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Abstract—In this paper, we present a low-complexity algorithm
for detection in high-rate, non-orthogonal space-time blok coded
(STBC) large-MIMO systems that achieve high spectral effi@n-
cies of the order of tens of bps/Hz. We also present a training
based iterative detection/channel estimation scheme forush
large STBC MIMO systems. Our simulation results show that
excellent bit error rate and nearness-to-capacity perfornance
are achieved by the proposed multistagéikelihood ascent search
(M-LAS) detector in conjunction with the proposed iterative
detection/channel estimation scheme at low complexitiesThe
fact that we could show such good results for large STBCs like
16 x 16 and 32 x 32 STBCs from Cyclic Division Algebras (CDA)
operating at spectral efficiencies in excess of 20 bps/Hz @vafter
accounting for the overheads meant for pilot based trainingfor
channel estimation and turbo coding) establishes the effégeness
of the proposed detector and channel estimator. We decode
perfect codes of large dimensions using the proposed detect
With the feasibility of such a low-complexity detection/ctannel
estimation scheme, large-MIMO systems with tens of antenrsa
operating at several tens of bps/Hz spectral efficiencies oa
become practical, enabling interesting high data rate wirkess
applications.

Index Terms—Large-MIMO systems, low-complexity detec-
tion, channel estimation, non-orthogonal space-time bldccodes,
high spectral efficiencies.

I. INTRODUCTION

of antennas in communication termiffal©ur focus in this
paper is on low-complexity detection and channel estimatio
for large-MIMO systems.

Spatial multiplexing (V-BLAST) with large number of trans-
mit antennas can offer high spectral efficiencies, but itsdus
give transmit diversity. On the other hand, well known ogho
onal space-time block codes (STBC) have the advantages of
full transmit diversity and low decoding complexity, buieth
suffer from rate loss for increasing number of transmit an-
tennas [[3][[5]/[6]. Howeverfull-rate, non-orthogonal STBCs
from Cyclic Division Algebras (CDAJ7] are attractive to
achieve high spectral efficiencies in addition to achievurt
transmit diversity, using large number of transmit antenna
For example, a2 x 32 STBC matrix from CDA has 1024
symbols (i.e., 32 complex symbols per channel use), andjusin
this STBC along with 16-QAM and rate-3/4 turbo code offers
a spectral efficiency of 96 bps/Hz. While maximum-likelildoo
(ML) decoding of orthogonal STBCs can be achieved in
linear complexity, ML or near-ML decoding of non-orthogbna
STBCs with large number of antennas at low complexities
has been a challenge. Channel estimation is also a key issue
in large-MIMO systems. In this paper, we address these two
challenging problems; our proposed solutions can potégntia
enable realization of large-MIMO systems in practice.

Current wireless standards (e.g., IEEE 802.11n and 80p.16eSphere decoding and several of its low-complexity variants
have adopted MIMO techniqués []-[3] to achieve the benefigge known in the literature [8]-[11]. These detectors, heavge
of transmit diversity (using space-time coding) and higtadaare prohibitively complex for large number of antennas. Re-

rates (using spatial multiplexing). They, however, hasrady

cent approaches to low-complexity multiuser/MIMO deteti

a limited potential of MIMO benefits since they use only #Vvolve application of techniques from belief propagatida],

small number of transmit antennas (e.g., 2 to 4 antennd¥jg

arkov Chain Monte-Carlo methods [13], neural networks

Significant benefits can be realized if large number of argenr{14],[15],[1€], etc. In particular, in[[15].[16], we prested
are used; e.g., large-MIMO systems with tens of antenn@spowerful Hopfield neural network based low-complexity
in communication terminals can enable multi-giga bit ratearch algorithm for detecting large-MIMO V-BLAST signals

transmissions at high spectral efficiencies of the order

and showed that it performs quite close to (within 4.6 dB

several tens of bps/HzKey challenges in realizing such large0f) the theoretical capacity, at high spectral efficiencéthe
MIMO systems include low-complexity detection and channérder of tens to hundreds of bps/Hz using tens to hundreds

estimation, RF/IF technologies, and placement of largebarm
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1spectral efficiencies achieved in current MIMO wirelessidtads are only
about 10 bps/Hz or less.

of antennas, at an average per-symbol detection complexity

2WiFi products in 2.5 GHz band which use 12 transmit antenrms f
beamforming purposes are becoming commercially availf#jleWith such
RF and antenna technologies for placing large number ofnaate in
medium/large aperture communication terminals (liketsptboxes/laptops)
getting increasingly matured, low-complexity high-penfiance MIMO base-
band receiver techniques (e.g., detection and channehagiin) are crucial
to enable practical implementations of high spectral efficy large-MIMO
systems, which, in turn, can enable high data rate appitsitike wireless
IPTV/HDTV distribution.
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of just O(NV,N,.), where N; and N, denote the number of [Vl This section includes the results on the effect of spatia
transmit and receive antennas, respectively. correlation, BER performance of large perfect codes, and

In this paper, we preseni a low-complexity near-ML comparison of the proposed scheme with other large-MIMO
achieving detector, ané) an iterative detection/channel es-architecture/detector combinations. The proposed iterale-
timation scheme for large non-orthogonal STBC MIMO sydection/channel estimation scheme and the corresponding p
tems having tens of transmit and receive antennas. Our Keymance results are presented in Secfion V. Conclusions ar
contributions here can be summarized as follows: presented in Sectidn VI.

1)

2)

3)

4)

5)

6)

7

We generalize the 1-symbol update badéeélihood
ascent searcfLAS) algorithm we proposed in [15],[16],
by emp]oying a |0W_C0mp|exity mu|tistage mu|ti_symbo| Consider a STBC MIMO system with multlple transmit and
update based strategy; we refer to this new algorithm B#/ltiple receive antennas. Afn,p, k) STBC is represented
multistage LAS (/-LAS) algorithm. We show that the by & matrixX. € C"**, wheren andp denote the number of
M-LAS algorithm outperforms the basic LAS a|gorithn{ransmit antennas and number of time slots, respectivaty, a
with some increase in complexity. k denotes the number of complex data symbols sent in one
We propose a method to generate soft outputs froRd BC matrix. The(z, j)th entry inX. represents the complex
the M-LAS output vector. Soft outputs generation wagumber transmitted from thé&h transmit antennaAin thgth

not considered in[[15].[16]. The proposed soft outputéme slot. The rate of an STBG,, is given byr = . Let
generation for the individual bits results in about 1 to 1.9/, and V; = n denote the number of receive and transmit
dB improvement in coded bit error rate (BER) compareantennas, respectively. L&I. € CV-*: denote the channel

to hard decisiom//-LAS outputs. gain matrix, where the(, j)th entry in H. is the complex
Assuming i.i.d. fading and perfect channel state infochannel gain from thgth transmit antenna to thih receive
mation at the receiver (CSIR), our simulation resultantenna. We assume that the channel gains remain constant
show that the proposed/-LAS algorithm is able to over one STBC matrix duration. Assuming rich scattering, we
decode large non-orthogonal STBCs (elg,x 16 and model the entries df. as i.i.dCN (0, 1)[3. The received space-

32 x 32 STBCs) and achieve near single-input singldime signal matrix,Y. € CV~*?, can be written as

output (SISO) AWGN uncoded BER performance as

well as near-capacity (within 4 dB from theoretical Yo = HXc+N, (1)
capacity) coded BER performance. whereN, € CM*? js the noise matrix at the receiver and its
Using the proposed detector, we decode and report #gtries are modeled as i,iaj/\/((),g2 = M) whereE, is
simulated BER performance of ‘perfect codes’|[17][21jhe average energy of the transmitted symbols, arid the

of large dimensions. average received SNR per receive antenna [3], andithgth
Presenting a BER performance and complexity corantry in'Y, is the received signal at thiéh receive antenna in
parison of the proposed CDA STBU-LAS detection the jth time slot. In a linear dispersion (LD) STBX. can
approach with other large-MIMO/detector approachedse decomposed into a linear combination of weight matrices
(e.g., stacked Alamouti codes/QOSTBCs and associaigstresponding to each data symbol and its conjugatglas [3]
interference canceling receivers reported [in] [22]), we A

show that the proposed apprqach outperforms the other X, = sz)Ag) I (x((:i))*Egi)’ )
considered approaches, both in terms of performance as =

well as complexity. , } }

We present simulation results that quantify the loss iherexz() is the ith complex data symbol, and”, E{" ¢
BER performance due to spatial correlation in largc™**? are its corresponding weight matrices. The detection
MIMO systems, by considering a more realistic spatiall/gorithm we propose in this paper can decode general LD
correlated MIMO fading channel model proposed b$TBCs of the form in[(2). For the purpose of simplicity in
Gesbertet al in [23]. We show that this loss in per-€xposition, here we consider a subclass of LD STBCs, where
formance can be alleviated by providing more receiv&. can be written in the form

dimensions (i.e., more receive antennas than transmit k

antennas). X, = Y aDAD. (3)
Finally, we present a training-based iterative detec- i=1

tion/channel estimation scheme for large STBC MIM ; .

