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Latent Periodicities in Genome Sequences

Raman Arora, William A. Sethares and James A. Bucklew

Abstract

A novel approach is presented to the detection of periodicities in DNA sequences. A DNA sequence can be

modelled as a nonstationary stochastic process that exhibits various statistical periodicities in different regions.

The coding part of the DNA, for instance, exhibits statistical periodicity with period three. Such regions in DNA

are modelled as generated from a collection of information sources (with an underlying probability distribution)

in a cyclic manner, thus exhibiting cyclostationarity. Themaximum likelihood estimates are developed for the

distributions of the information sources and for the statistical period of the DNA sequence. Such sequences are

further investigated for decomposition into constituent cyclostationary sources. Since the symbolic sources do not

admit an algebraic structure, a composition of cyclostationary probabilistic sources is studied that models the point

mutations in gene sequences. This composition is shown to give a rich mathematical structure on the collection of

cyclostationary sources and allows a uniqueness theorem for the decomposition of statistically periodic symbolic

sources.

Index Terms

Symbolic periodicity, symbolic sequences, genomic signalprocessing, gene replication, cyclostationarity.

I. INTRODUCTION

SYMBOLIC sequences consist of strings of elements drawn from afinite set, typically with no algebraic

structure. In DNA sequences, economic indicator data, and other nominal time series, the only mathemat-

ical structure is the set membership [1]. Such symbolic sequences may exhibit various kinds of repetitions and

regularities, and finding such features is fundamental to understanding the structure of the sequences. In genomic

signal processing, locating hidden periodicities in DNA sequences is important since repetitions in DNA have been

shown to be correlated with several structural and functional roles [2]. For example, a base (symbol) periodicity

of 21 is associated withα-helical formation for synthesized protein molecules [2] and a base periodicity of three
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is identified with protein coding region of the DNA. Such investigations also find application in the diagnosis of

genetic disorders like Huntington’s disease [3], DNA forensics and in the reconstruction of evolution history [4],

[5].

Symbolic periodicities in DNA sequences may be classified intohomologous, eroded, and latent [6]. Homologous

periodicities occur when short fragments of DNA are repeated in tandem to give periodic sequences. Imperfect

or eroded periodicities [7] result when some of the bases in the homologous sequence are replaced or altered

(including insertions and deletions), so that the tandem repeats are not identical. Latent periodicities [8], [9] occur

when the repeating unit is not fixed but may change in a patterned way. For instance, an observed latent period of

nucleotides may be

[(A/C) (T/G) (T/A) (G/T) (C/G/A) (G/A)], (1)

which specifies the first element as either A or C, the second as either T or G, and so on. The latent periods in

DNA sequences often provide insights into the nature of early version of the sequences. For instance, in mRNA,

the latent period (G)(C)(U) is believed to be sequence fossil of ancient codons which dominated the earliest stages

of evolution [10]. Of course, this taxonomy of periodicities applies to any symbolic sequence.

Symbolic random variables take values on a set called thealphabet and its elements are calledsymbols.

Most current approaches to detecting periodicities transform the symbolic sequences into numerical sequences

and compute Fourier transform [11], [9], [12], [13] or perform exact periodic subspace decomposition (EPSD)

[14]. Though this is computationally convenient, it imposesa mathematical structure that is not present in the

data. For instance, the mapping of DNA elements (T= 0, C= 1, A= 2, G= 3) suggested in [15] puts a total

order on the set; the complex representation (A= 1 + j, G= −1 + j, C= −1 − j, T= 1 − j) used in [9], [16]

implies that the euclidean distance between A and C is greater than the distance between A and T [17]. Such

numerical mappings may introduce artifacts in the spectrumof the sequence. For example, consider the symbolic

sequence ACTACTACTACT with the numerical representation (T=0, C=1, A=2, G=3). Due to the order present in

the numerical representation, a mutation of any symbol to G results in larger noise than other mutations. If the first

and the third occurrence of T both flip to G, the spectral energyleaks from the bin corresponding to period three

resulting in a dominant peak corresponding to period two. Similar artifacts may occur in the presence of noise

for other representations, some of which were reported in [14]. A survey of various numerical mappings for DNA
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sequences is presented in [18], most of which are aimed primarily at the detection of homological periodicities [5],

[16], [14].

In contrast, the formulation in this paper implies no mathematical structure on the alphabet and presents a

general approach to the detection of periodicities. Each symbol of the sequence is assumed to be generated by an

information source with some underlying probability mass function(pmf) and the sequence is generated by drawing

symbols from these sources in a cyclic manner. Thus, periodicities in the symbols are represented by repetitions

of the pmfs. This can be pictured as in Figure 1. A rotating carousel (labeled A) containsNA urns, each with its

own distribution of balls (which may be labeled A, G, C, or T). At each timestep, a ball is drawn from the urn and

the carousel rotates one position. The output of the process is not periodic; instead, the distribution from which

the symbols are chosen is periodic. This is calledstatistical periodicityor strict sense cyclostationarity[19]. The

number of sources is equal to the latent period in the sequence. The cyclic model is justified by observing that

it captures all three notions of periodicities in symbolic sequences: tandem repeats result in information sources

with trivial zero-one pmfs while the eroded and latent periodicities correspond to pmfs that allow for flipping of

symbols.

A
B

Fig. 1. Each time a ball is removed from one of theNA urns (indicated by the arrow), platform A rotates, bringing a new urn into position.

Similarly, carousel B containsNB urns, each with its own collection of balls. The urns are the information sources and the cyclostationary

sequences generated by draws from carouselsA andB exhibit latent periodicities ofNA andNB respectively. Draws are made by combining

draws from the two aligned urns and results in aNANB statistical periodicity.

In DNA sequences, multiple periodicities have also been observed [7]. For example, latent periodicities of120



4

and 126 base-pairs were reported in various genes in [2]. Such longerperiods that are multiples of3 tend to

occur in coding regions. As noted by Korotkov et. al. [7], these periodicities can be related to evolutionary origins

via multiple duplications. This paper creates a framework for studying multiple periodicities in symbolic random

sequences by defining compositions on the probability distributions associated with the sequences. One possibility is

to form a Bernoulli mixture of two symbolic sequences; for each base location pick a symbol from the first sequence

with probabilityβ and from the other with probability1−β. If pt andqt denote the distributions over the common

alphabet for the two sequences at locationt, the distribution for the composed sequence is given asβpt +(1−β)qt.

If the distributionspt and qt exhibit periodicities, the Bernoulli mixture may exhibit multiple periodicities. The

parameterβ itself may vary with base location. This composition arises naturally from the underlying experiment, in

this case the Bernoulli mixture and the binary operation is easily extended to finite number of sequences. However,

the operation is not associative and the order in which the sequences are composed is crucial.

