLE of
the pmf of the2" information source is given by the empirical probabilitiesnucleotides in the subsequence
comprising of every third symbol, starting with the secogcbol.

The estimates of the paramet&rcan be used to determine the MLE for the peribd
Tyl = argmin  —log P(WI|AL,, T). (8)
TEB

This is a simple plug-in estimator where the search is ovellaatmn of models with complexity that is increasing
with 7. In each model, the best fit for the data is picked - this is the MUE , given the period:. This set of

MLEs, from different models, indexed bly, are then compared for the goodness-of-fit, in terms of thaitikod.

B. Minimum description length estimator

The minimum description length (MDL) principle is an importéool for statistical inference. It has been applied
successfully to the problem ahodel selectioio determine which of the possible explanations of the datthé

best given a finite number of observations. The fundamental aiehe intuition behind MDL is that more regular



the data is, the easier it is to compress and thus learn [28].ifstance in a homological sequence, a single
period captures the entire data whereas a sequence ofassiestis completely random and there may not be any
shorter description of the data than the data itself. Mosthefreal data lies somewhere in between - it is not
completely regular but it is not completely random eithere TMDL principle embodies several desired features.
Most importantly, MDL avoids overfitting automatically byatting off complexity with the goodness of fit. If two
models fit data equally well, it picks the simpler one - in thewse it is like Occam’s Razor.

The key intuition for minimum description length principle that learning from the data is equivalent to data
compression. However, data compression varies with theeehad the description method. Kolmogorov described
the complexity of a data sequence as length of the shortegraon in a general purpose programming language
that generates the sequence and halts. It may seem that ga@lavocomplexity of the data is dependent on the
computer language used but a famous resultinkiariance theoremstates that for long enough sequences, the
Kolmogorov complexity with respect to two different progmaning languages differs only by a constant that does
not depend on data. However, Kolmogorov complexity is nehgotable and MDL procedure based on it becomes
arbitrary for small data samples. Thus, much of the focus inLNMat simpler description methods such that for
any data sequence the length of the shortest descriptiammiputable. Then, given the data getand a collection
of hypothesisH, the MDL principle for model selection is to pick the hypatisethat compresses the data most
with respect to the description method.

Let D denote the data and lg¢("), H(®) ... be a list of candidate models or hypotheses, whkf& =
{Q|Q is an M x k column-stochastic matrjxfor k = 1, ..., Ny. DefineH = UffilH(k). Then the best explanation

of the dataD is the hypothesid? € ‘H that minimizes the description length
L(D|H) = L(H®) + L(D|Hy) (9)

where L(H(®) is the length (in bits) of the description of the hypothei¥) and L(D|H\Y) is the length (in
bits) of the description of the data when encoded by the b&shypothesisH,E,,kL) e H®). The termL(D|H) is
the stochastic complexitgf the data given the model arddH(¥)) is the parametric complexityThe MDL model
selection involves a trade-off between the goodness-ofifitthe complexity.

The second terrﬂ(D|H,f,|kL)) in (9) is the codelength of the data when encoded with thetlhrﬁsdBHh(fL). Assuming

the hypotheses are probabilistic, the Shannon-Fano codepéireal in terms of the expected codelength. Thus,
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L(D]H,ffL)) = —log P(D\Hh(,l’“L)), whereP(D\H,E,lkL)) is the probability of observing conditioned on the hypothesis
L(D|H,E,|k|_)). The codelength is therefore the negative-log-likelihoddaving observed the dat®. This term is
exactly the same as in previous section, Wifl) = AF.

The following code may be adopted for the description of thedtiyesis. First encodé using [logk] 1's
followed by a0 which is followed by anotheflog k| bits for binary representation d@f. This a prefix code that
requires2[log k| + 1 bits. The parameters @) € H(¥) are described by’ = Mk frequencies or probabilities that
are determined by the counts in the §et1, ..., [%1}, thus takingk’ log((% + 1) bits. The total codelength for

the code is therefore
N
L(H) + L(D|H) = 2[log k] + 1 + Mklog[ -] — log P(D| H) (10)

for H € H® . It is clear from (10) that the MDL principle yields a penaliz®IL estimate. The code used here is

a universal codeand implies a universal prior on the hypothesis.

[11. EXAMPLES AND APPLICATIONS

We discuss some applications of studying cyclostationainctire of symbolic DNA and RNA sequences in this
section. Section IlI-A applies the methods of Section Il tohbsimulated and real gene sequences. The methods
are extended to consider spatially varying periodicitresymbolic DNA sequences using a windowed approach in
Section IlI-B, and Section IlI-C shows how the same ideas cagdmeralized to analysis of secondary structures

in RNA.