systems. We report BER and nearness-to-capacity res%l'[gm (4) and[(B), applying thecc () opera‘uo we have
when the channel matrix is estimated using the proposed _ _
iterative scheme and compare these results with those V€€ (Ye) = ZIS)WO (HeAY) +vee (Ne). (4)
obtained using perfect CSIR assumption. =1

Il. SYSTEM MODEL

k

The rest of the paper is organized as follows. In Sedfibn ”136/\/(0’ a?) denotes a circularly symmetric complex Gaussian disiobut

we present the STBC MIMO system model considered. TH

th mean zero and varianee?.
For ap x ¢ matrix M = [mims - - - mg], wherem,; is theith column of

proposed detection algorithm is presented in Se¢tion BRB 1, vec(M) is apg x 1 vector defined asec(M) = [mTm? ---mZ17,
performance results with perfect CSIR are presented in@ectwhere[.]Z denotes the transpose operation.

q
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If U,V,W,D are matrices such thdd = UWYV, then it is

true thatvec (D) = (V7 @ U) vec (W), where® denotes tensor arg min )
product of matrices [24]. Using this, we can writé (4) as dyr = des ly —Hd||
k arg min 7
_ . = d"H Hd -2y " Hd 11
vec(Y,) = Z (I H,)vee (AD) + vec (N,), (5) deS Y ’ (1)
i=1 whose complexity is exponential i [25].
whereI is the p x p identity matrix. Further, defing, 2 .
vee (Y,), H, 2 (I® H,), ald £ vec(AS)), and n, 4 A. High-rate Non-orthogonal STBCs from CDA
1

vec (N.). From these definitions, it is clear thgt € CN-Px1, We focus on the detection of square (i.e.= p = Ny),
H, ¢ CNooxNew 3D ¢ cNewx1 andn, € CN»x1, Let full-rate (i.e., k = pn = N?), circulant (where the weight
us also define a matri¥fl, € CN-P*k whoseith column is matricesA,(f)’s are permutation type), non-orthogonal STBCs
H. al i = 1,---,k. Letx, € C¥*1, whoseith entry is the from CDA [26], whose construction for arbitrary number of
data symbok:'. With these definitions, we can writg] (5) astransmit antennas is given by the matrix in (11.a) given at
) the bottom of this page [7]:
_ @) (] ) - In (11.a),w, = e 7 ,j=+—1, andzy,,, 0 < u,v < n—1
Ye ;xc (Hea'™) +n. Hexe +me.(6) are the data symbols from a QAM alphabet. Wiies ¢¥5J
andt = ¢J, the STBC in (11.a) achieves full transmit diversity
(under ML decoding) as well as information-losslessneks [7
When§ = ¢t = 1, the code ceases to be of full-diversity
(FD), but continues to be information-lossless (ILL) [232].
High spectral efficiencies with large can be achieved using
this code construction. For example, with= 32 transmit
Ye =YIr+Ji¥o, Xe=X;+ijxXqQ, antennas, th&2 x 32 STBC from (11.a) with16-QAM and
. . ~ = o rate-3/4 turbo code achieves a spectral efficiency of 9eHms/
ne=nr+jng,  He=Hr+jHo. (") This high spectral efficiency is achieved along with the-full
Further, we definex, € R?*>*! y ¢ R2N-»x1 H, ¢ diversity of ordernN,. However, since these STBCs are non-

Each element ok, is an M-PAM or M-QAM symbol. M-
PAM symbols take discrete values from,,,,m =1,--- , M},
whereA,, = (2m—1- M), and M-QAM is nothing but two
PAMs in quadrature. Ley., H,, x., andn,. be decomposed
into real and imaginary parts as

R2N-px2k andn, € R2N-Px1 as orthogonal, ML detection gets increasingly impracticat fo
%o = [xT x| yo = [y7 yI|T largen. Consequently, a key cr_]allgnge in reallz_lng.the benefits
" I 2Rl T I Jel > of these large STBCs in practice is that of achieving near-ML
H -H erformance for large: at low detection complexities. Our
I Q T _TT p g p
H, = H, H |’ n, = [n; ng () proposed detector, termed as theltistage likelihood ascent
) search (/-LAS) detectarpresented in the following section
Now, (8) can be written as essentially addresses this challenging issue.
yr = HT‘XT + n,. (9)

Ill. PROPOSEDMULTISTAGE LAS DETECTOR

The proposedV/-LAS algorithm consists of a sequence of
likelihood-ascent search stages, where the likelihoockases
y = Hx+n, (10) monotonically with every search stage. Each search stage
whereH — H. ¢ R2N»x2k o _ R2Nepx1 o — consists of several sub-stages. There can be at iMosub-
b R ARhs < » X =X; € gtages, each consisting of one or more iterations (the fitst s
R, andn = n, € R The channel coefficients ;a6 can have one or more iterations, whereas all the other
are assumed to be known only at the receiver but not at 46, stages can have at most one iteration). In the first sub-
transmitter. LetA; denote theM-PAM signal set from which stage, the algorithm updates one symbol per iteration such

x; (ith entry ofx) takes values; =1, - - , 2k. Now, define a a1 the Jikelihood monotonically increases from one iiera
2k-dimensional signal spacgto be the Cartesian product Ofy, the next until a local minima is reached. Upon reaching thi

Ay 10 Agy,. The ML solution is given by local minima, the algorithm initiates the second sub-stage

Henceforth, we work with the real-valued system/[ih (9). For
notational simplicity, we drop subscriptsin (@) and write

r n—1 i n—1 i 14 n—1 2% 4i n—1 (n—=1)% ;5 7
Dico Lot 6D Tp—riwptt 0300 Tnogiwptt e 0T Tiiwn 0t
n—1 ; n—1 i 14 n—1 2% 4i n—1 (n—1)i ;4
Zi:o xyt" Zi:o To,i Wy, t* 521':0 Tp—1,iwy 1" - 521':0 L2,i Wn t
n—1 i n—1 i 4 n—1 2 44 n—1 (n—1)i ,4
Zi:o Tt Zi:o T1,5wWpt Zi:o Zo,i Wy 5Zi:0 L3,i Wn t (11.9
n—1 i n—1 i i n—1 2 40 n—1 (n—1)i,4
Zi:o Tp_g,;t Zi:o Tp—3,i Wy, t’ Zi:o Tp_ajwp't" - 521':0 Ln—1,i Wn ¢
n—1 ; n—1 i i n—1 2% 41 n—1 (n—1)i ,4
L Zi:o Tp—1,t’ Zi:o Tp_2,;wy,t" Zi:o Tp_ziwy,' t' - Z’L:O Lo,i Wn ]
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In the second sub-stage, a 2-symbol update is tried to furttir 7(1*)) to be non-positive, the necessary and sufficient
increase the likelihood. If the algorithm succeeds in insteg condition from [19) is that
the likelihood by 2-symbol update, it starts the next search (k)
stage. If the algorithm does not succeed in the second sub- lé’“) < 2|z |
stage, it goes to the third sub-stage where a 3-symbol uglate ap
tried to further increase the likelihood. Essentially, lire #'th However, we can find the value (bik) which satisfies[{20)
sub-stage, d-symbol update is tried to further increase th%nd at the same time gives the largest descent in the ML
likelihood. This goes on untit) either the algorithm succeedsCost function from thekth to the (k + 1)th iteration (when
in the K'th sub-stage for som& < M (in which case a new . (k) - .

symbol p is updated). Also/,” is constrained to take only

search stage is initiated), éj the algorithm terminates. L | d theref he b f
The M-LAS algorithm starts with an initial solutiod(®) certain mtege; vaiues, and therefore the brute-force way t
' get optimumlé ) is to evaluater (1)) at all possible values

given by d(®) = By, whereB is the initial solution filter, £10 Thi d b onall . h
which can be a matched filter (MF) or zero-forcing (ZF) filtePT t» "~ This would become computationally expensive as the

or MMSE filter. The indeximn in d(™ denotes the iteration CONStellation sizeM increases. However, for the case of 1-

number in a sub-stage of a given search stage. The ML ng[nbol update, we could obtain a closed-form expression for

function after thekth iteration in a given search stage is € optlmumlzf, ! that minimizes7 ("), which is given by
(corresponding theorem and proof are given in the Appendix)

c® = d® HTHA® - 2y"HA®. (12 (k)
1) 2 {mw (21)

p,opt
2a,

. (20)

A. One-symbol Update
Let us assume that we update fite symbol in thgk+1)th where |.] denotes the rounding operation, where for a real

iteration; p can take value froni,--- , N; for M-PAM and numberz, Lx] is the integer closest to. If the pth symbol
1,---, 2N, for M-QAM. The update rule can be written as in d(*), i.e.,d}”, were indeed updated, then the new value of
Ak — gk 4 /\ék)ep, (13) the symbol would be given by

J(k+1) gk 4 (k) (k)
wheree,, denotes the unit vector with ijgh entry only as one, dy = 7 +LUsgr(z)"). (22)

and all other entries as zero. Also, for an%/ iteratignd (*) However ch-kl) can take values only in the set,, and
should belong to the spa&g and therefore\l(f can take only iharefore we need to check for the possibility &Ewl)

certain integer values. For example, in case of 4-PAM or 19'eing greater thar(M — 1) or less than—(M — 1). If

QAM (both have the same signal sf = {-3,~1,1,3}), jo+) (M —1), thenil" is adjusted so that the new value

(k) . P
Ap~ can take values only frorfi—6, —4, —2,0, 2,4, 6}. Using of dl(f”l) with the adjusted value dff) using [22) isM —1).