This paper presents a (different) method of composition in analogy with the DNA replication process. The

corresponding physical experiment is illustrated in Figure1, which contains two rotating carousels A and B with

NA and NB urns respectively. At each timestep, the two carousels rotate into position and an element is drawn

from each of the two aligned urns (indicated by the brackets). If the elements with different labels are drawn, they

are returned to the urns and the draws continue until an identical pair is drawn. If the drawn elements have the same

label, the output assumes that label. The urns then rotate andthe process repeats. The motivation for this model

comes from the DNA replication process. DNA exists as a tightly entwined pair of strands in the shape of a helix.

DNA replication begins with helical unwinding and the two strands are pulled apart like a zipper resulting into two

separate strands. The DNA sequence of the forked strands is recreated by the enzymepolymerasein accordance

with rules of complementary base pairing [20]. A substitution error in the replication process causes a kink in the

DNA sequence due to an imbalance of the sizes of the purines (A, G) and the pyrimidines (C, T). If a mismatch is

detected, the replication stops till the polymerase restores the correct nucleotide [17]. The analogy between DNA

replication and the two carousel model is following: the former defines an event as complementary base pairs

attached to the two strands of new DNA sequence; the latter defines an event as identical balls drawn from the two

urns. The analogy is strengthened since each nucleotide uniquely determines the complementary base. The evolved

DNA sequence results from the original sequence and the second sequence of complementary nucleotides generated
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by the polymerase. The mutations in the latter sequence manifest itself by altering the statistical periodicity profile

of the sequence. This method of composition defines a rich mathematical structure (as detailed in Section IV) in

which to study statistical periodicities with multiple hidden periodicities. In particular, the binary law is associative.

This makes the extension to a finite number of sequences obviousand the order of composition irrelevant.

The paper is organized as follows. The problem of detecting latent periodicities in general symbolic sequences

is formulated mathematically in the next section. The maximum likelihood estimate of the dominant period is

developed in Section II-A and the estimates are improved by incorporating a complexity term derived from the

minimum description length (MDL) principle likelihood function in Section II-B. The model is then applied to

both simulated sequences and to DNA sequence data in SectionIII-A. The application of the method developed

to finding genes in DNA sequences and building probabilistic representations for non-coding RNAs is presented

in section III. Section IV presents the mathematical structures needed to make sense of multiple simultaneous

periodicities in symbolic sequences. The corresponding inverse problem, how a cyclostationary symbolic sequence

can be decomposed into constituent cyclostationary subsequences, is also addressed. While the DNA sequences

provides motivation for this work, the underlying mathematics is general enough to easily include any symbolic

set with any (finite) number of elements. Some parts of this paper were previously presented in [21] and [22].

II. STATISTICAL PERIODICITY

A given symbolic sequenceD = D1D2 . . . can be denoted by the mappingD : N → X , from the natural

numbers to an alphabetX . For DNA sequences,X = {A, G, C, T} where the symbols denote nucleotides Adenine,

Guanine, Cytosine and Thymine respectively. LetP denote a probability distribution onX and letX denote the

corresponding random variable (or information source). LetX n denote then-fold cartesian product ofX and

xn ∈ X n denote a random sequence of lengthn. A probabilistic sourceis defined as a sequence of probability

distributionsP (1), P (2), . . . on corresponding sequence of alphabetsX 1,X 2, . . . such that for alln, and for all

xn ∈ X n, P (n)(xn) =
∑

y∈X P (n+1)(xn, y).

If a symbolic sequenceD is generated by repeatedly picking subsequences from a probabilistic sourceP (T ) and

concatenating, the statistical periodicity ofD is T . In other words, the sequenceD is generated byT information

sources denoted asX1, . . . , XT , in a cyclic fashion. The random variableXi takes values on the alphabetX

according to an associated probability mass functionPi; it generates thejth symbol inX with probabilityPi(j) =
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P(Xi = Xj) for j = 1, . . . , |X | where|X | is the cardinality of the alphabet (which is four for the DNA sequences).

The dominant periodof a T -periodic cyclostationary sequence is defined to be the symbolic sequenceD∗ =

[D∗
1, . . . , D

∗
T ] of lengthT such that thekth symbol in every period is more likely to beD∗

k than any other symbol

from the alphabet. Mathematically,D∗
k = arg maxj∈XPi(j). If D∗

k is not unique then the following notation is

adopted: the dominant period[A(G/C)(T)] denotes a3-periodic cyclostationary sequence where the first symbol

is most likely A, the second symbol is equally likely to be a G or C and the third symbol is always a T.

The number of complete statistical periods inD are M = ⌊N/T ⌋, where⌊x⌋ denotes the largest integer that

is smaller than or equal tox. Define îT = 1 + ((i − 1) mod T ), where(x mod y) denotes the remainder after

division of x by y. Then for1 ≤ i ≤ N , the symbolDi, i.e. theith symbol in the sequenceD, is generated by the

random variableX
îT

. The random variablesX
îT

for îT = 1, . . . , T are assumed to be independent. The parameters

P1, . . . , PT , and T are unknown. DefineΘ = {T , [P1, . . . , PT ]}. The search space for parameterT is the set

B = {1, . . . , N0}, for someN0 < N and for the pmfs[P1, . . . , PT ] the search space is the subsetQ ⊆ [0, 1]|X |×T

of column stochastic matrices (forP ∈ Q, Pji ∈ [0, 1] and
∑|X |

j=1 Pji = 1 for i = 1, . . . , T ). Let ℘ = B×Q denote

the search space for the parameterΘ. Given the data, the maximum aposteriori (MAP) estimate of parameterΘ is

ΘMAP = arg max
Θ∈℘

P(Θ|D).

By Bayes rule the posterior probability is

P(Θ|D) =
P(D|Θ)P(Θ)

P(D)
,

where, by independence ofXi’s,

P(D|Θ) =

N∏

i=1

P(X
îT

= Di|Θ)

is the likelihood. Note that the probabilityP(D) =
∫ ∞
−∞ P(D|Θ)P(Θ)dΘ is a constant and thus, assuming a

uniform prior onΘ,

ΘMAP = arg max
Θ∈℘

P(D|Θ) = ΘML .

In words, the MAP estimate is same as the maximum likelihood estimate under the uniform prior assumption. The

maximum likelihood estimates (MLE) for the unknown parameters are developed in the next section. However,

as seen from the experimental results on simulated sequences and real gene data, the MLE tends to overfit the

data. To address the problem of over-fitting, a penalized maximum likelihood estimator is suggested in section
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II-B. The estimator is not ad-hoc; it is derived using the refined minimum description length (MDL) principles.

The penalization then corresponds to assuming the universalprior on the parameters and refined MDL estimator is

essentially the MAP estimator with respect to the universalprior.

A. The Maximum Likelihood Estimate

The derivation of the MLE is greatly simplified by adopting the following notation. Represent the data-sequence

D = [D1, . . . , DN ] by a sequence of vectorsW = [w1, . . . ,wN ] where eachwi is a |X | × 1 vector with

wji =






1 Di = Xj

0 otherwise
. (2)

For DNA sequences, if theith symbol in the sequenceD is C, i.e. the third symbol of the alphabetX , then theith

vectorwi in the sequenceW is [ 0 0 1 0 ]′. Also define a|X |×T stochastic matrixA with entriesAji = P(Xi = Xj).