A. Finding Periodicities in DNA Sequences

For testing, a homological symbolic sequence from thexset {A, G, C, T} with period7 = 7 was generated.
The algorithm was tested with various degrees of erosiowduoited by flipping the symbols at randomly chosen
points in the sequence. The negative log-likelihood is ptbthgainst the period in Figure 2(a). The periodic
behaviour is very evident from the plots. Also notable am shb-harmonics, i.e. the integer multiples of the true
period. The plots strongly support a statistical periogi@f 7 even with60% erosion. The noise floor in the
plots increases with erosion and7@t% erosion, the sequence exhibits no repetitive behaviour.dbtited red plot
was obtained by a variant of computational negative cont(@GNC) strategy proposed in [24] - it corresponds

to the negative log-likelihood for various permutationstloé original sequence. It provides a good reference for
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comparison since a random permutation would destroy anylaegequential structure. The CNC variant for fifty
different permutations is plotted for all the experimemighis paper. Only the features that fall below the family
of these curves (when seeking a minima) are deemed stalfigtgignificant.
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Fig. 2. (a) Negative log-likelihood for the ML estimate plotted against Pefiwda simulated symbolic sequence of length 4000, with
period 7 undeB5%, 50%, 60% and75% erosion, (b) Description length (in bits) plotted for the ML estimatéHitf) plotted againsk for

corresponding sequences. The CNC permutations are plotted as suiafi.c

The algorithm was also tested with the protein coding regibrmhvomosome Il ofS. cerevisiae[25]. The
1629 base-pair (bp) long sequence (bp: 6,571 - 8,199) shoateat periodicity of period three in Figure 3(a).
The period-3 behaviour of protein coding genes is expectecesamino acids are coded by trinucleotide units
calledcodong[9], [26]. For comparison, the symbolic sequence is tramséal into a numerical sequence using the
complex mapping developed in [9] for identification of proteioding regions (A .1+ 0.12¢, G = 0.45 — 0.194,

C =0, T =-0.3-0.27). The magnitude of thd629-point DFT of numerical sequence of poly-nucleotides is
plotted against the frequency in Figure 3(b). The peaks at 543 and f» = 272 correspond t® and 6-periodic
behaviour respectively; however, some other peaks arelysitng artifacts, perhaps of the numerical mapping.

The MLE is compared with the MDL estimator in Figure 2 for simathtsequences and in Figure 4(a),(b) for
191 base pair long sequence from Chromosome XVI (bp: 521,0091;198) of theS. cerevisiae Genome [25].
The problem ofoverfittingis evident from the negative tilt of ‘valleys’ in the plots. iSHbehaviour is manifested
by equation (8), giving the largest integer multiple bfc B. However, the MDL estimator resolves the issue by

penalizing the models commensurately with complexity.
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(a) Chromosome Il of S. Cerevisiae (b) Spectrum of Chromosome 1l of S. Cerevisiae
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Fig. 3. (a) Negative Log-likelihood for ML estimate plotted against periadtiie 1629 base-pair long sequence from the protein-coding
region of chromosome 11l (bp: 6,571 - 8,199) &f cerevisiaegenome, (b) the magnitude of DFT of numerical sequence derized fhe

same sequence. The CNC variants are plotted in red.

Figure 4(c) shows results where the symbol sequence is deddrg a latent periodicity where a single period
is given by equation (1). The plot reveals a strong six-péciddhaviour and the detected dominant period (the
minimum of the curve) coincides with the true latent peribd.contrast, when a random sequence is used (i.e.
when each source generates all symbols with equal frequeRicure 4(d) shows that no significant periodicities
are detected, the minimum MDL occurs at a “periodicity” ofipd one.

Although the method of Anastassiou [9] and other numerieplesentation techniques combined with Fourier
transform perform poorly at severe mutation rates (see Ei@)y their performance in low noise conditions is
comparable to the MDL estimator. Figure 5 shows resultsl 8% base pair long sequence from Chromosome 20
(bp:22,557,488-22,558,792) of the Human Genome [25]. Tlaeual roll-off of valleys in the description length
and low noise floor in the DFT plots provide the evidence of higina to noise ratio. Nonetheless, it should
be remarked that the numerical mappings are typically nbthiby solving an optimization problem aimed at
enhancing particular aspect of the behaviour of the segsgitise three-periodic nature for instance. Consequently,

such tailored techniques run a risk for being too specific aarfiopm poorly at finding new periodicities.
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(a) Chromosome XVI of S. Cerevisiae (b) Chromosome XVI of S. Cerevisiae
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Fig. 4. (a) Negative log-likelihood for ML estimate of the protein codingiogegof chromosome XVI (bp: 521,009 - 521,199) &f
cerevisiaegenome. Description length (in bits) plotted for the penalized ML estimat&fd plotted againsk for (b) the protein coding
region of chromosome XVI (bp: 521,009 - 521,199)&f cerevisiaegenome, (c) a simulated symbolic sequence of length 2160 with latent

period 6, (d) a completely random symbolic sequence. The CNC vadaatplotted in red.