(@2) and [1B), and defining a matrl as similarly, if & < —(M — 1), theni®®) is adjusted so that
c 2 HTH, (14) the new value ofiék“) is —(M —1). Let l;’fgm be obtained

we can write the cost difference as from lz(ffgpt after these adjustments. It can be shown that if

F(,,) is non-positive, thenr(I*),) is also non-positive.
ACKHT £ o) _ o) We computer(il) ), ¥V p=1,--- ,2N2. Now, let
- \®? _9)\(k) (k) arg min __ -~
M @)y —20P 2P, (15) s o= M ). (23)

. p
whereh,, is thepth column ofH, z® = HT (y — Hd®)), ¥

is the pth entry of thez(®) vector, and(G), , s the (p, p)th If 7(I"),,) < 0, the update for thé¢k + 1)th iteration is
entry of theG matrix. Also, let us define,, andi}" as 4+ — g 4 [gizpt sgn(zM) ey, (24)
ap = Gy, P = NP (16) dMD = a0 00 s g (25)

With the above variables defined, we can rewiitd (15) as whereg, is the sth column of G. The upda}t? in[(25) follows
2 from the definition ofz(*) in 1 FAR) ) > 0, then
ACET = 10 q, — 210 |2(F) | sgrA(®)) sgr(z{7),  (17) z ) ( =

8,0 t)
the 1-symbol update search terminates. 'Iehe data vector at
where sgii.) denotes the signum function. For the ML costhis point is referred to as ‘1-symbol update local minima.’
function to reduce from théth to the (k + 1)th iteration, the After reaching the 1-symbol update local minima, we look for
cost difference should be negative. Using this fact and thatfurther decrease in the cost function by updating multiple
ap andl,(,k) are non-negative quantities, we can conclude froaymbols simultaneously.

(I7) that the sign otXék) must satisfy
sgrA) = sgn(z(M). (18) B. Why Multiple Symbol Updates?

Using [I8) in [I7), the ML cost difference can be rewritten as 1he motivation for trying out multiple symbol updates can
be explained as follows. Létx C S denote the set of data

= ACET! = lzf,’“)zap —21{M|z{M]. (19) vectors such that for angl € L, if a K-symbol update is

F)
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performed ond resulting in a vectod’, then||ly — Hd’|| > such that the cost difference given ly](27) is negative. If-mu
|ly—Hd||. We note thatl;;, € Lx,VK =1,2,--- ,2N;, be- tiple K-tuples exist for which the cost difference is negative,
cause any number of symbol updatesiyn;, will not decrease we choose thek-tuple which gives the most negative cost
the cost function. We define another 8 = ﬂﬁil L;. Note difference.

thathL eEMg, VK =1,2,---,2Ny, andMgNt = {d]uL}, .

i.e., Myy, is a singleton set withd,;;, as the only element. Unlike for 1-symbol update, fok-symbol update we do not

It is noted that if the updates are done optimally, then tftave a closed-form expression OV, opes Aty opes++ + AL o)
output of theK -LAS algorithm converges to a vector M. which minimizes the cost difference ove,ﬁrz(f), since the
Also, [Mg41] < |[Mg|, K = 1,2,---,2N;, — 1. For any cost difference is a function of< discrete valued vari-

d € Mg, K = 1,2,--- ,2N; andd # d, g, it can be ables. Consequently, a brute-force method is to evalu-
seen thatd andd,,;, will differ in K + 1 or more locations. ate ACE™ (A A% ... A"y over all possible values of
The probability thatd,;; = x increases with increasing()\l(_f>7)\l(_§>7... 7)\1(?)_ Approximate methods can be adopted

SNR, and so the separation betwednc My and x will  to solve this problem using lesser complexity. One method
monotonically increase with increasig. Sinced;;, € Mk, based on zero-forcing is as follows. The cost difference
and M| decreases monotonically with increasiig there function in [2T) can be rewritten as

will be lesser non-ML data vectors to which the algorithm

k k k k)T k

can converge to for increasiny. Therefore, the probability Acllj{+1(/\§1)a/\52)a e a/\EK)) = A;) Fu Az(x)

of the noise vecton inducing an error would decrease with _ oA BT (k)
2N, 7,7,  (28)

increasing K. This indicates thatK-symbol updates with
large K could get near to ML performance with increasingvhere A{) = AMAM ... AMIT 500 2 [0 0 (ogT
complexity for increasings. and Fy, € RK”%, where (Fy), . = (G)i,,i, andp,q €
{1,2,--- ,K}. SinceACf,“()\f.f)7)\§f)7 e 7)\1(.?) is a strictly

C. K-symbol Update] < K < 2N} convex quadratic function 0&8“) (the Hessiar¥', is positive

In this subsection, we present the update algorithm fgefinite with probability 1), a unique global minima exists,
the general case wher® symbols,1 < K < 2N}, are and is given by
updated simultane(z)usly in one iteratioR:-symbol updates - (k) )
can be done in*}*) ways, among which we seek to find Ay = Fy oy (29)
that update which gives the largest reduction in the MHowever, the solution given by (29) need not IieA’;ﬁf). So,
cost. Assume that in thék + 1)th iteration, K symbols |\« first round-off the solution as

at the indicesiy, is,--- ,ix of d® are updated. Each;, k) (%)

j=1,2,--- K, can take values from,?2, --- , N? for M- Ay = 2L0-5Au L (30)

PAM and1,2,---,2N? for M-QAM. Further, define the set o _ . -

of indices, i 2 {ir,is,--- ,ix}. The update rule for thé - where the operation ||ﬂABO) is dAon(i eIemEnt—W|se, suﬁé@

symbol update can then be written as is a vector. Further, leR{Y = [RFXX ... XM it is stil
K possible that the solutioa " in (@0) need not lie inA{}.

dk+) = gk 4 Z/\Ef)eij- (26) This would result indgf“) ¢ A;, for somej. For example,

= it A;, is M-PAM, thend{"*" ¢ A, if a® + 3% > (m—1)

For any iteratiork, d*) belongs to the spac& and therefore OF d;; + i) < —(M — 1) . In such cases, we propose the
)\1(.]'_“) can take only certain integer values. In particubeif,) e following adjustment tong) forj=1,2,--- ,K:

k k) O k -
AZ(.]_), WhereAEj) = {:c|(:c+d§j)) € A,z # 0}. For example, S _ (M—1) - dﬁf), when )\Z(;c) 4 dz(;c) > (M—1)
for 16-QAM, A;, = {~3,-1,1,3}, and if d{" is -1, then Y5 =1 _(m—1) — ), when3® 1 a < ~(m 1)
Al(.f) ={-2,2,4}. Using [12), we can write the cost difference

(31)

After these adjustments, we are guaranteed Mate AF.

function Acllj{+1(/\z(i€)7)\z('f)7 e ’AEZ)) £ ¢kt — c® as Therefore, the new cost difference function value is givgn b
K ACEOM X X)) it is noted that the complexity

AC&H(AE?’/\E?)’... ’/\Elk()) _ ZAE’?)Z(G)H,Q of this approximate method does not depend on the size
= of the setAZ(f), i.e., it has constant complexity. Through

K K K simulations, we have observed that this approximationltesu
+2> ) )\gf)/\gf)(G)iMq - 22/\51’?)25;“), (27) in a performance close to that of the brute-force method for

j=1 K = 2 and 3. Defining the optimurly for the approximate
method ag/, we can write

q=1p=q+1

where A" e A{", which can be compactly written as

7 N A 5o s
AP AB AWy e A, whereA,) denotes the Cartesian U = (i, k)
product ofAEf), Agf) through toAZ(.f(). _ argmn ACf,“(XEk),XEk), . ’Xl(k)). (32)
For a givenl{, in order to decrease the ML cost, we would u ! 2 K

like to choose the value of th&-tuple (A", A%, ... A¥)  The K-update is successful and the update is done only if

11 )7y )
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ACEHT M X . X%y < 0. The update rules for the(*)
u i1 i2 K .
andd® vectors are given by PN -4
K _ 4 ¢, Nlog(N) SNR = 6 dB Pk \
i
k+1)  _ k (k) _a -GN .7
2= )_Z ArBi (33) 2sf =87 - )
j=1 ’ ——d©, H'H, search (1-LAS) L
K —a— d®, H'H, search (2-LAS)
¥
(k+1) _ (k) NG —+— d, search (1-LAS)
d B d + Z Al} eij ' (34) 2 —'—dm), search (2-LAS)
=1

15

D. Computational Complexity of thi/-LAS Algorithm

Iogz(Number of operations per symbol)