The columns of the matrixA denote the pmfs of the information sources; the entryAji denotes the probability that

the ith source generates thejth symbol of the alphabetX . Write the unknown parameterΘ = [A, T ]. Then

P(X
îT

= Di|A, T ) =

|X |∏

j=1

(
A

ĵiT

)
wji

.

The likelihood can therefore be written as

P(W|A, T ) =
N∏

i=1

P(X
îT

= Di|A, T )

=

N∏

i=1

|X |∏

j=1

(
A

ĵiT

)
wji

=
M∏

k=1

T∏

îT =1

|X |∏

j=1

(
A

ĵiT

)
w

ji(k)

×
N−MT∏

îT =1

|X |∏

j=1

(
A

ĵiT

)
w

ji(M+1)

(3)

wherei(k) = (k − 1)T + îT . Note that the first term on the right hand side of (3) captures the observations inM

complete periods (given the periodT ) while the second product captures the observation over thelast incomplete

cycle. The corresponding log-likelihood is

logP(W|A, T ) =
M∑

k=1

T∑

îT =1

|X |∑

j=1

wji(k) log
(
A

ĵiT

)
+

N−MT∑

îT =1

|X |∑

j=1

wji(M+1) log
(
A

ĵiT

)
(4)
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The MLE for A is first derived and then substituted in (4) to form the plug-inmaximum-likelihood-estimator for

T . For a fixedT , the MLE for A is given as

AT
ML = arg max

A∈Q
logP(W|A, T ). (5)

Equivalently,

AT
ML = arg min

A∈Q
− logP(W|A, T ). (6)

The log-likelihood in (4) is a concave function of variablesA
ĵiT

which also satisfy the constraints:
∑|X |

j=1 A
ĵiT

= 1

for îT = 1, . . . , T . Constrained optimization using Lagrange multipliers gives the(j, îT )th element of the matrix

AT
ML as

AT
ML (j, îT ) =






1
M+1

∑M+1
k=1 wji(k) , îT = 1, . . . , N − MT

1
M

∑M
k=1 wji(k) , îT = N − MT , . . . , N

(7)

for j = 1, . . . , |X |. The MLE for the probability mass functions of the random variables, given the period, is

quite intuitive. Given the period isT , it amounts to segmentation of the data sequence intoT non-overlapping

subsequences. Then the pmf of thekth information source is given by the relative frequency of each symbol in

the kth subsequence. For instance, if the hypothesized statistical period in a gene sequence is3 then the MLE of

the pmf of the2nd information source is given by the empirical probabilitiesof nucleotides in the subsequence

comprising of every third symbol, starting with the second symbol.

The estimates of the parameterA can be used to determine the MLE for the periodT ,

TML = arg min
T ∈B

− logP(W|AT
ML , T ). (8)

This is a simple plug-in estimator where the search is over a collection of models with complexity that is increasing

with T . In each model, the best fit for the data is picked - this is the MLEAk
ML , given the periodk. This set of

MLEs, from different models, indexed byk, are then compared for the goodness-of-fit, in terms of the likelihood.

B. Minimum description length estimator

The minimum description length (MDL) principle is an important tool for statistical inference. It has been applied

successfully to the problem ofmodel selectionto determine which of the possible explanations of the data is the

best given a finite number of observations. The fundamental idea or the intuition behind MDL is that more regular
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the data is, the easier it is to compress and thus learn [23]. For instance in a homological sequence, a single

period captures the entire data whereas a sequence of coin-tosses is completely random and there may not be any

shorter description of the data than the data itself. Most ofthe real data lies somewhere in between - it is not

completely regular but it is not completely random either. The MDL principle embodies several desired features.

Most importantly, MDL avoids overfitting automatically by trading off complexity with the goodness of fit. If two

models fit data equally well, it picks the simpler one - in that sense it is like Occam’s Razor.

The key intuition for minimum description length principle is that learning from the data is equivalent to data

compression. However, data compression varies with the choice of the description method. Kolmogorov described

the complexity of a data sequence as length of the shortest program in a general purpose programming language

that generates the sequence and halts. It may seem that Kolmogorov complexity of the data is dependent on the

computer language used but a famous result, theinvariance theorem, states that for long enough sequences, the

Kolmogorov complexity with respect to two different programming languages differs only by a constant that does

not depend on data. However, Kolmogorov complexity is not computable and MDL procedure based on it becomes

arbitrary for small data samples. Thus, much of the focus in MDL is at simpler description methods such that for

any data sequence the length of the shortest description is computable. Then, given the data setD and a collection

of hypothesisH, the MDL principle for model selection is to pick the hypothesis that compresses the data most

with respect to the description method.

Let D denote the data and letH(1),H(2), . . . be a list of candidate models or hypotheses, whereH(k) =

{Q|Q is anM ×k column-stochastic matrix} for k = 1, . . . , N0. DefineH = ∪N0

k=1H
(k). Then the best explanation

of the dataD is the hypothesisH ∈ H that minimizes the description length

L(D|H) = L(H(k)) + L(D|H
(k)
ML ) (9)

whereL(H(k)) is the length (in bits) of the description of the hypothesisH(k) and L(D|H
(k)
ML ) is the length (in

bits) of the description of the data when encoded by the best ML hypothesisH(k)
ML ∈ H(k). The termL(D|H) is

the stochastic complexityof the data given the model andL(H(k)) is theparametric complexity. The MDL model

selection involves a trade-off between the goodness-of-fit and the complexity.

The second termL(D|H
(k)
ML ) in (9) is the codelength of the data when encoded with the hypothesisH(k)

ML . Assuming

the hypotheses are probabilistic, the Shannon-Fano code areoptimal in terms of the expected codelength. Thus,



10

L(D|H
(k)
ML ) = − log P (D|H

(k)
ML ), whereP (D|H

(k)
ML ) is the probability of observingD conditioned on the hypothesis

L(D|H
(k)
ML ). The codelength is therefore the negative-log-likelihood of having observed the dataD. This term is

exactly the same as in previous section, withH(k) = Ak.

The following code may be adopted for the description of the hypothesis. First encodek using ⌈log k⌉ 1′s

followed by a0 which is followed by another⌈log k⌉ bits for binary representation ofk. This a prefix code that

requires2⌈log k⌉+ 1 bits. The parameters ofQ ∈ H(k) are described byk′ = Mk frequencies or probabilities that

are determined by the counts in the set{0, 1, . . . , ⌈N
k
⌉}, thus takingk′ log(⌈N

k
⌉+ 1) bits. The total codelength for

the code is therefore

L(H) + L(D|H) = 2⌈log k⌉ + 1 + Mk log⌈
N

k
⌉ − log P (D|H) (10)

for H ∈ H(k). It is clear from (10) that the MDL principle yields a penalized ML estimate. The code used here is

a universal codeand implies a universal prior on the hypothesis.