B. Identifying Exons in DNA sequences

The cyclostationarity profile of DNA sequences varies withatltmn. The coding part of DNA, in particular,
displays statistical periodicity with period three. The wag periodicities in DNA can be discovered by using
sliding windows and a cumulative sum test is presented & ghction to detect the change points. The penalized
MLE is applied to various simulated symbolic sequences aatigene sequences. In order to detect changes in
periodicity profile in a sequence df symbols, the estimates are computed in a sliding window z# 51 < N
with an overlap ofH symbols between successive windows. The method presentedshsimilar to windowed
Fourier transform techniques for generating the specragn [16], [27], [28], except that no numerical mapping
is imposed in this paper.

Figure 6 shows results for a simulat&d00-symbols long DNA sequence that has latent periodicity of pe

riod 6 for subsequences with indicels— 2000 and 6001 — 8000 and is completely random in the middle.
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(a) Chromosome 20 of Human Genome
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Fig. 5. (a) Description length (in bits) for the ML estimate ") plotted againsk for the protein coding region of chromosome 20 of
human genome; (b) The magnitude of DFT of numerical sequendeedeirom the protein coding region of chromosome 20 of Human

genome. The CNC variants are plotted in red.

Thus there are twahange pointsin the sequence. The latent period of the periodic part of #guence is
(A/C)(TIG)(T/IA)(GIT)(CIG/A)(GIA). The window size was choséa be 750 symbols and the overlap wa&5
symbols. The description length (Z-axis) is plotted for the k\Npothesis corresponding to each period (Y-axis)
along the sequence (X-axis). Note that both change poietsietected in the surface plot. Also the six-periodic
behaviour is very evident from the plot as are the sub-haitson

The sliding window method was applied to chromosome 20 of thvadn genome [25]. Th8748 base-pair
long sequence (bp 22,553,000-22,562,747) contadds long (bp 22,557,488-22,558,792) protein coding region
(exon$ flanked by non-coding parténfrons) on both sides. The contour plot in Figure 7 shows a latent gigity
of period three beginning at sliding window number 60 whicresponds to bp 22,557,42F/(= 750, H = 75).
This period-3 behaviour of protein coding genes is expectecesamino acids are coded by trinucleotide units

called codons[9].
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Surface plot of Minimum description length along the sequence for various periodicity hypothesis

\\\\\
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40
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Fig. 6. Description length (in bits) for the ML estimate #*) plotted against perioé along the sequence.

20 40 60 80 100 120
Sliding Window Number

Fig. 7. Contour plot of description length (in bits) for the ML estimateHf) plotted against period along the sequence.

The window sizeM determines a trade-off between the resolution and the acgwf the estimates. The larger
the window size, the better the estimates since the averagithe empirical estimator is taken over more data.
On the other hand, smaller windows give better resolutiooesthe estimates along the sequence depend only on
the symbols in a small neighbourhood. Another problem withrpresolution is detecting two change points that
are very close to each other. For instance, if the random qdaitte sequence in Figure 6 is much smaller than
the window size, the change points may go undetected. A {radtlution multi-scale technique may therefore be
preferred where various sizes for the sliding window areduge coarse search is first performed followed by a

fine search in the regions of interest.
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Near the change points, the periodicity profile changes,enihilother parts the profile remains constant except
for some small fluctuations due to the noise in data. Thus amumijomost powerful (UMP) test may be constructed
based on the positive inflection rate over multiple successindows. If the maximum likelihood period reported
is P then the alternate composite hypothesis is that the pegodoilongerP. The formulation is similar to
the change-point problem in statistics. The test proposed isebased on a cumulative sum approach. The null

hypothesis that there is no change is rejected if

0 = min 1QW, - QL . lot> om (11)
me{l,... T} , )

where |A — Bt = Zi’j(ai]— — bl-j)2 is the total deviation between matricés and B, 1, is a threshold and”
is the number of successive windows over which the test islected. The test statist'@ﬁp) for period P is the
minimum total deviation between ML estimates for the pmfsvindow ¢ and previousl’ windows.G)EP) is plotted
in Figure 8 for the simulated latent periodic sequence usdegare 6. The jump ir@,ﬁe) att =9 corresponds to
the change-point at bp numb&f + 8 x H = 1950, giving better resolution. The resolution can be furtherrioved

upon by decreasingf, keepingM constant. Note tha®§6) is consistently large over the transition regions with

lobe-width equal ta\/.

0.1p
0.09F
0.08 -
0.07

0.06 -

Total deviation
o
3

50
Sliding Window Number

Fig. 8. @,EP) plotted for the sequence from Figure (B,(lﬁ) is plotted in red {4 = 750, H = 150, T = 3).