The complexity of the proposed/-LAS algorithm com-
prises of three components, namely, computation of the T
initial vector d(®), i7) computation of H'H, and iii) the
search operation. Figufé 1 shows the per-symbol compli
plots as a function oV, = N,. for 4-QAM at an SNR of 6 dE 2 3
using MMSE initial vector. Two good properties of the STBLs
from CDA are useful in achieving low orders of complexity fOlig. 1. computational complexity of the proposad-LAS algorithm in
the computation ofl(®’) and H"H. They are:i) the weight decoding non-orthogonal STBCs from CDA. MMSE initial vetd-QAM,
matricesA("’s are permutation typeandii) the N? x N2 SNR=6 d.
matrix formed withV? x 1-sizeda’” vectors as columns is a . .
scaled unitary matrixThese properties allow the computa\tiorﬁeoluced further. This becomes possible due to the follow-
of MMSE/ZF initial solution inO(N}N,.) complexity, i.e., in mg proerrty of ILL-_onIy(i)STBC_s. I_‘etV“ be the complex
O(N;N,) per-symbol complexity since there al? symbols N X N mz(;\Ot)rlx W'thTaC as its ith co_lur_nn._ The CO}T'
in one STBC matrix. Likewise, the computation Hff H can Putation ofd*™ (or H"H) involves mult|pl|cat|o;11 ofVy
be done inO(N?) per-symbol complexity. with another vector (or matrix). The columns ®F;" can be

The average per-symbol complexities of the 1-LAS and Q__ermuted In such a way that. the permuted matrix Is block-
LAS search operations a(N2) andO(N2 log N;), respec- diagonal, where each block is &; x N, DFT matrix for

— _ inli i H
tively, which can be explained as follows. The average st;ear% = t = 1. So, the multiplication ofV,," by any vector

complexity is the complexity of one search stage times ﬂpgcomes equivalent to X,-point DFT operation, which can

mean number of search stages till the algorithm terminatéig. lelglenttlry]/_ compult_?d l:§|ng tI;FT 0N, 10§ ]Ivt) corrllplgtx-
For 1-LAS, the number of search stages is always one. Thépe ~SING this simpification, the per-symbol complexi y o

i T i 3 2
are multiple iterations in the search, and in each iterasibn computingH' H is reduced fromO(N;') to O(Ny log Ny).

possible(”ﬁ) 1-symbol updates are considered. So, the pecr:omputlngd using MMSE filter involves the computation

F 1 ~H H 1 T\-1ygH ;
iteration complexity in 1-LAS i€)(N?), i.e.,O(1) complexity Of 5 Vo (T ((HHe + )"H."))y.. The complexity

YN
i H 1 —1gH
per symbol. Further, the mean number of iterations befo_? computing the vecto(I @ ((H;'H. + TN D™ H))ye
the algorithm terminates in 1-LAS was found to bgN?)

5
log,(N)

is O(NZN,), and the complexity of computing/f(l ®

through simulations. So, the overall per-symbol compj,exil((H?Hc + — DTHT))ye is O(NPN,). In the case of
of 1-LAS is O(N2). In 2-LAS, the complexity of the 2- ILL—onIy_STBC, becal_Jse of the above—men?oned propersy, th
symbol update dominates over the 1-symbol update. Sirfc@mplexity of comput;an(I@((Hch-:m ) H))ye
there are(”}z) possible 2-symbol updates, the complex@®ts reduced ta(NV;log Ny) froom O(N¢N;). So the to-
ity of one search stage iO(N?), i.e., O(N2) complexity (@l complexity for computlngd( ) in ILL-only STBC is
per symbol. The mean number of stages till the algorith@(ViNr) + O(N7log Ny), which gives a per-symbol com-
terminates in 2-LAS was found to b&(log N;) through Plexity of O(N;.)+O(log N¢). So, the overall per-symbol com-
simulations. Therefore, the overall per-symbol compjexit Plexity for 1-LAS detection of ILL-STBCs i€)(N7 log Ny).
2-LAS is O(N?log N;). These can be observed from Fig.
@, where it can be seen that the per-symbol complexity | Generation of Soft Outputs
the initial vector computation plus the 1-LAS/2-LAS search We propose to generate soft values at fiileLAS output
operation isO(N?)/O(N? log N;); i.e., 1-LAS and 2-LAS for all the individual bits that constitute thiet-PAM/M-QAM
complexity plots run parallel to the; N? and coN?log N;  symbols as follows. These output values are fed as softsnput
lines, respectively. With the computation 87 H included, to the decoder in a coded system. ket [z, %2, - - , Zyn2),
the complexity order is more thaW?. From the slopes of z; € A; denote the detected output symbol vector from the
the plots in Fig.[]l, we find that the overall complexities//-LAS algorithm. Let the symboE; map to the bit vector
for N, = 16 and 32 are proportional toV?® and NZ7, b, = [bi1,bia, - ,bix,]”, Where K, = log, |A;|, and b, ; €
respectively. {+1,-1},i=1,2,--- ,2N? andj = 1,2,--- , K,. Letb; ; € R

For the special case of ILL-only STBCs (i.é.=t¢ = 1), denote the soft value for thgh bit of theith symbol. Given
the complexity involved in computind® andH”H can be d, we need to find; ;, ¥ (i, 5).
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Note that the quantityly — Hd||? is inversely related to decoder.
the likelihood thatd is indeed the transmitted symbol vector.
Let the d vector with its jth bit of the ith symbol forced IV. BER PERFORMANCE WITHPERFECTCSIR
to +1 be denoted as vectat’*. Likewise, letd!” be the
vectord with its jth bit of theith symbol forced to -1. Then
the quantitie|y — Hd!"||? and ||y — Hd] || are inversely
related to the likelihoods that thih bit of theith transmitted
symbol is +1 and -1, respectively. So,[if —Hd! " ||> - [y —
Hd!™"||? is +ve (or -ve), it indicates that thgh bit of theith
transmitted symbol has a higher likelihood of being +1 (9r -1
So, the quantityly — Hd} " ||> — |y — Hd] " ||?, appropriately
normalized to avoid unbounded increase for increasing
can be a good soft value for thgh bit of the ith symbol.
With this motivation, we generate the soft output value far t
jth bit of theith symbol as
o Iy —HATP -y -HOP
“ [[h ]2 ’ A. Uncoded BER as a Function of Increasing = N,
where the normalization byh;||? is to contain unbounded In Fig.[2, we plot the uncoded BER performance of the
increase oﬂ?i,j for increasingNV;. The RHS in the above canproposed 1-, 2-, and 3-LAS algorithms in decoding ILL-
be efficiently computed in terms efandG as follows. Since only STBCs ¢ x 4, 8 x 8, 16 x 16, 32 x 32 STBCs)
d’* andd’~ differ only in theith entry, we can write for N, = N, = 4,8,16,32 and 4-QAM. SISO AWGN
@ — &t e (36) performance (without fading) and MMSE-only performance
@ i B (i.e., without the search using LAS) are also plotted for eom
Since we knowd{’ and d{*, we know )\; ; from (38). parison. It can be seen that MMSE-only performance does not
Substituting [3B) in[(35), we can write improve with increasing STBC size (i.e., increasifig= N.,.).
- ) it ) 2 However, it is interesting to see that, when the proposeatkea
bijlhll* = [ly =Hdi" — Aijhi|” = [ly — Hd; ™| using LAS is performed following the MMSE operation, the
= A, lh? —2);b] (y —-HA")  (37) performance improves for increasing, = N,, illustrating
2 2 T i the performance benefit due to the proposed search strategy.
= —Aiglhill® = 2xi b (y —Hd; 7). (38) o example, though the LAS detector performs far from
If b;; = 1, then d-Z* = d and substituting this in[(37) and SISO AWGN performance for small number of dimensions
dividing by ||h;||?, we get (e.g.,4 x 4,8 x 8 STBCs with 32 and 128 real dimensions,
Z respectively), its large system behavior at increased rumb
G (39) dimensions (e.g.16 x 16 and 32 x 32 STBCs with 512 and
_ b 2048 real dimensions, respectively) effectively rendezarn
If b, ; = —1, thend!” = d and substituting this if{38) and SISO AWGN performance; e.g., with; = N, = 16,32,

In this section, we present the uncoded/turbo coded BER
performance of the proposetf/-LAS detector in decoding
non-orthogonal STBCs from CDA, assuming perfect knowl-
edge of CSI at the receiVenn all the BER simulations in this
section, we have assumed that the fade remains constant over
one STBC matrix duration and varies i.i.d. from one STBC
matrix duration to the other. We consider two STBC designs;
i) ‘FD-ILL’ STBCs where§ = ¢V33, ¢t = ¢l in (11.a), and
i1) ‘ILL-only’ STBCs where§ = ¢t = 1. The SNRs in all
the BER performance figures are the average received SNR
per received antenna, defined in Sed 1I[[3]. We have used
MMSE filter as the initial filter in all the simulations.