III. E XAMPLES AND APPLICATIONS

We discuss some applications of studying cyclostationary structure of symbolic DNA and RNA sequences in this

section. Section III-A applies the methods of Section II to both simulated and real gene sequences. The methods

are extended to consider spatially varying periodicities in symbolic DNA sequences using a windowed approach in

Section III-B, and Section III-C shows how the same ideas can begeneralized to analysis of secondary structures

in RNA.

A. Finding Periodicities in DNA Sequences

For testing, a homological symbolic sequence from the setX = {A, G, C, T} with periodT = 7 was generated.

The algorithm was tested with various degrees of erosion introduced by flipping the symbols at randomly chosen

points in the sequence. The negative log-likelihood is plotted against the period in Figure 2(a). The periodic

behaviour is very evident from the plots. Also notable are the sub-harmonics, i.e. the integer multiples of the true

period. The plots strongly support a statistical periodicity of 7 even with60% erosion. The noise floor in the

plots increases with erosion and at75% erosion, the sequence exhibits no repetitive behaviour. Thedotted red plot

was obtained by a variant of computational negative controls (CNC) strategy proposed in [24] - it corresponds

to the negative log-likelihood for various permutations ofthe original sequence. It provides a good reference for
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comparison since a random permutation would destroy any regular sequential structure. The CNC variant for fifty

different permutations is plotted for all the experiments in this paper. Only the features that fall below the family

of these curves (when seeking a minima) are deemed statistically significant.
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Fig. 2. (a) Negative log-likelihood for the ML estimate plotted against Periodfor a simulated symbolic sequence of length 4000, with

period 7 under35%, 50%, 60% and75% erosion, (b) Description length (in bits) plotted for the ML estimate inH
(k) plotted againstk for

corresponding sequences. The CNC permutations are plotted as small circles.

The algorithm was also tested with the protein coding region of chromosome III ofS. cerevisiae[25]. The

1629 base-pair (bp) long sequence (bp: 6,571 - 8,199) shows alatent periodicity of period three in Figure 3(a).

The period-3 behaviour of protein coding genes is expected since amino acids are coded by trinucleotide units

calledcodons[9], [26]. For comparison, the symbolic sequence is transformed into a numerical sequence using the

complex mapping developed in [9] for identification of protein coding regions (A =0.1 + 0.12i, G = 0.45− 0.19i,

C = 0, T = −0.3 − 0.2i). The magnitude of the1629-point DFT of numerical sequence of poly-nucleotides is

plotted against the frequency in Figure 3(b). The peaks atf1 = 543 andf2 = 272 correspond to3 and6-periodic

behaviour respectively; however, some other peaks are simply the artifacts, perhaps of the numerical mapping.

The MLE is compared with the MDL estimator in Figure 2 for simulated sequences and in Figure 4(a),(b) for

191 base pair long sequence from Chromosome XVI (bp: 521,009 - 521,199) of theS. cerevisiae Genome [25].

The problem ofoverfitting is evident from the negative tilt of ‘valleys’ in the plots. This behaviour is manifested

by equation (8), giving the largest integer multiple ofT ∈ B. However, the MDL estimator resolves the issue by

penalizing the models commensurately with complexity.
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Fig. 3. (a) Negative Log-likelihood for ML estimate plotted against period for the 1629 base-pair long sequence from the protein-coding

region of chromosome III (bp: 6,571 - 8,199) ofS. cerevisiaegenome, (b) the magnitude of DFT of numerical sequence derived from the

same sequence. The CNC variants are plotted in red.

Figure 4(c) shows results where the symbol sequence is generated by a latent periodicity where a single period

is given by equation (1). The plot reveals a strong six-periodic behaviour and the detected dominant period (the

minimum of the curve) coincides with the true latent period.In contrast, when a random sequence is used (i.e.

when each source generates all symbols with equal frequency), Figure 4(d) shows that no significant periodicities

are detected, the minimum MDL occurs at a “periodicity” of period one.

Although the method of Anastassiou [9] and other numerical representation techniques combined with Fourier

transform perform poorly at severe mutation rates (see Figure 3), their performance in low noise conditions is

comparable to the MDL estimator. Figure 5 shows results for1305 base pair long sequence from Chromosome 20

(bp:22,557,488-22,558,792) of the Human Genome [25]. The gradual roll-off of valleys in the description length

and low noise floor in the DFT plots provide the evidence of high signal to noise ratio. Nonetheless, it should

be remarked that the numerical mappings are typically obtained by solving an optimization problem aimed at

enhancing particular aspect of the behaviour of the sequences, the three-periodic nature for instance. Consequently,

such tailored techniques run a risk for being too specific and perform poorly at finding new periodicities.
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(b) Chromosome XVI of S. Cerevisiae
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(a) Chromosome XVI of S. Cerevisiae

Fig. 4. (a) Negative log-likelihood for ML estimate of the protein coding region of chromosome XVI (bp: 521,009 - 521,199) ofS.

cerevisiaegenome. Description length (in bits) plotted for the penalized ML estimate inH
(k) plotted againstk for (b) the protein coding

region of chromosome XVI (bp: 521,009 - 521,199) ofS. cerevisiaegenome, (c) a simulated symbolic sequence of length 2160 with latent

period 6, (d) a completely random symbolic sequence. The CNC variantsare plotted in red.

B. Identifying Exons in DNA sequences

The cyclostationarity profile of DNA sequences varies with location. The coding part of DNA, in particular,

displays statistical periodicity with period three. The varying periodicities in DNA can be discovered by using

sliding windows and a cumulative sum test is presented in this section to detect the change points. The penalized

MLE is applied to various simulated symbolic sequences and real gene sequences. In order to detect changes in

periodicity profile in a sequence ofN symbols, the estimates are computed in a sliding window of size M < N

with an overlap ofH symbols between successive windows. The method presented here is similar to windowed

Fourier transform techniques for generating the spectrogram in [16], [27], [28], except that no numerical mapping

is imposed in this paper.

Figure 6 shows results for a simulated8000-symbols long DNA sequence that has latent periodicity of pe-

riod 6 for subsequences with indices1 − 2000 and 6001 − 8000 and is completely random in the middle.
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Fig. 5. (a) Description length (in bits) for the ML estimate inH(k) plotted againstk for the protein coding region of chromosome 20 of

human genome; (b) The magnitude of DFT of numerical sequence derived from the protein coding region of chromosome 20 of Human

genome. The CNC variants are plotted in red.

Thus there are twochange pointsin the sequence. The latent period of the periodic part of the sequence is

(A/C)(T/G)(T/A)(G/T)(C/G/A)(G/A). The window size was chosento be 750 symbols and the overlap was675

symbols. The description length (Z-axis) is plotted for the MLhypothesis corresponding to each period (Y-axis)

along the sequence (X-axis). Note that both change points are detected in the surface plot. Also the six-periodic

behaviour is very evident from the plot as are the sub-harmonics.

The sliding window method was applied to chromosome 20 of the human genome [25]. The9748 base-pair

long sequence (bp 22,553,000-22,562,747) contains1305 long (bp 22,557,488-22,558,792) protein coding region

(exons) flanked by non-coding parts (introns) on both sides. The contour plot in Figure 7 shows a latent periodicity

of period three beginning at sliding window number 60 which corresponds to bp 22,557,427 (M = 750, H = 75).