C. RNA structure analysis

Till recently, RNAs were considered to be passive interrmgdimessengers (MRNA) of genetic information

from DNA to protein via the process of translation. During fast decade, RNAs have been found to play several
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important non-coding functions including chromosomeicggion, protein degradation and translocation, regodgti
gene expression and many more. Such RNAs are called nongcBihihs (ncCRNAS) or RNA genes. The number
of ncRNAs in human genomes is in the order of tens of thousandsconsidering the vast amount of genomic
data there is a need for computational methods for ideniificadf ncRNAS [26].

The statistical model presented in this paper for finding jgicities in symbolic sequences can be utilized for
building probabilistic representations of RNA familiesNR has the same primary structure as DNA, consisting
of a sugar-phosphate backbone with nucleotides attachétd kowever, in RNA the nucleotide Thymine(T) is
replaced by Uracil (U) as the base complementary to AderpeSo, RNA is represented by a string of bases: A,
C, G and U. RNA exists as a single-stranded molecule sinceetilacement of Thymine by Uracil makes RNA too
bulky to form a stable double helix. However, the compleragnbases (A and U, G and C) can form a hydrogen
bond and such consecutive base pairs cause the RNA to fotditgetf resulting in 2-D and 3-D secondary and
tertiary structures. A typical secondary structuréngrpin structure as shown in Figure 9(a); the consecutive base

pairs that bond together get stacked onto each other to fasterawhile the unpaired bases forml@op.

loop
e
@*@ RNAO
stem e e
—_—

020,
(OO
(» }‘m“ e [ (»)

RNA1(G) (9 @ (@) RNA2
) — O W

Not a hairpin

o o structure o e

Fig. 9. (a) RNAO has hairpin secondary structure. (b) RNAL is similartincture to RNAO. It differs at two positions in the primary
sequence from RNAO. (c) RNA2 structure is not hairpin, it has a strakctnismatch with RNAO. RNA2 also differs at two position in the

primary sequence from RNAO but it must be scored lower in similarity tcARIds compared to RNAL.

Typical methods employed for identification of DNA gene sewas and proteins do not perform as well in
identification of ncRNAs because they are based on finding tsnalcfeatures (like periodicities) in primary se-

guences whereas most functional ncRNAs preserve theindacy structures more than they preserve their primary



18

sequences [26] as seen in Figure 9. Therefore, there is neddctumiques that also evaluate similarity between
secondary structures. Such techniques have been shown tooiee affective in comparing and discriminating
RNA sequences [29]. We develop signatures for RNA sequethe¢san discriminate between different secondary

structures. These signatures find application in multiplgnatient and database search of RNA sequences.

Ao
AGAG G AT TG
i G A \
(b) RNA2 M o A
casc Cul, ¢
-G~
(a) RNAO t
G'\ AGAGGGAAAGAGGGUUCG AC
(E(;T(;(;(;T(o}‘o&(;‘;\ A 4P GGCCGGACAGAGUGUCCGGCC

GUCUUGCCAGAGUGGC AAGAC

$ PN

CCGGCCUGU
G//

GUCUUGCCA

(c) RNA1 R EE R A
CAGAACGGU

\ G /

Fig. 10. Comparing the primary sequence and secondary structtie RNAO with hairpin structure, (b) RNA1 evolved from RNAO

under compensatory mutation and (c) RNA2 that appears to have elwed from RNAO but is structurally different.

RNA sequences preserve the secondary structure via coatpensnutations which cause strong pairwise
correlations between distant bases in the primary RNA semueUnlike the techniques employed for DNA
identification in earlier works, the approach presented haredescribe such pairwise correlations. Consider three
ncRNA sequences shown in Figure 10. In multiple alignmentslatabase searches, the objective often is to
determine if the given sequences are homologous. RNAO ar1Ridve hairpin secondary structure and the two
sequences differ at eight base positions. The sequence RNA2liffers from RNAOQ at eight base locations but it
has a different secondary structure and must be scored laveimilarity to RNAO as compared to RNAL. In order
to determine structural similarity, two binary symbolicgeences are obtained from the given reference ncRNA
sequence. The first sequence is generated by replacing syAbald G with M and symbols C and U with’MThe
second sequence is obtained by replacing symbols A and CNvithd symbols G and U with NThe k-periodic
source distribution matrices are estimated for the two rigirs@quences as described in (4) foK & < Ny; let

A®) andB®) denote the corresponding matrices. Then the following épuatescribes a sequence of similarity
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scores

M = =3 4B log(h 3 B9, lg(EW ), (12)
1,5=1 1,7=1
for k = 1,..., Ny. Various linear combinations aﬁéf,\)m yield multi-dimensional signatures for ncRNAs. RNA

sequences in Figure 10 give following distribution matriéasthe 2-periodic model: for RNAO and RNA1

5/11 6/10 5/11 4/10
AR — / / . B® = / / , (13)
| 6/11 4/10 | | 6/11 6/10 |
and corresponding matrices for RNA2 are
8/11 9/10 8/11 2/10
pl _ | BT ON0 gy S/ 2710 (14)
3/11 1/10 3/11 8/10