~ 2
b@j = A — 2)\1',]'

2,

dividing by ||h;||%, we get for BERs better thari0—3, the LAS detector performs very
- 2 Zi close to SISO AWGN performance. We also observe that 3-
bij = —Aij—2Nij (G (40) Las performs better than 2-LAS fav; = N,. = 4,8, and 2-

LAS performs better than 1-LAS. Since close to SISO AWGN

It is noted thatz and G are already available upon the ter'performance is achieved with 1-, 2-, or 3-symbol updatéfitse

mination of the)/-LAS algorithm, and hence the complexityyye cases of more than 3-symbol update, which will result in

of computingb; ; in (39) and [(4D) is constant. Hence, the, . eaqed complexity with diminishing returns in performe
°Yeff”‘” complexity in computing the soft values for all thegain, are not considered in the performance evaluation.

bits is O(N; log, M). We also see froni{39) and (40) that the

magnitude ob; ; depends upon, ;. For large-size signal sets,

the possible values of; ; will also be large in magnitude. We B- Performance of FD-ILL Versus ILL-only STBCs

therefore have to normalizfeJ for the turbo decoder to func- In Fig.[3, we present uncoded BER performance comparison
tion properly. It has been observed through simulations thaetween FD-ILL versus ILL-only STBCs for 4-QAM at differ-
normalizingb; ; by (23 )2 resulted in good performance. Inent N, = N, using 1-LAS detection. The BER plots in Fd. 3
[28], we have shown that this soft decision output genematidlustrate that the performance of ILL-only STBCs with 1-BA
method, when used in large V-BLAST systems, offers aboutdetection forV, = N, = 4, 8,16, 32 and 4-QAM are almost as
to 1.5 dB improvement in coded BER performance compargeod as those of the corresponding FD-ILL STBCs. A similar
to that achieved using hard decision outputs fromMthe AS closeness between the performance of ILL-only and FD-ILL
algorithm. We have observed similar improvements in STBC

MIMO systems also. In all coded BER simulations in this SWe will relax this perfect channel knowledge assumption lie hext

. Section, where we present an iterative detection/chansighation scheme
paper, we use the soft outputs proposed here as inputs to#aghe considered large STBC MIMO system.
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Uncoded BER comparison betweeD-ILL andILL-only STBCs

for different Ny = N,. 4-QAM, 2N; bps/Hz, 1-LAS detectionlLL-only
STBCs perform almost same as FD-ILL STBCs.

| = @ - 4x4 Perfect code
| = A - 6x6 Perfect code
N | - ¢ -8x8 Perfect code

- B —(1): 16x16 Perfect code
| = % = (2): 32x32 Perfect code
| —6— 4x4 ILL-only STBC
| —A— 6x6 ILL-only STBC
| —6—8x8 ILL-only STBC
| —8—(3): 16x16 ILL-only STB
| —*— (4): 32x32 ILL-only STB
~¢ — SISO AWGN

0

Bit Error Rate
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Average Received SNR (dB)
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Fig. 4. Uncoded BER comparison betweperfect codesand ILL-only

STBCs for differentN; = N,., 4-QAM, 2N; bps/Hz, 1-LAS detectionFor

(§énall dimensions (e.g4,x 4, 6 x 6, 8 x 8), perfect codes with 1-LAS detection
perform worse than ILL-only STBCs. For large dimensiong.(e.6 x 16,

32 x 32), ILL-only STBCs and perfect codes perform almost same.

C. Decoding and BER of Perfect Codes of Large Dimensions

While the STBC design in (11.a) offers both ILL and FD,
perfect coddbs under ML decoding can provide coding gain
in addition to ILL and FD [[1¥]{21]. Decoding of perfect
codes has been reported in the literature for only up to 5
antennas using sphere/lattice decoding [20]. The contpleki
these decoders are prohibitive for decoding large-sizefégte
codes, although large-sized codes are of interest from la hig
spectral efficiency view point. We note that, because obits |
complexity attribute, the proposed-LAS detector is able to
decode perfect codes of large dimensions. In Hi@s. 4[&nd 5,
we present the simulated BER performance of perfect codes
in comparison with those of ILL-only and FD-ILL STBCs for
up to 32 transmit antennas using 1-LAS detector.

In Fig. [4, we show uncoded BER comparison between
perfect codes and ILL-only STBCs for differed; = N,
and 4-QAM using 1-LAS detection. Thé x 4 and 6 x 6
perfect codes are from_[19], and tiex 8, 16 x 16 and
32 x 32 perfect codes are from [20]. From Figl 4, it can
be seen that the 1-LAS detector achieves better performance
for ILL-only STBCs than for perfect codes, when codes
with small number of transmit antennas are considered, (e.g.
N = 4,6,8). While perfect codes are expected to perform
better than ILL-only codes under ML detection for any,
we observe the opposite behavior under 1-LAS detection for
small N; (i.e., ILL-only STBCs performing better than perfect
codes for small dimensions). This behavior could be atteitbu

STBCs is observed in the turbo coded BER performance tas the nature of the LAS detector, which achieves near-
well, which is shown in Figl18 for 46 x 16 STBC with 4-
QAM and turbo code rates of 1/3, 1/2 and 3/4. This is an

interesting observation, since this suggests that, in sashs,

the computational complexity advantage with= ¢ = 1 in
ILL-only STBCs can be taken advantage of without mcurrmgerformance of the proposed detector in large STBC MIMOesyst we
much performance loss compared to FD-ILL STBCs.

optimal performance only when the number of dimensions is

6We note that the definition of perfect codes differ in][19] g@@]. The
perfect codes covered by the definition [n[20] includes tleefgzt codes
of [19] as a proper subclass. However, for our purpose ostilaing the

refer to the codes ir_[19] as well &s [20] as perfect codes.
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Bit Error Rate
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I
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. . Fig. 6. Uncoded BER comparison between the proposed 1-L4&itim
Fig. 5. Uncoded BER comparison betwegerfect codes ILL-only , and  anq the ISIC algorithm in[30] fotLL-only STBCs for differentN; = N;..

FD-ILL STBCs for Ny = N, = 16,32, 16-QAM, 4N; bps/Hz, 1-LAS 4.QAM, 2N, bps/Hz. MMSE initial vectors for both 1-LAS and ISIT:LAS
detection.For larger modulation alphabet sizes (e.g., 16 QAM), pertaes performs significantly better than ISIC iR [30].
with 1-LAS detection perform poorer than ILL-only and FD-IETBCs )

Iarg@, and it appears that, in the detection process, LAS vector. Since we used MMSE initial vector farLAS, we
more effective in disentangling the symbols in STBCs whdmve used MMSE initial vector for the ISIC algorithm as well.
§ =t =1 (i.e., in ILL-only STBCs) than in perfect codes.Also, in [30], 4 to 5 iterations were shown to be good enough
The performance gap between perfect codes and ILL-orftyr the ISIC algorithm to converge. In our simulations of the
STBCs with 1-LAS detection diminishes for increasing codkSIC algorithm, we used 10 iterations. Two key observations
sizes such that the performance 2 x 32 perfect code and can be made from Fig] 6) like the 1-LAS algorithm, the ISIC
ILL-only STBC with 4-QAM are almost same and close talgorithm also shows large system behavior (i.e., improved
the SISO AWGN performance. In Fif] 5, we show a similaBER for increasingV, = N,), and 2) the proposed 1-LAS
comparison between perfect codes, ILL-only and FD-ILL onlglgorithm outperforms the ISIC algorithm by about 3 to 5
STBCs when larger modulation alphabet sizes (e.g., 16-QAMB at 10~2 uncoded BER. In addition, the complexity of
are used in the case @6 x 16 and32 x 32 codes. It can be the ISIC scheme is higher than the proposed scheme (see the
seen that with higher-order QAM like 16-QAM, perfect codesomplexity comparison in Table I).
with 1-LAS detection perform poorer than ILL-only and FD- Next, we compare the proposed large-MIMO architecture
ILL STBCs, and that ILL-only and FD-ILL STBCs performysing STBCs from CDA andV/-LAS detection with other
almost same and close to the SISO AWGN performance. TRgge-MIMO architectures and associated detectors regort
results in Figs[4 anfll5 suggest that, with 1-LAS detectiof the literature. Large-MIMO architectures that use stack
owing to the complexity advantage and good performanceiify of multiple small-sized STBCs and interference cancel-
usingd =t = 1, ILL-only STBCs can be a good choice forjation (IC) detectors for these schemes have been investi-
practical large STBC MIMO systems [27].[52]. gated in [22]][31][32]. Here, we compare different arehit
ture/detector combinations, fixing the total number of $ran
D. Comparison with Other Large-MIMO Architecture/Detecitreceive antennas and spectral efficiency to be same in
tor Combinations all the considered combmatlo_nfs. Specifically, we fix =
i i . . N, = 16 and a spectral efficiency of 32 bps/Hz for all
In [30], Ch0|_et al have presented an |t_erat|ve soft interferge combinations. We compare the following seven differ-
ence cancellation (ISIC) scheme for multiple antenna 8yste gn¢ architecture/detector combinations which use the same
derived based on maximum a posteriori (MAP) criterion. Wg[t — N, = 16 and achieve 32 bps/Hz spectral efficiency (see
compared the performance of the ISIC scheme_in [30] withpe 1):4) proposed scheme using x 16 ILL-only STBC
that of the proposed 1-LAS algorithm in detectidgx 4, (rate-16) with 4-QAM and 1-LAS detection) 16 x 16 ILL-
8 x 8 and 16 x 16 ILL-only STBCs with N; = N, and 4- 41y STBC (rate-16) with 4-QAM and ISIC algorithm i [30]
QAM. Figure[6 shows this performance comparison.[1n [30}ity 10 iterations,iii) four 4 x 4 stacked QOSTBCs (rate-
zero-forcing vector was used as the initial vector in theCISIl) with 256-QAM and IC algorithm presented i [22}y)
scheme. However, performance is better with MMSE initi%ight 2 x 2 stacked Alamouti codes (rate-1) with i6-QAM
“In [29], we have presented an analytical proof that the bivreperfor- and IC algorithm inl[22]v) 16 x 16 V-BLAST scheme (rate-

mance of 1-LAS detector for \-BLAST with 4-QAM in i.i.d. Regigh fading 16) With 4-QAM and sphere decoder (SD);) 16 x 16 V-
converges to that of the ML detector 2§, N, — oo, keepingN; = Ni-. BLAST scheme (rate-16) with 4-QAM and ZF-SIC detector,
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ER C g . Turbo coded BER of 1-LAS detector fa6 x 16 FD-ILL and
tecture/detector combinations for given number of tratisetieive antennas ||| .only STBCs.N; = N, = 16, 4-QAM, turbo code rates: 1/3, 1/2, 3/4