This period-3 behaviour of protein coding genes is expected since amino acids are coded by trinucleotide units

calledcodons[9].
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Fig. 7. Contour plot of description length (in bits) for the ML estimate inH
(k) plotted against periodk along the sequence.

The window sizeM determines a trade-off between the resolution and the accuracy of the estimates. The larger

the window size, the better the estimates since the averaging in the empirical estimator is taken over more data.

On the other hand, smaller windows give better resolution since the estimates along the sequence depend only on

the symbols in a small neighbourhood. Another problem with poor resolution is detecting two change points that

are very close to each other. For instance, if the random partof the sequence in Figure 6 is much smaller than

the window size, the change points may go undetected. A multi-resolution multi-scale technique may therefore be

preferred where various sizes for the sliding window are used. A coarse search is first performed followed by a

fine search in the regions of interest.
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Near the change points, the periodicity profile changes, while in other parts the profile remains constant except

for some small fluctuations due to the noise in data. Thus a uniformly most powerful (UMP) test may be constructed

based on the positive inflection rate over multiple successive windows. If the maximum likelihood period reported

is P then the alternate composite hypothesis is that the period is no longerP . The formulation is similar to

the change-point problem in statistics. The test proposed here is based on a cumulative sum approach. The null

hypothesis that there is no change is rejected if

Θ
(P )
t = min

m∈{1,...,T}
|Q

(P )
ML ,t − Q

(P )
ML ,t−m|tot > δTh (11)

where |A − B|tot =
∑

i,j(aij − bij)
2 is the total deviation between matricesA and B, δTh is a threshold andT

is the number of successive windows over which the test is conducted. The test statisticΘ(P )
t for periodP is the

minimum total deviation between ML estimates for the pmfs inwindow t and previousT windows.Θ(P )
t is plotted

in Figure 8 for the simulated latent periodic sequence used inFigure 6. The jump inΘ(6)
t at t = 9 corresponds to

the change-point at bp numberM +8×H = 1950, giving better resolution. The resolution can be further improved

upon by decreasingH, keepingM constant. Note thatΘ(6)
t is consistently large over the transition regions with

lobe-width equal toM .
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Fig. 8. Θ
(P )
t plotted for the sequence from Figure 6.Θ

(6)
t is plotted in red (M = 750, H = 150, T = 3).

C. RNA structure analysis

Till recently, RNAs were considered to be passive intermediary messengers (mRNA) of genetic information

from DNA to protein via the process of translation. During the last decade, RNAs have been found to play several
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important non-coding functions including chromosome replication, protein degradation and translocation, regulating

gene expression and many more. Such RNAs are called non-coding RNAs (ncRNAs) or RNA genes. The number

of ncRNAs in human genomes is in the order of tens of thousandsand considering the vast amount of genomic

data there is a need for computational methods for identification of ncRNAs [26].

The statistical model presented in this paper for finding periodicities in symbolic sequences can be utilized for

building probabilistic representations of RNA families. RNA has the same primary structure as DNA, consisting

of a sugar-phosphate backbone with nucleotides attached toit. However, in RNA the nucleotide Thymine(T) is

replaced by Uracil (U) as the base complementary to Adenine (A). So, RNA is represented by a string of bases: A,

C, G and U. RNA exists as a single-stranded molecule since thereplacement of Thymine by Uracil makes RNA too

bulky to form a stable double helix. However, the complementary bases (A and U, G and C) can form a hydrogen

bond and such consecutive base pairs cause the RNA to fold onto itself resulting in 2-D and 3-D secondary and

tertiary structures. A typical secondary structure ishairpin structure as shown in Figure 9(a); the consecutive base

pairs that bond together get stacked onto each other to form astemwhile the unpaired bases form aloop.

A

G

C C G A G G G

G

GC

UA

A

G G

UC

A G

A

G G

GC

GC

A C G A G U GA C G A G G U

Structurally

similar

Structural

mismatch

Not a hairpin

structure

RNA 1 RNA 2

RNA 0

loop

stem

Fig. 9. (a) RNA0 has hairpin secondary structure. (b) RNA1 is similar in structure to RNA0. It differs at two positions in the primary

sequence from RNA0. (c) RNA2 structure is not hairpin, it has a structural mismatch with RNA0. RNA2 also differs at two position in the

primary sequence from RNA0 but it must be scored lower in similarity to RNA0 as compared to RNA1.

Typical methods employed for identification of DNA gene sequences and proteins do not perform as well in

identification of ncRNAs because they are based on finding structural features (like periodicities) in primary se-

quences whereas most functional ncRNAs preserve their secondary structures more than they preserve their primary
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sequences [26] as seen in Figure 9. Therefore, there is need fortechniques that also evaluate similarity between

secondary structures. Such techniques have been shown to be more effective in comparing and discriminating

RNA sequences [29]. We develop signatures for RNA sequencesthat can discriminate between different secondary

structures. These signatures find application in multiple alignment and database search of RNA sequences.

Fig. 10. Comparing the primary sequence and secondary structures of (a) RNA0 with hairpin structure, (b) RNA1 evolved from RNA0

under compensatory mutation and (c) RNA2 that appears to have been evolved from RNA0 but is structurally different.

RNA sequences preserve the secondary structure via compensatory mutations which cause strong pairwise

correlations between distant bases in the primary RNA sequence. Unlike the techniques employed for DNA

identification in earlier works, the approach presented herecan describe such pairwise correlations. Consider three

ncRNA sequences shown in Figure 10. In multiple alignments ordatabase searches, the objective often is to

determine if the given sequences are homologous. RNA0 and RNA1 have hairpin secondary structure and the two

sequences differ at eight base positions. The sequence RNA2 also differs from RNA0 at eight base locations but it

has a different secondary structure and must be scored lowerin similarity to RNA0 as compared to RNA1. In order

to determine structural similarity, two binary symbolic sequences are obtained from the given reference ncRNA

sequence. The first sequence is generated by replacing symbolsA and G with M and symbols C and U with M′. The

second sequence is obtained by replacing symbols A and C withN and symbols G and U with N′. Thek-periodic

source distribution matrices are estimated for the two binary sequences as described in (4) for1 ≤ k ≤ N0; let

A(k) and B(k) denote the corresponding matrices. Then the following equation describes a sequence of similarity
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scores

∆
(k)
RNA = −

2∑

i,j=1

A(k)(i, j) log(A(k)(i, j)) −
2∑

i,j=1

B(k)(i, j) log(B(k)(i, j)), (12)

for k = 1, . . . , N0. Various linear combinations of∆(k)
RNA yield multi-dimensional signatures for ncRNAs. RNA

sequences in Figure 10 give following distribution matricesfor the 2-periodic model: for RNA0 and RNA1