Computing the scores in equation (12) g|VA§NAO = 3.93, Aé,\)m = 3.93 and Aé,\),Al = 2.88. The absolute
difference of the scores results in good discrimination @efomdary structures even in the face of significant
mutations. The quantitgAéf,ﬂA givescompensatory-mutation-invariant signatdor some secondary RNA structures:
hairpin with odd number of bases in the loop as shown abovef@andertain pseudoknots as well. Consider the
RNA inhibitor of HIV reverse transcriptasg80], which has gpseudoknostructure, and its possible homologues
shown in Figure 11. Computing the secondary-structure aiityl score givesA%}VA0 = 3.8825 = Agz)wu and
Ag}mg = 2.8912. In general, however, several linear combinations{Alffh},k}ff;1 should be used to generate a
multi-dimensional signature [31].

The statistical periodicity model provides a framework fgstematically developing signatures for the varied class
of RNA secondary structures. These signatures find applicationultiple alignments of instances of similar RNAs
from different genomes (for example human, rat, chickei) iardatabase search of homologues of a given RNA. A
family of related RNAs often share a common secondary stradvesides similar primary sequence motifs. When
searching a sequence database for homologous RNAs, it eviidvantageous to combine the structural signatures
with the primary sequence similarity scores. For instaicdigure 10 the RNA of interest is the sequence RNAO
with hairpin structure and conserved loop motif GAG - as sabove the invariant signature based A@A
determines the sequence RNA1 to be homologous to RNAQO. The Eiatures are also useful for consensus

structure prediction from multiple alignments by the pssef comparative RNA sequence analysis [30], [32]. In a

structurally correct multiple alignment of RNAs (sequen&NAO and RNA1 in Figures 10 and 11) the conserved
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base pairs (shaded symbols) are revealed by presence efatetr compensatory mutations. The invariants provide
a guantitative measure of pairwise sequence covariation.

Many current RNA pattern-matching algorithms are based NAROT [33] and search for deterministic motifs
with secondary structure constraints. These methods tipieark best for small, well-defined patterns but become
increasingly inaccurate with less conserved sequencds AB@ther shortcoming of existing methods is that they
need to be carefully customized for each RNA of interest drel dontext-free-grammar based algorithms are
incapable of describing the pseudoknots. The RNA signatimesduced in this section do not present these

limitations [31].

/—H—_-__\“ 'C/ A
A 5—UUCCG 5—TU :
s_Gueac” ) " A
see0e . AAGGCAACUCGA AG c -
CAGUCAACCUGXKA / (EXEEEN ) A7 AAC G5y )
I CeEALL 3 A, _a-UGAGCUu—3 ([ GU3
TA—AT ‘ Apa-aAad

(a) RNAI (b) RNAOQ (¢) RNA2

Fig. 11. (a) RNAO - the RNA inhibitor of HIV reverse transcriptase [30ihwpseudoknot structure (b) RNAL - mutated from RNAO at
shaded base locations (c) RNA2 sequence with a pseudoknot and emalimd®p structure. RNA2 is structurally different from RNA1 and

RNAO.

IV. MULTIPLE PERIODICITIES

Multiple latent periodicities in symbolic sequences pdavievidence of mutations and can help reconstruct
the evolution history just like numerical sequences. In adoal sequences, if multiple periodicities result from
addition (composition) of several sequences with diffeqgeriods, then Periodicity Transforms [34] provide the
decomposition into likely constituent components. To dgyex similar decomposition for symbolic sequences the
evolution and composition mechanisms need to be undersidid section provides a mathematical framework
that properly defines the notion of multiple periodicities.eTimathematical structure of the periodic subspaces is

studied first, and the resulting algebraic properties alloseeeomposition of multiple periodicities.

A. Periodic Subspaces

Let X = {a1,...,an} be a finite alphabet with cardinality/. Let P, be the collection of cyclostationary

sequences oA’ with periodp. ThenP = Up>0 P, is the set of all cyclostationary sequencesonvherep ranges
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over all positive integers. The s&, can also be identified with the set 8f x p column stochastic matrices. An
elementS € P, is a sequence of random variables and is described by anp column-stochastic matriQ° the

it" column of which, denoted?, gives the pmf ofS,,,,; for all n € Z, i.e.

P(Sppti = aj) = P(S; = a;) = Qj; = a7 (j) (15)

wherej = 1,--- , M. The following law of composition on the pmfs of the random $&pitic sequences follows

the double carousel model of Figure 1 in analogy with the gepécation process. Define

®:PxP — P
(16)
(X,Y) — Z
on P as follows. LetX,Y € P be sequences with statistical periodicitigand ¢ respectively. TherZ = X &Y

is the sequence of random variables such that fox alX

P<Zn :a> :P<Xﬁp =a,Yy, =a

Xa, = Ya ) (17)

Note that the binary operation is defined on the matri@es Q¥ but expressed in terms of the symbolic sequences

X,Y.