(Nt = Nr = 16) and spectral efficiency (32 bps/Hzproposed scheme (10.6, 16, 24 bps/Hz)1-LAS detector performs close to within 4 dB from
performs better than other architecture/detector comtimes considered. It capacity ILL-only STBCs preform as good as FD-ILL STBCs.

outperforms them in complexity as well (see Table I).

and vii) 16 x 16 V-BLAST scheme (rate-16) with 4-QAM

5 x 10~2 uncoded BER) as well as complexity (by about
a factor of 2).

and ISIC algorithm in[[30]. We present the BER performance « comparing the stacked architecture/IC combinations

comparison of these different combinations in [Eig. 7. We als
obtained the complexity numbers (in number of real openatio

per bit) from simulations for these different combinaticats

an uncoded BER of x 10~2; these numbers are presented

in Table I, along with the SNRs at whichx 10~2 uncoded
BER is achieved. The following interesting observations ¢
be made from Fid.]7 and Table I

with V-BLAST/ZF-SIC (combination vi)) and V-
BLAST/ISIC combinations, we see that although the
diversity orders achieved in stacked architecture/IC com-
binations are high (see their slopes at high SNRs in Fig.
[7), V-BLAST with ZF-SIC and ISIC detectors perform
much better at low and medium SNRs.

In summary, the proposed scheme outperforms the other

a

« the proposed schem@ombinationi)) significantly out- considered architecture/detector combinations both imse
performs the stacked architecture/IC detector combin@f performance as well as complexity.

tions presented iri [22[combinationsiii) andiv)); e.g.,

at5x 1072 uncoded BER, the proposed scheme perforngs Turbo Coded BER and Nearness-to-Capacity Results
better than the stacked architecture/IC[inl[22] by 17 dB

(for four 4 x 4 QOSTBCs) and 10 dB (for eigh x 2

Alamouti codes). Also, the proposed scheme achiev

this significant performance advantage at a much les
complexity than those of the stacked architecture/l
combinations (see Table ).

« the proposed scheme performs slightly better than the
BLAST/sphere decoder combinatigitombinationv));
6.8 dB in proposed scheme versus 7 dB in V-BLAS
with sphere decoding & x 10~2 uncoded BER. Im-
portantly, the proposed scheme enjoys a significant ¢
plexity advantage (by more than an order) over the
BLAST/sphere decoder combination.

« the ISIC algorithm in[[30] applied to ILL-only STBC
detection (combinationii)) is inferior to the proposed
scheme in both performance (by about 4.5 dB5at

10~2 uncoded BER) as well as complexity (by about tW('J5
orders).

Next, we evaluated the turbo coded BER performance of
the proposed scheme. In all the coded BER simulations, we
f& the soft outputs presented in SEC_TII-E as input to the

fbo decoder. In Fig.18, we plot the turbo coded BER of

e 1-LAS detector in decoding6 x 16 FD-ILL and ILL-

ly STBCs, with N, = N, = 16, 4-QAM and turbo code

rates 1/3 (10.6 bps/Hz), 1/2 (16 bps/Hz), 3/4 (24 bps/Hz).

he minimum SNRs required to achieve these capacities in a
6 x 16 MIMO channel (obtained by evaluating the ergodic

0capacity expression inl[1] through simulation) are alsonsho
%st about 4 dB from capacity, which is very good in terms of
nearness-to-capacity considering the high spectral effités
achieved. It can also be seen that the coded BER performance
of FD-ILL and ILL-only STBCs are almost the same for the

It can be seen that the 1-LAS detector performs close to mvithi

ystem parameters considered.

« the ISIC algorithm in[[3D] applied ta6 x 16 V-BLAST F Effect of MIMO Spatial Correlation

detection(combinationvii)) is also inferior to the pro-

In generating the BER results in Figs. 2 [ib 8, we have

posed scheme in BER performance (by about 3.8 dB aisumed i.i.d. fading. However, MIMO propagation conditio
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Complexity SNR required
No. | Large-MIMO Architecture/Detector Combinations(in # real operations to achieve5 x 102
(fixed Ny = N,. = 16 and 32 bps/Hz per bit) at5 x 102 uncoded BER
for all combinations) uncoded BER (from Fig.[7)
16 x 16 ILL-only CDA STBC (rate-16),
i) 4-QAM and 1-LAS detection 3.473 x 103 6.8 dB
[Proposed scheme]
i) 16 x 16 ILL-only CDA STBC (rate-16),
4-QAM and ISIC algorithm in[[30] 1.187 x 10° 11.3 dB
iii) Four4 x 4 stacked rate-1 QOSTBCs,
256-QAM and IC algorithm in[[22] 5.54 x 108 24 dB
iv) Eight 2 x 2 stacked rate-1 Alamouti codes,
16-QAM and IC algorithm in[[22] 8.719 x 103 17 dB
v) 16 x 16 V-BLAST (rate-16) scheme,
4-QAM and sphere decoding 4.66 x 10* 7 dB
vi) 16 x 16 V-BLAST (rate-16) scheme,
4-QAM and V-BLAST detector (ZF-SIC) 1.75 x 10* 13 dB
Vi) 16 x 16 V-BLAST (rate-16) scheme,
4-QAM and ISIC algorithm in[[30] 7.883 x 103 10.6 dB
TABLE |

COMPLEXITY AND PERFORMANCE COMPARISON OF DIFFERENT LARGEMIMO ARCHITECTURE/DETECTOR COMBINATIONS ALL WITH Nt = N, = 16
AND ACHIEVING 32BPYHZ SPECTRAL EFFICIENCYProposed scheme outperforms the other considered artlmiésédetectors both in terms of
performance as well as complexity

witnessed in practice often render the i.i.d. fading model &om the MIMO capacity formula in[]1], we evaluated the
inadequate. More realistic MIMO channel models that takbBeoretical minimum SNRs required to achieve a capacity of
into account the scattering environment, spatial corigat 48 bps/Hz in i.i.d. as well as correlated fading, and plotted
etc., have been investigated in the literatdrel [23],[33)r Fthem also in FiglT7. It is seen that the minimum SNR required
example, spatial correlation at the transmit and/or recsislie to achieve a certain capacity (48 bps/Hz) gets increased for
can affect the rank structure of the MIMO channel resultimg icorrelated fading compared to i.i.d. fading. From the BER
degraded MIMO capacity [33]. The structure of scattering iplots in Fig.[7, it can be observed that at an uncoded BER
the propagation environment can also affect the capdc8y [2of 1073, the performance in correlated fading degrades by
Hence, it is of interest to investigate the performanceefith about 7 dB compared that in i.i.d. fading. Likewise, at a+ate
LAS detector in more realistic MIMO channel models. To thi8/4 turbo coded BER of0~*, a performance loss of about 6
end, we use the non-line-of-sight (NLOS) correlated MIM@B is observed in correlated fading compared to that in.i.i.d
channel model proposed by Geshatrali in [23], and evaluate fading. In terms of nearness to capacity, the vertical fathe
the effect of spatial correlation on the BER performancénef t coded BER for i.i.d. fading occurs at about 24 dB SNR, which
M-LAS detector [[34]. is about 13 dB away from theoretical minimum required SNR

We consider the following paramelgr's] the simulations: of 11.1 dB. With correlated fading, the detector is observed
fe=5GHz, R=500m, S =30, D, = D, =20 m, §, = to perform close to capacity within about 18.5 dB. One way
0, = 90°, andd; = d, = 2)\/3. For f. =5 GHz, A\ =6 cm 10 alleviate such degradation in performance due to spatial
andd, = d, = 4 cm. In Fig.[7, we plot the BER performancecorrelation can be by providing more number of dimensions
of the 1-LAS detector in decodint x 16 ILL-only STBC at the receive side, which is highlighted in Hig. 9.
with N, = N, = 16 and 16-QAM. Uncoded BER as well as Figure[9 illustrates that the 1-LAS detector can achieve
rate-3/4 turbo coded BER (48 bps/Hz spectral efficiency) féubstantial improvement in uncoded as well as coded BER
i.i.d. fading as well as correlated fading are shown. Intaoldj performance in decodini®2 x 12 ILL-only STBC by increasing