A(2) =




5/11 6/10

6/11 4/10



 , B(2) =




5/11 4/10

6/11 6/10



 , (13)

and corresponding matrices for RNA2 are

A(2) =




8/11 9/10

3/11 1/10



 , B(2) =




8/11 2/10

3/11 8/10



 . (14)

Computing the scores in equation (12) gives∆
(2)
RNA0 = 3.93, ∆

(2)
RNA1 = 3.93 and ∆

(2)
RNA1 = 2.88. The absolute

difference of the scores results in good discrimination of secondary structures even in the face of significant

mutations. The quantity∆(2)
RNA givescompensatory-mutation-invariant signaturefor some secondary RNA structures:

hairpin with odd number of bases in the loop as shown above andfor certain pseudoknots as well. Consider the

RNA inhibitor of HIV reverse transcriptase[30], which has apseudoknotstructure, and its possible homologues

shown in Figure 11. Computing the secondary-structure similarity score gives∆(2)
RNA0 = 3.8825 = ∆

(2)
RNA1 and

∆
(2)
RNA2 = 2.8912. In general, however, several linear combinations of{∆

(k)
RNA}

N0

k=1 should be used to generate a

multi-dimensional signature [31].

The statistical periodicity model provides a framework for systematically developing signatures for the varied class

of RNA secondary structures. These signatures find application in multiple alignments of instances of similar RNAs

from different genomes (for example human, rat, chicken) and in database search of homologues of a given RNA. A

family of related RNAs often share a common secondary structure besides similar primary sequence motifs. When

searching a sequence database for homologous RNAs, it will be advantageous to combine the structural signatures

with the primary sequence similarity scores. For instance,in Figure 10 the RNA of interest is the sequence RNA0

with hairpin structure and conserved loop motif GAG - as seenabove the invariant signature based on∆
(2)
RNA

determines the sequence RNA1 to be homologous to RNA0. The RNAsignatures are also useful for consensus

structure prediction from multiple alignments by the process of comparative RNA sequence analysis [30], [32]. In a

structurally correct multiple alignment of RNAs (sequences RNA0 and RNA1 in Figures 10 and 11) the conserved
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base pairs (shaded symbols) are revealed by presence of correlated compensatory mutations. The invariants provide

a quantitative measure of pairwise sequence covariation.

Many current RNA pattern-matching algorithms are based on RNAMOT [33] and search for deterministic motifs

with secondary structure constraints. These methods typically work best for small, well-defined patterns but become

increasingly inaccurate with less conserved sequences [30]. Another shortcoming of existing methods is that they

need to be carefully customized for each RNA of interest and the context-free-grammar based algorithms are

incapable of describing the pseudoknots. The RNA signaturesintroduced in this section do not present these

limitations [31].

Fig. 11. (a) RNA0 - the RNA inhibitor of HIV reverse transcriptase [30] with pseudoknot structure (b) RNA1 - mutated from RNA0 at

shaded base locations (c) RNA2 sequence with a pseudoknot and an internal loop structure. RNA2 is structurally different from RNA1 and

RNA0.

IV. M ULTIPLE PERIODICITIES

Multiple latent periodicities in symbolic sequences provide evidence of mutations and can help reconstruct

the evolution history just like numerical sequences. In numerical sequences, if multiple periodicities result from

addition (composition) of several sequences with different periods, then Periodicity Transforms [34] provide the

decomposition into likely constituent components. To develop a similar decomposition for symbolic sequences the

evolution and composition mechanisms need to be understood. This section provides a mathematical framework

that properly defines the notion of multiple periodicities. The mathematical structure of the periodic subspaces is

studied first, and the resulting algebraic properties allow adecomposition of multiple periodicities.

A. Periodic Subspaces

Let X = {a1, . . . , aM} be a finite alphabet with cardinalityM . Let Pp be the collection of cyclostationary

sequences onX with periodp. ThenP =
⋃

p>0 Pp is the set of all cyclostationary sequences onX wherep ranges
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over all positive integers. The setPp can also be identified with the set ofM × p column stochastic matrices. An

elementS ∈ Pp is a sequence of random variables and is described by anM × p column-stochastic matrixQS the

ith column of which, denotedqS
i , gives the pmf ofSnp+i for all n ∈ Z+, i.e.

P (Snp+i = aj) = P (Si = aj) = QS
ji ≡ qS

i (j) (15)

wherej = 1, · · · , M . The following law of composition on the pmfs of the random symbolic sequences follows

the double carousel model of Figure 1 in analogy with the gene replication process. Define

⊕ : P × P → P

(X, Y ) 7→ Z

(16)

on P as follows. LetX, Y ∈ P be sequences with statistical periodicitiesp andq respectively. ThenZ = X ⊕ Y

is the sequence of random variables such that for alla ∈ X

P

(
Zn = a

)
= P

(
Xn̂p

= a, Yn̂q
= a

∣∣∣∣Xn̂p
= Yn̂q

)
. (17)

Note that the binary operation is defined on the matricesQX ,QY but expressed in terms of the symbolic sequences

X, Y .

Lemma 1. Let X ∈ Pp and Y ∈ Pq. Let Z = X ⊕ Y . ThenZ ∈ Pr, wherer is the lowest common multiple ofp

and q.

Proof: Let m = n + rs wherer is the lowest common multiple ofp and q and s is any positive integer. Then

m̂p = n̂p and m̂q = n̂q. Thus for alla ∈ X , P
(
Zm = a

)
= P

(
Xn̂p

= a, Yn̂q
= a

∣∣∣Xn̂p
= Yn̂q

)
= P

(
Zn = a

)
.

Corollary 1. Let X, Y ∈ Pp. ThenX ⊕ Y is p-statistically periodic.

In Lemma 1, ifp andq are mutually prime thenZ ∈ Ppq. If QX ,QY andQZ denote the stochastic matrices of

X, Y andZ, respectively, then by definition (17), thenth column of theM × pq matrix QZ is

qZ
n =

1

C





qX
n̂p

(1)qY
n̂q

(1)

...

qX
n̂p

(M)qY
n̂q

(M)




(18)

whereC =
∑M

j=1 qX
n̂p

(j)qY
n̂q

(j) is the normalization factor.
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Example 1. Consider an example of composition of two cyclostationary sources with statistical periods2 and 3.

Eqn. (18) gives




.25 .6

.25 .2

.25 .1

.25 .1





︸ ︷︷ ︸
X∈P2

⊕





.3 .1 1

0 .1 0

.3 .2 0

.4 .6 0





︸ ︷︷ ︸
Y ∈P3

=





0.3 0.375 1 0.72 0.1 1

0 0.125 0 0 0.1 0

0.3 0.125 0 0.12 0.2 0

0.4 0.375 0 0.16 0.6 0





︸ ︷︷ ︸
Z∈P6

Note that the first source in the sequenceX acts like the identity and the last source of the sequenceY acts

like an infinity of the binary operation. The dominant periodsof X and Y are D∗
X = [N A] and D∗

Y = [T T A]

respectively, where N denotes (A/G/C/T).