Lemma l. Let X € P, andY € P,. LetZ = X @Y. ThenZ € P,, wherer is the lowest common multiple pf
and q.
Proof: Letm = n + rs wherer is the lowest common multiple pfand ¢ and s is any positive integer. Then

iy = iy anding = ig. Thus for alla € X, P(Zn = a) = P(Xa, =, s, =a| X3, =¥3,) = P(Zu=a). m
Corollary 1. Let X,Y € P,. ThenX @Y is p-statistically periodic.

In Lemma 1, ifp andq are mutually prime the € P,,. If Q¥, QY andQ?Z denote the stochastic matrices of

X,Y and Z, respectively, then by definition (17), thé” column of theM x pg matrix Q% is

e ) |

(18)

o (M)qY, (M)

whereC = Zj]‘il qa; (j)a}, (7) is the normalization factor.



22

Example 1. Consider an example of composition of two cyclostationayrees with statistical period2 and 3.

Egn. (18) gives

_ 25 .6 _ _ 3101 _ _ 03 037 1 072 01 1 _
25 .2 - 0 .10 0 0125 0 0 01 O
25 1 3 .20 i 0.3 0125 0 0.12 0.2 O

I 25 1 | I 4 .6 0 | I 0.4 037 0 016 06 O |
XeP2 YePs Z€Ps

Note that the first source in the sequenkeacts like the identity and the last source of the sequeyicacts
like an infinity of the binary operation. The dominant periafsX andY are DY, = [N A and D} = [T TA
respectively, where N denotes (A/G/C/T). [ ]

If X=Y,thenZ =X @Y is in P, with

M

aif (k) = (ap (K))*/ > (an (k))*,

J=1

fork=1,...,M andn = 1,...,p. The operation of composing a symbolic sequence with itseif @lao be
expressed as multiplication by the scafgrwrite Z = X & X = 2 o X. This definition can be extended to

multiplication by any scalar. For € R and X € P define

o:RxP — P

(19)
(r,X) — Z
so thatZ = r o X is the random symbolic sequence with
P(Z,=a P(Xn = a) (20)

B Zbe/’\.’ P(Xn = b)r

for all a« € X with P(X,, = a) # 0. WhenP(X,, = a) =0, P(Z, = a) is defined to b&. If X € P,, Z € P,,.

Example 2. Consider an example of scalar multiplication. L¥tbe a cyclostationary symbolic sequence with

distributed asq;* = [§ 1 1 0]7. If Y = 20 X thenY; is distributed asq) = [2 1 0]”.

We now state the first of our main results of the section whidlovwie simply from the definitions of binary

composition and scalar multiplication.

Theorem 1. The setP forms an abelian group under the binary operatign: P x P — P.
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Proof: The closure of? under@ follows by Lemma 1 and the operation is commutative by defmifAssocia-
tivity is easy to check: leX, Y, Z € P have statistical periodicitiep, ¢ and r respectively. LeV = X & (Y & Z)

andW = (X ©Y) @ Z. ThenQ}; can be rewritten as

X Y Z X Y Z
jip( Jiq ]%) . ( Jip ]Zq> i AW
= =Qj;
oaf (@nen) T(enen) e
forj=1,...,M andi = 1,...,pq. The unigue identity element, denotéy is the stationary orl-statistically

periodic random sequence such thatE = a;) = ﬁ for all a; € X. Finally, for X e P if Y = (—1) o X then it

is easy to verify thafX & Y = E. Thus everyX € P has an inverse. [ ]

It is a consequence of the theorem above that the collecfiogabostationary sources in closed under the binary
law defined in (16). The periodic structure of a random sequéndbus preserved under composition and the
resulting sequence exhibits periodicities of the comptmarhich can be identified from the periodicity analysis.

Combined with the scalar multiplication, a richer struetis found on the periodic subspaces.

Theorem 2. (P,®,0) is a vector space oveR.

Proof: The closure ofP under o follows by definition and the identity elementliss R sincel o X = X.
The distributive properties are easy to check: foe R, X € P, andY € Py, ao (X @Y ) = (a0 X) @ (aoY)
and foro, e Rand X € Pp, (a4 ) o X = (a0 X) @ (B o X). Finally, scalar multiplication is compatible with

multiplication in the field of scalarsevo (8o X) = (af) o X. |
Corallary 2. For p € Z*, P, is a subspace oP.

The significance of Theorem 2 is that it allows for varying degreé constituent periodicities. A symbolic
sequence may exhibit a much strongeperiod thang-period. In such cases the scalar multiplier captures the
relative weight of each component. The periodic subspaaslap closed under scalar multiplication and hence

behave much like real-valued signal spaces.