N, beyond N, for 16-QAM in correlated fading. In the
8please seé [23] for more elaborate details of the spatialietated MIMO simulations, we have maintained, d, = 72 cm andd, = d,

channel model. We note that this model can be appropriatepjication 1IN both the cases of symmetry (i.ev; = N, = 12) as well
scenarios like high data rate wireless IPTV/HDTV distribnt using high as asymmetry (i.e.V; = 12, N, = 18). By comparing the

spectral efficiency large-MIMO links, where largé; and V,- can be placed 4 _ i _ _
at the base station (BS) and customer premises equipmeB) (€3pectively. 1-LAS detector performance WlthNt Nr 12] versus

9The parameters used in the model[in] [23] includg; N, : # transmit and [N: = 12, N, = 18], we observe Fhat the uncoded BER
receive (omni-directional) antennas;, d,-: spacing between antenna elementperformance with N; = 12, N, = 18] improves by about 17
at the transmit side and at the receive sifie;distance between transmitter 4g compared to that ofN; = N, = 12] at 2 x 10~3 BER.

and receiver,D;, D, transmit and receive scattering radi; number of
scatterers on each sidé;, 6,.: angular spread at the transmit and rec:eive,EVen the uncoded BER performance With, = 12, N, = 18]

sides, andf., \: carrier frequency, wavelength. is significantly better than the coded BER performance with
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! ! J - Nt‘: Nr = 12,‘uncoded ‘ J'\'A:ll:: Pilot
ol e B wreeded | ~——==— N, Data STBCs—= Matrix DatasTBCs
1| == Nt =Nr =12, rate-3/4 turbo coded
1| =8 Nt =12, Nr = 18, rate—3/4 turbo coded
= Min. SNR for Capacity = 36 bps/Hz (Nt = Nr = 12)
-9 . P i Min. SNR for capacity = 36 bps/Hz (Nt = 12, Nr = 18),
107 : : : : : : Gl
Ny x N, )
— time
" 12x12 ILL-only STBC, 16-QAM |
3 Nt =12, Nr = 12,18, 1-LAS detection w 1 Frame
% 10'2 . H B 4
g S B . . . . . .
i \ N i i Fig. 10. Transmission scheme with one pilot matrix followsd N, data
@ N ‘\) STBC matrices in each frame.
10°L Ly 1‘_ ful o
a2 | :
-8t ‘\. Correlated-MIMO: chl-parameters:
o N fc =5 GHz, R =500 m, S = 30
» s S Nd =72cm,d =d
10 'k JIE ity T toor 4
o, e D=D=20m
%I . %' erze =90 deg H
g g : channel coherence time) B = (Ny + 1)N; channel uses. A
1 = . . . . . .
10° . ‘ w w w w w w frame of transmitted pilot and data matrices is of dimension
5 10 15 20 25 30 35 40 45 50 . .
Average Received SNR (dB) N; x N¢(1 4+ Ny), which can be written as
Fig. 9.  Effect of N, > N in correlated MIMO fading in[[23] keeping X, = [xX®x® x®@ ... X(Nd)} ) (41)
N,d, constant andl; = d,.. Nyrdr = 72 cm, fo = 5 GHz, R = 500 m, ¢ e ¢ ¢

S =30,Dt =D, =20m, 0 =0, =90° 12 x 12 ILL-only STBC, ; .
Nt = 12, N, = 12,18, 16-QAM, rate-3/4 turbo code36 bps/Hz Increasing A_S n [43]’ let Tp and Vd denOt_e the a\(erage SNR du”ng
# receive dimensions alleviates the loss due to spatialetation pilot and data phases, respectively, which are related go th

average received SNR as v(Ng + 1) = 7, + Ngva.
) A A
[N, = N, = 12] by about 11.5 dB ati0—3 BER. This Define g, = % and 8q = VW—d Let E, denote the average

improvement is essentially due to the ability of the 1-LAgNergy of the transmitted symbol during the data phase. The

detector to effectively pick up the additional diversityders average received signal power during the data phase is given

provided by the increased number of receive antennas. Wit E[tr(XS)XS) )] = N?E,, and the average received

a Eite-3/4 turbo code (i.e., 3_6 bps/Hz_), a_lt_ a coded BER Qibnal power during the pilot phase E[tr(XgP)XgP)H)] _

10~%, the 1-LAS detector achieves a significant performanq@tzEsﬁp N.E.5,

improvement of about 13 dB with\; = 12, N,, = 18] com- Ba “Ba

pared to that wit{N, = N, = 12]. With [N; = 12, N, = 18], the pilot matrix should be such th&®X®" = .1y, [43].

the vertical fall of coded BER is such that it is only aboufs in Sec[T, letH. € CV-*"t denote the channel matrix,

8 dB from the theoretical minimum SNR needed to achiewghich we want to estimate. We assume block fading, where

capacity. This points to the potential for realizing higlesppal the channel gains remain constant over one frame consisting

efficiency multi-gigabit large-MIMO systems that can aeleie of (1 + N,)N; channel uses, which can be viewed as the

good performance even in the presence of spatial correlatichannel coherence time. This assumption can be valid in

We further remark that transmit correlation in MIMO fadingslow fading fixed wireless applications (e.g., as in possibl

can be exploited by using non-isotropic inputs (precodingpplications like BS-to-BS backbone connectivity and BS-

based on the knowledge of the channel correlation matridesCPE wireless IPTV/HDTV distribution). For this traimn

[35]-[87]. While [3E5]-[37] propose precoders in conjurwti based system and channel model, Hassibi and Hochwald

with orthogonal/quasi-orthogonal small MIMO systems ipresented a lower bound on the capacity [in] [43]; we will

correlated Rayleigh/Ricean fading, design of precoders fillustrate the nearness of the performance achieved by the

large-MIMO systems can be investigated as future work. proposed iterative detection/estimation scheme to thimto
The received frame is of dimensiaN, x N;(1 + Ny), and

V. ITERATIVE DETECTION/CHANNEL ESTIMATION can be written as

In this section, we relax the perfect CSIR assumptioy _ {Y‘P) YO y@ ... Y(Nd)} = H.X. + N, ,(42)
made in the previous section, and estimate the channelxmatri e e ¢
based on a training-based iterative detection/channeh@st \yhere A, = [NO NO N@ ... NV is the N, x

tion scheme [[38]. Training-based schemes, where a pilgt (1 | ) noise matrix and its entries are modeled as i.i.d.
signal known to the transmitter and the receiver is sent (0,02 = NtES). Equation [@P) can be decomposed into

= uNy, where p 2 . For optimal training,

get a rough estimate of the channel (training phase) hgg, harts, namely, the pilot matrix part and the data madrice
been studied for STBC MIMO systems inh _[39]-[42]. Herepart as

we adopt a training-based approach for channel estimation

in large STBC MIMO systems. In the considered training- Y® = BX®+NO (43)
based channel estimation scheme, transmission is camied o
in frames, where on&/; x N, pilot matrix, X{?) € CNexNe, YO = {Ygl) YO ... YgNd)}

for training purposes, followed by, data STBC matrices,
X e CNexNej = 1,2, Ny, are sent in each frame= H., [X,(:l) X® ... XgNd)} + {Ngl) N® ... NgNd)}.(44)
as shown in Fig(_l1. One frame length, (taken to be the



SAIF K. MOHAMMED et al: HIGH-RATE SPACE-TIME CODED LARGE-MIMO SYSTEMS: LOW-COMEEXITY DETECTION AND CHANNEL ESTIMATION 13

70

A. MMSE Estimation Scheme . . . . . .
A straight-forward way to achieve detection of data syn ok |7 108D ok nounay 1010 MM Channel
with estimated channel coefficients is as follows: = © = 1P+ 1D (H-H bound)
1) Estimate the channel gains via BIMSE estimatofron
the signal received during the fir8f; channel uses (i.
during pilot transmission); i.e., giveW® and X®), a
estimate of the channel matrH.. is found as

H = YO (XY 521y, + XOXP)H] 7 (45

24 bps/Hz

Ergodic Capacity (bps/Hz)

_ 1 o

|
x
|~

12 bps/Hz

————————————— T ’I:v/’:@/

2) Use the abov#I¢* in place ofH, in the LAS algorithi r . 1;1;;,, o8 - :“:?
(as described in Sectioris] Il aid]lll) and detec R /g’ —

transmitted data symbols. Average SNR (dB)

We refer to the above scheme as thMSE estimation o .

h In the absence of the knowledaed®. a zero-forcin Fig. 11. Hassibi-Hochwald (H-H) capacity bound for 1P+8D=£ 144, 7 =
sC _eme' . g ! g 16, 8p = g = 1) and 1P+1D T = 32,7 = 16, Bp = B4 = 1) training for
estimate can be obtained at the cost of some performanaae x 16 MIMO channel. Perfect CSIR capacity is also shown.
loss compared to the MMSE estimate. The performance of
the estimator can be improved by using a cyclic minimizatia . . . . .