If X = Y , thenZ = X ⊕ Y is in Pp with

qZ
n (k) = (qX

n (k))2/
M∑

j=1

(qX
n (k))2,

for k = 1, . . . , M and n = 1, . . . , p. The operation of composing a symbolic sequence with itself can also be

expressed as multiplication by the scalar2; write Z = X ⊕ X = 2 ◦ X. This definition can be extended to

multiplication by any scalar. Forr ∈ R andX ∈ P define

◦ : R × P → P

(r, X) 7→ Z

(19)

so thatZ = r ◦ X is the random symbolic sequence with

P
(
Zn = a

)
=

P (Xn = a)r

∑
b∈X P (Xn = b)r

(20)

for all a ∈ X with P (Xn = a) 6= 0. WhenP (Xn = a) = 0, P (Zn = a) is defined to be0. If X ∈ Pp, Z ∈ Pp.

Example 2. Consider an example of scalar multiplication. LetX be a cyclostationary symbolic sequence withXi

distributed asqX
i = [12

1
4

1
4 0]T . If Y = 2 ◦ X thenYi is distributed asqY

i = [23
1
6

1
6 0]T .

We now state the first of our main results of the section which follows simply from the definitions of binary

composition and scalar multiplication.

Theorem 1. The setP forms an abelian group under the binary operation⊕ : P × P → P.
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Proof: The closure ofP under⊕ follows by Lemma 1 and the operation is commutative by definition. Associa-

tivity is easy to check: letX, Y, Z ∈ P have statistical periodicitiesp, q and r respectively. LetV = X ⊕ (Y ⊕Z)

and W = (X ⊕ Y ) ⊕ Z. ThenQV
ji can be rewritten as

QX
jip

(
QY

jiq
QZ

jir

)

∑
j QX

jip

(
QY

jiq
QZ

jir

) =

(
QX

jip
QY

jiq

)
QZ

jir

∑
j

(
QX

jip
QY

jiq

)
QZ

jir

= QW
ji

for j = 1, . . . , M and i = 1, . . . , pq. The unique identity element, denotedE, is the stationary or1-statistically

periodic random sequence such thatP (E = aj) = 1
M

for all aj ∈ X . Finally, for X ∈ P if Y = (−1) ◦X then it

is easy to verify thatX ⊕ Y = E. Thus everyX ∈ P has an inverse.

It is a consequence of the theorem above that the collection of cyclostationary sources in closed under the binary

law defined in (16). The periodic structure of a random sequenceis thus preserved under composition and the

resulting sequence exhibits periodicities of the components which can be identified from the periodicity analysis.

Combined with the scalar multiplication, a richer structure is found on the periodic subspaces.

Theorem 2. (P,⊕, ◦) is a vector space overR.

Proof: The closure ofP under ◦ follows by definition and the identity element is1 ∈ R since1 ◦ X = X.

The distributive properties are easy to check: forα ∈ R, X ∈ Pp and Y ∈ Pq, α ◦ (X ⊕ Y ) = (α ◦ X) ⊕ (α ◦ Y )

and for α, β ∈ R and X ∈ Pp, (α + β) ◦X = (α ◦X)⊕ (β ◦X). Finally, scalar multiplication is compatible with

multiplication in the field of scalars:α ◦ (β ◦ X) = (αβ) ◦ X.

Corollary 2. For p ∈ Z+, Pp is a subspace ofP.

The significance of Theorem 2 is that it allows for varying degrees of constituent periodicities. A symbolic

sequence may exhibit a much strongerp-period thanq-period. In such cases the scalar multiplier captures the

relative weight of each component. The periodic subspaces are also closed under scalar multiplication and hence

behave much like real-valued signal spaces.

B. Decomposing Multiple Periodicities

This section investigates the problem of decomposing the discovered probabilistic source that exhibits multiple

periodicities into various smaller components. Multiple latent periodicities have been observed in various DNA

sequences. The high-sulphur wool matrix protein B2A from sheep (SHPWMPBB at NCBI [35]) exhibits multiple
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latent periodicities with period3 and 5. The description length (in bits) is plotted against the period for the base

pairs 273-561 in Figure 12. The statistical significant periodsseen are3 and 5 as well as the sub-harmonics

6, 9, 12 and10, 15, 30 and the dominant period is found to be [CTGCCGGCCGGCCTG]. Several other instances

of multiple periodicities were discovered using the penalized ML estimator. In the T-cell receptor alpha-chain gene

of fugu rubripes(Japanese pufferfish, accession no. AF110525 [35]) the latentperiodicity with length equal to59

bases was observed in the protein coding region(bp:13628-14594). InDeinococcus radioduransgene forc-di-GMP

phosphodiesterase(from sequence AE000513 [35]) latent periodicity equal to 120 bases was observed from base

pairs 3108 to 3963 and inMethylobacterium extorquensmethanol oxidation genemxaE(from sequence AF017434

[35]) latent periodicity equal to 126 bases was observed from base pairs 165-1010. However, it should be remarked

that not all sequences with composite latent period exhibitmultiple periodicities. The minimum description length

is plotted in Figure 13 for two sequences with periodicity of341. One of the sequences exhibits strong11-periodic

and31-periodic behaviour as well, thus admitting an exact decomposition. It is evident from the plot that the other

sequence is not composed from smaller sources but generatedfrom a 341 long probabilistic source.
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Fig. 12. Description length (in bits) plotted against the period for high-sulphur wool matrix protein B2A from sheep (bp:273-561). The

DNA sequence exhibits multiple latent periodicities with period3 and5.
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Fig. 13. Description length (in bits) plotted against the period for two cyclostationary sequences both with period341. The lower curve

(in blue) corresponds to the sequence composed of two cyclostationarysources with period11 and31.

Assume that an observed sequenceZ ∈ Ppq was originally composed of sequencesX ∈ Pp and Y ∈ Pq, i.e.

Z = X ⊕ Y . ThenZn = Xn̂p
⊕ Yn̂q

, for n = 1, . . . , pq. The system of equations can be expressed in matrix form

as





Z1

...

Zpq





pq×1

=





Ip Iq

...
...

Ip Iq





︸ ︷︷ ︸
Tpq×(p+q)

◦





X1

...

Xp

Y1

...

Yq





(p+q)×1

. (21)

Theorem 3. For mutually primep and q, the matrixT above has rankp + q − 1. The null space ofT is spanned

by the vector[−1 . . . − 1︸ ︷︷ ︸
p

1 . . . 1︸ ︷︷ ︸
q

]

Proof: See Appendix.
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Theorem 3 shows that ifZ ∈ Ppq can be decomposed asZ = X ⊕ Y for someX ∈ Pp andY ∈ Pq, then the

following decomposition also results

(X ⊕ δp) ⊕ (Y ⊖ δq) = Z

where Y ⊖ δq = Y ⊕ (−1 ◦ δq) and δr = [

r times︷ ︸︸ ︷
δ, . . . , δ] for some δ ∈ P1 and r = p, q. Thus there is a class

of decompositions ofZ. In words, apq-periodic symbolic sourceZ can be decomposed intop and q−periodic

componentsX, Y unique only up to an additive factorδ ∈ P1.