B. Decomposing Multiple Periodicities

This section investigates the problem of decomposing theodé&ed probabilistic source that exhibits multiple
periodicities into various smaller components. Multiptgeht periodicities have been observed in various DNA

sequences. The high-sulphur wool matrix protein B2A fromeph(€EHPWMPBB at NCBI [35]) exhibits multiple
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latent periodicities with perio@ and 5. The description length (in bits) is plotted against the qubfior the base
pairs 273-561 in Figure 12. The statistical significant perisden are3 and 5 as well as the sub-harmonics
6,9,12 and 10, 15, 30 and the dominant period is found to be [CTGCCGGCCGGCCTG]. Sbwher instances
of multiple periodicities were discovered using the peredi ML estimator. In the T-cell receptor alpha-chain gene
of fugu rubripes(Japanese pufferfish, accession no. AF110525 [35]) the lpendicity with length equal t69
bases was observed in the protein coding re@iiqn13628-14594). libeinococcus radiodurangene forc-di-GMP
phosphodiesterasgrom sequence AE000513 [35]) latent periodicity equal t@ bases was observed from base
pairs 3108 to 3963 and iWethylobacterium extorquemaethanol oxidation genmxak(from sequence AF017434
[35]) latent periodicity equal to 126 bases was observenh fbase pairs 165-1010. However, it should be remarked
that not all sequences with composite latent period exiniiltiple periodicities. The minimum description length
is plotted in Figure 13 for two sequences with periodicity3df. One of the sequences exhibits strarigperiodic
and31-periodic behaviour as well, thus admitting an exact deamsitn. It is evident from the plot that the other

sequence is not composed from smaller sources but gendrateda 341 long probabilistic source.

High—sulphur wool matrix protein B2A from sheep
1100 T T T T

1000

900

800

Description Length(in bits)

700

600

500 I I I I I I
0 5 10 15 20 25 30 35

Period (k)

Fig. 12. Description length (in bits) plotted against the period for high-sulp¥ool matrix protein B2A from sheep (bp:273-561). The

DNA sequence exhibits multiple latent periodicities with peridnd 5.
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% 10* Description length vs Period

I
Random sequence composed of multiple periodic components
—O6— Random Sequence with single periodicity

Decription Length (in bits)
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Period (k)

|
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1200

Fig. 13. Description length (in bits) plotted against the period for two cydiosiary sequences both with peri@d1. The lower curve

(in blue) corresponds to the sequence composed of two cyclostatisoarges with period1 and 31.

Assume that an observed sequeute P,, was originally composed of sequenc&sc P, andY € P,, i.e.

Z=X®Y.ThenZ, =X, @Y, , forn=1,...,pq. The system of equations can be expressed in matrix form

as _
X1
7 I, I,
Xp
= ]
Y
L qu | <1 L Ip Iq |
rq N ,
Toaxp+a)
Yy

(p+q)x1

(21)

Theorem 3. For mutually primep and ¢, the matrixT above has rank + ¢ — 1. The null space of is spanned

by the vector—1...—11...1]

P q
Proof: See Appendix.
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Theorem 3 shows that i € P,, can be decomposed a&= X @Y for someX € P, andY < P,, then the
following decomposition also results

(Xadh)e(Yod) =2
r times

whereY &6, = Y & (-1046,) andd, = [4,...,0] for somed € P; andr = p,q. Thus there is a class
of decompositions ofZ. In words, apg-periodic symbolic sourceZ can be decomposed ingo and ¢—periodic

componentsX, Y unique only up to an additive factdre P;.

Example 3. With the sameX andY as in example 1,

_2/10 12/23_ _1/3 1/9 1] Tos o 1 02 01 1)

3/10 6/23 . 0 2/27 0 0 0125 0 0 01 0

3/10 3/23 2/9 4/27 0 103 0125 0 012 02 0

| 2/10 2/23 | | 4/9 2/3 0| |04 0375 0 016 06 0 |
X'=X&6 Y=Y 85=Y ®(—106) z

T and—106 = (2223

T
10 10 10 10]

whered = | . The dominant periods of’ andY” are D%, = [ (G/C)A |

0 10 10 10)
and Dy, = [T T A respectivelym

On comparing the dominant periods in examples 1 and 3 it isrebd that there is more than one decomposition,
in terms of latent periods, of the cyclostationary soufcerhis is a consequence of Theorem 3. A decomposition
that is biologically correct may be discovered by genegathre class of all possible decompositions. Two possible
decompositions of the latent period [CTGCCGGCCGGCCTG] foowmatrix protein B2A (SHPWMPBB) were
found to be [GGT, CG(G/C)CG] and [GCT, CGTCG]. The latter sebimtogically correct since the triplet (GCT)
in the coding regions is considered to be the dominatingepaih ancient codons, given the variants GCN, TCT,
CCT, ACT, GAT and GGT which code for the amino acids Ala, Ser, Fto, Asp and Gly respectively (see genetic
code [9]), are considered to be the earliest codons [10]. fipkett also results, by the process of transcription, in
the pattern (GCU) in mRNA which serves for maintaining a correct reading fraseing translation by making
the in-frame binding energetically favorable [10]. The daposition above is achieved by a simple algorithm,
briefly outlined next.