Example 3. With the sameX and Y as in example 1,




2/10 12/23

3/10 6/23

3/10 3/23

2/10 2/23





︸ ︷︷ ︸
X′=X⊕δ

⊕





1/3 1/9 1

0 2/27 0

2/9 4/27 0

4/9 2/3 0





︸ ︷︷ ︸
Y ′=Y ⊖δ=Y ⊕(−1◦δ)

=





0.3 0.375 1 0.72 0.1 1

0 0.125 0 0 0.1 0

0.3 0.125 0 0.12 0.2 0

0.4 0.375 0 0.16 0.6 0





︸ ︷︷ ︸
Z

whereδ =
[

2
10

3
10

3
10

2
10

]T
and−1◦δ =

[
3
10

2
10

2
10

3
10

]T
. The dominant periods ofX ′ andY ′ areD∗

X′ = [ (G/C)A ]

and D∗
Y ′ = [T T A] respectively.

On comparing the dominant periods in examples 1 and 3 it is observed that there is more than one decomposition,

in terms of latent periods, of the cyclostationary sourceZ. This is a consequence of Theorem 3. A decomposition

that is biologically correct may be discovered by generating the class of all possible decompositions. Two possible

decompositions of the latent period [CTGCCGGCCGGCCTG] for wool matrix protein B2A (SHPWMPBB) were

found to be [GGT, CG(G/C)CG] and [GCT, CGTCG]. The latter seemsbiologically correct since the triplet (GCT)

in the coding regions is considered to be the dominating pattern in ancient codons, given the variants GCN, TCT,

CCT, ACT, GAT and GGT which code for the amino acids Ala, Ser, Pro, Thr, Asp and Gly respectively (see genetic

code [9]), are considered to be the earliest codons [10]. The triplet also results, by the process of transcription, in

the pattern (GCU)n in mRNA which serves for maintaining a correct reading frameduring translation by making

the in-frame binding energetically favorable [10]. The decomposition above is achieved by a simple algorithm,

briefly outlined next.

Consider decomposition of anr-periodic probabilistic sourceZ into p and q-periodic probabilistic sourcesX

andY respectively, wherer = pq andp, q are coprime. Assume that the minimum description length is attained at
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period equal tor and the periodsp andq are statistically significant (relative to CNC variants). Theobjective is to

determineQX ,QY ,QZ such thatZ = X⊕Y . A good estimate ofQZ is A
(r)
ML whereasA(p)

ML andA
(q)
ML only provide

initial starting points forQX andQY in an iterative procedure. At each iteration, the probabilistic source that has

smaller description length (QX or QY ) is fixed while the parameters of other are adapted so as to minimize the

total deviation betweenQX ⊕QY andA
(r)
ML . The process is repeated until the total deviation is within aspecified

tolerance. The convergence of this adaptive technique can beestablished by appealing to the topological properties

of the periodic subspaces and the continuity of the law of composition.

V. D ISCUSSION

Various parts of DNA sequences exhibit characteristic statistical periodicities. Mapping this behaviour to structural

and functional roles is an important aspect of genomic signal processing. The investigation of multiple periodicities

in gene sequences and their decomposition into smaller periodic components may be useful as a way to understand

the underlying generative mechanism. The decomposition mayprovide insight into the underlying evolutionary

process that determines the structure of the sequences. The investigation is challenging at least in part due to the

lack of an algebraic structure. The approach used here modelsthe symbolic sequence as a nonstationary random

process on a finite alphabet and then studies the (de)composition of the distributions. In particular, the decomposition

of DNA sequences are studied under a composition rule that isinspired by the biological model for gene replication

and mutation.

The formulation of the problem in this paper is different fromthe classical stochastic techniques where distri-

butions are estimated by averaging over various ensembles or realizations. Often, it is impractical or impossible

to obtain more than one realization and an engineer’s solution is to perform averaging over a single realization of

data. This temporal averaging may be justified when the data exhibits cyclostationarity over long periods or when

it is reasonable to assume ergodicity. An interesting discussion about the two approaches may be found in [36].

VI. A PPENDIX

Proof: of Theorem 3: Without loss of generality assume thatp ≤ q. ThenTj , the jth column of matrixT, is

of the form
[
e′p,j . . . e′p,j︸ ︷︷ ︸

q copies

]′
if j ≤ p and

[
e′q,j−p . . . e′q,j−p︸ ︷︷ ︸

p copies

]′
if j > p
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where,ep,j is a p × 1 vector such that thejth entry is one and rest are zero. Note that,

p∑

j=1

Tj = 1pq and
q∑

j=p+1

Tj = 1pq

where1pq is a pq × 1 vector of all ones. Clearly then,

Tw =

p∑

j=1

−Tj +

q∑

j=p+1

Tj = −1pq + 1pq = 0.

Therefore,T is not full-rank andw is in the null-space ofT. Now we show that any collection ofp + q − 1

columns ofT is linearly independent. Consider the followingpq × (p + q − 1) matrix

T′ = [T1 . . .Tk−1 Tk+1 . . .Tp+q]

consisting of all but thekth column ofT. Note that thejth row of T has unity at two locations:̂jp and p + ĵq.

Define

J =
{

j ∈ {1, . . . , pq} | ĵp = k or p + ĵq = k
}

.

Note that the first condition fails ifk > p and second fails otherwise. Without loss of generality assume thatk ≤ p.

Then J = {k, k + p, . . . , k + (q − 1)p} = {k + mp|m = 0, . . . , q − 1}. For any i ∈ J , the ith row of T′ has a

single non-zero entry,T′

i, p+1+(̂i−1)q
, and for any non-zero vectorv = [v1 . . .vk−1 vk+1 . . .vp+q] in Rp+q−1,

[T′v]j =






v
p+1+(̂j−1)q

, j ∈ J

v
1+(̂j−1)p

+ v
p+1+(̂j−1)q

, j ∈ {1, . . . , pq}\J

Let j1, j2 ∈ J such thatj1 6= j2; j1 = k+mp andj2 = k+np for somen 6= m. Then(ĵ1 − 1)q = (ĵ2 − 1)q if and

only if q dividesj1−j2 i.e. q divides(n−m)p. But p andq are co-prime and therefore allj ∈ J are distinct so that

{(ĵ − 1)q : j ∈ J} = {0, 1, . . . , q− 1}. Thus{[T′v]j : j ∈ J} =
{
v

p+1+(̂j−1)q
: j ∈ J

}
= {vp+1, . . . ,vp+q}.

And T′v = 0 if and only if vp+1 = . . . = vp+q = 0 which implies{[T′v]j : j ∈ Jc} =
{
v

1+(̂j−1)p
: j ∈ Jc

}
=

{v1, . . . ,vp}. AgainT′v = 0 impliesv1 = . . . = vp = 0. This contradicts thatv is non-zero. Therefore the columns

of T′ are linearly independent andT has rankp + q − 1. The null space ofT is one-dimensional and spanned by

w.
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