Consider decomposition of anperiodic probabilistic source’ into p and ¢g-periodic probabilistic sourceX

andY respectively, where = pq andp, ¢ are coprime. Assume that the minimum description lengthtared at
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period equal to- and the periodg andq are statistically significant (relative to CNC variants). Tdigective is to
determineQX, QY, QZ such thatZ = X @Y. A good estimate oQ? is A,(\,’[E whereasA,Efl’B andAﬁ,?E only provide
initial starting points forQ* and QY in an iterative procedure. At each iteration, the probatidisource that has
smaller description lengthQ* or Q") is fixed while the parameters of other are adapted so as tamzi@ithe
total deviation betwee®~ @ QY and A,(\}[E The process is repeated until the total deviation is withgpecified
tolerance. The convergence of this adaptive technique castablished by appealing to the topological properties

of the periodic subspaces and the continuity of the law of pasition.

V. DISCUSSION

Various parts of DNA sequences exhibit characteristidsdteal periodicities. Mapping this behaviour to struetur
and functional roles is an important aspect of genomic s$igracessing. The investigation of multiple periodicities
in gene sequences and their decomposition into smallesgiercomponents may be useful as a way to understand
the underlying generative mechanism. The decomposition pnayide insight into the underlying evolutionary
process that determines the structure of the sequencesnVésigation is challenging at least in part due to the
lack of an algebraic structure. The approach used here mduelsymbolic sequence as a nonstationary random
process on a finite alphabet and then studies the (de)congpositthe distributions. In particular, the decomposition
of DNA sequences are studied under a composition rule thasjsred by the biological model for gene replication
and mutation.

The formulation of the problem in this paper is different frahe classical stochastic techniques where distri-
butions are estimated by averaging over various ensemblesabizations. Often, it is impractical or impossible
to obtain more than one realization and an engineer’s solus to perform averaging over a single realization of
data. This temporal averaging may be justified when the datdiexlcyclostationarity over long periods or when

it is reasonable to assume ergodicity. An interesting disicun about the two approaches may be found in [36].

VI. APPENDIX

Proof: of Theorem 3Without loss of generality assume that g. ThenT;, the j* column of matrixT, is

of the form

!/

/
[e;’j...ep’j} if j <pand|eé !
——

/
q,jfp"'eq,jfp} ifj>p

q copies p copies
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where,e, ; is ap x 1 vector such that thg!" entry is one and rest are zero. Note that,

q
Tj = 1pq and Z Tj = lpq
7j=1 j=p+1

wherel,, is apg x 1 vector of all ones. Clearly then,

p q
Tw=> —Tj+ Y T;=—1p+1,=0.
j=1 j=p+1

Therefore, T is not full-rank andw is in the null-space ofl'. Now we show that any collection of + ¢ — 1

columns of T is linearly independent. Consider the followipg x (p + ¢ — 1) matrix
T/ - [Tl e Tk;—l Tk+1 e Tp+q]

consisting of all but the:* column of T. Note that thej’” row of T has unity at two Iocationsjp andp +3q.

Define
J = {j e{l,...,pq} | fp:k or p+3q:k:}.
Note that the first condition fails if > p and second fails otherwise. Without loss of generality asthatt < p.

ThenJ = {k.k+p,....,k+ (¢ — 1)p} = {k +mplm =0,...,q — 1}. For anyi € J, thei'" row of T’ has a

single non-zero entryl” T and for any non-zero vector = [vy...Viy_1 Vit1 ... Vpigl iN RpP+a—1,
1, p 11— q

Vo (TT j€d
T'v]; = p+1+(—1)q
VirGp T Vet J € {1 pah\J

—

Let j1, j2 € J such thatj; # jo; j1 = k+mp andjo. = k+np for somen # m. Then(jl/—\l)q = (j2 — 1) ifand

only if ¢ dividesj; — j i.e. ¢ divides(n —m)p. But p andq are co-prime and therefore gllc J are distinct so that

(G=1)g : jeJr={0,1,...,q—1}. Thus{[T'v]; : je J} = {vpﬂﬂﬁ)q L je J} = Vit Vil
AndT'v=0ifandonly if v, = ... = v, = 0 which implies{[T'v]; : j € J} = {VH_(],/_T)p D J € JC} =
{vi,...,vp}. AgainT’v = 0 impliesv; = ... = v, = 0. This contradicts that is non-zero. Therefore the columns

of T’ are linearly independent arifl has rankp + ¢ — 1. The null space ofT is one-dimensional and spanned by

w. |
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