b y gacy |?erat|ve detection/estimation scheme in

technique for minimizing the ML metric¢ [44]. Sec.]V-B. In tagec

of estimated CSIR, we show plots for 1LR4D training, where
by 1P+V,D training we mean a training scheme with a frame
B. Proposed lterative Detection/Estimation Scheme size of1 + N4 matrices, with 1 pilot matrix followedv, data
Techniques that employ iterations between channel estintalBC matrices from CDA. For this 1P¥;D training scheme,
tion and detection can offer improved performance. Iteeati@ lower bound on the capacity is given by [43]
receiver algorithms are attractive to achieve a good trfideo ) o
between performance and complexity [[45[H[51]. [In][45{47 ¢ > T-7y [Iogdet (INt + 7 BabpT Hclic ﬂ (47
receivers that iterate between channel estimation, nseltiu T Ne(L+9Ba) + 987 Neogy
detection and channel decoding in coded CDMA systems a{fiere T and 7, respectively, are the frame size (i.e., chan-
presented. Similar iterative teChniqueS in the context 6¥1 nel coherence t|me) and p||0t duration in number of chan-
and MIMO-OFDM systems are presented [in![48]:[51]. Hergye| uses, and’%l - lev E[tr{ﬂcﬂf}], where H,
we propose an iterative sch(_emg, where we iterate betw%ﬁ{c ’ XS:P)’Y((:Pj} is thte TMMSE ostimate of the channel
channel estimation and detection in the considered Iargﬂ:STgain matrix. We computed the capacity bound (47) through
MIMO system. The proposed scheme works as follows: g\ 1ations for 1P+8D and 1P+1D training for 1& x 16
1) Obtain an initial estimate of the channel matrix usingiiIMO channel. For 1P+8D training” = (14 8)16 = 144,
the MMSE estimator in[(45) from the pilot part. T = 16, and for 1P+1D training” = (1+1)16 = 32, 7 = 16.
2) Using the estimated channel matrix, detect the daf@ computing the bounds (shown in Fig]11) and in BER
STBC matricesX'”, i = 1,2,---, N, using the LAS simulations (in Figd 12 and113), we have uggd= 3, = 1. In
detector. Substituting these detected STBC matrices irrtcg,[ﬂ[, we plot the computed capacity bounds, along with the

(47), form xest, capacity under perfect CSIRI|[1]. We obtain the minimum SNR
3) Re-estimate the channel matrix usidg*’ from the for a given capacity bound ifi (47) from the plots in Fig] 11,
previous step, via and show (later in Fig._11) the nearness of the coded BER of

s s st/ res -1 the proposed scheme to this SNR limit. We note that improved
HY = D) [UQINt + A t)H} - (46) capacity and BER performance can be achieved if optimum
4) lterate steps 2 and 3 for a specified number of iteratiorflot/data power allocation derived in [43] is used instedd
The total complexity of obtaining the MMSE estimate of thihe allocation used in Figs. 111 f0l13 (i.¢, = 84 = 1). We
channel matrixiIe* in (@5) and [@6) isO(N2N,) + O(N?), have used the gptlmum power allocationlini[43] for _geneg_atln
which is less than the total complexity of 1-LAS detection df'€ BER plots in Figs. 14 arld 115. In all the BER simulations
O(N#log N,) for ILL-only STBCs. with training, /it Iy, is u;ed as the pilot matrix. ILL-only
STBCs and 1-LAS detection are used.
. ) First, in Fig.[12, we plot the uncoded BER performance
C. BER Performance with Estimated CSIR of 1-LAS detector when 1P+1D and 1P+8D training are used
We evaluated the BER performance of the 1-LAS detectfor channel estimation in 46 x 16 STBC MIMO system
using estimated CSIR, where we estimate the channel gaith N; = N, = 16 and 4-QAM. BER performance with
matrix through the training-based estimation schemesritiesc perfect CSIR is also plotted for comparison. From Figl 12,
ed in the previous two subsections. We consider the BERcan be observed that, as expected, the BER degrades with
performance under three scenarios, namglyynder perfect estimated CSIR compared to that with perfect CSIR. With
CSIR, i) under CSIR estimated using the MMSE estimatioMMSE estimation scheme, the performance with 1P+1D and
scheme in Se¢._VAA, andi) under CSIR estimated using thelP+8D are same because of the one-shot estimation. Aldo, wit
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Perfect CSIR
& -—m- - (1): 1P+8D, lterative Det/Est Scheme|
. =0~ (2): 1P+1D, lterative Det/Est Scheme|
. - B - (3): 1P+8D, MMSE Est Scheme
10 i - @ - (4): 1P+1D, MMSE Est Scheme
© 107k =
©
o
g
i
@ 107 kN e ‘-
A8 x A6 ILL-only STBC o\ B
" 4-QAM, 1-LAS detection
10 'k x
| | | |
0 5 10 15 20 2t
Average Received SNR (dB)
Fig. 12.  Uncoded BER of 1-LAS detector fa6 x 16 ILL-only STBC

with ¢) perfect CSIR,ii) CSIR using MMSE estimation scheme, atvd)
CSIR using iterative detection/channel estimation schghirations).N; =
N, = 16, 4-QAM, 1P+1D (T = 32,7 = 16,8, = B4 = 1) and 1P+8D

10°

(1): 1P+1D, lter Det/Est

Scheme (4 iterns.)

(2): 1P+8D, Iter Det/Est

Scheme (4 iterns.)

(3): 1P+1D, MMSE Est

Scheme

(4): 1P+8D, MMSE Est

Scheme

Perfect CSIR

-e- (5): Min SNR; 12 bps/Hz
cap. bnd;1P+1D

| — - (6): Min SNR; 21.3 bps/Hz
cap. bnd;1P+8D

_ g — Min SNR; 24 bps/Hz

cap.;perfect CSIR

L —0-

o

16 X 16 ILL~only.: STBC
Nt=Nr=16, 4-QAM """\
Rate-3/4 turbo:code
F1: d i

Bit Error Rate

[y
o

10'%

10° i |
4 6 8 10 12 14 16 18
Average Received SNR (dB)

Fig. 13. Turbo coded BER performance of 1-LAS detectorifox 16 ILL-
only STBC with) perfect CSIRz¢) CSIR using MMSE estimation, anid:)
CSIR using iterative detection/channel estimation (4attens). Ny = N, =
16, 4-QAM, rate-3/4 turbo code, 1P+10I" = 32,7 = 16,8, = B4 = 1)

(T =144,7 = 16, Bp = B4 = 1) training. and 1P+8D(T = 144, 7 = 16, 8, = 4 = 1) training.

1P+1D training, both the MMSE estimation scheme as welf x 16 STBC, 4-QAM, and rate-3/4 turbo code. The various
as the iterative detection/estimation scheme (with 4 fiema Values of7T" considered and the corresponding spectral effi-
between detection and estimation) perform almost the sarfi€ncies arei) 7' = 32, 1P+1D, 12 bps/Hzji) T' = 144,
which is about 3 dB worse compared to that of perfect CSIRP+8D, 21.3 bps/Hzjii) T' = 400, 1P+24D, 23.1 bps/Hz,
at an uncoded BER dfo—3. This indicates that with 1P¥,D andiv) 7" = 784, 1P+48D, 23.5 bps/Hz. In all these cases,
training, iteration between detection and estimation dusts the corresponding optimum pilot/data power allocation{#8]
improve performance much over the non-iterative scherag (i.are used. From Fif._14, it can be seen that for these four,cases
the MMSE estimation scheme) for sma¥l;. With large N, 10~ coded BER occurs at around 12 dB, 10.6 dB, 9.7 dB, and
(e.g., slow fading), however, the iterative scheme outpers 9-4 dB, respectively. The0~* coded BER for perfect CSIR
the non-iterative scheme; e.g., with 1P+8D training, théque happens at around 8.5 dB. This indicates that the perforenanc
mance of the iterative detection/estimation improves byuab With estimated CSIR improves &5 is increased, and that
1 dB compared to the MMSE estimation. a performance loss of less than 1 dB compared to perfect
Next, in Fig.[I3, we present the rate-3/4 turbo coded BERSIR can be achieved with large (i.e., slow fading). For
of 1-LAS detector using estimated CSIR for the cases 8kample, with 1P+48D trainindI{ = 784), the performance
1P+8D and 1P+1D training. From Fig]13, it can be seé_’H'th estimated CSIR g(_at_s close to that with perfect CSIR both
that, compared to that of perfect CSIR, the estimated CSiikterms of spectral efficiency (2345 24 bps/Hz) as well as

performance is worse by about 3 dB in terms of coded BERNR at which10~* coded BER occurs (8.6s 9.4 dB). This
for 1P+8D training. With MMSE estimation schem#)—* IS expected, since the channel estimation becomes inngasi

coded BER occurs at aboli2 — 7.7 = 4.3 dB away from the accurate in slow fading (large coherent times) while inicugrr

capacity bound for 1P+1D and 1P+8D training. This nearne@@ly & small loss in spectral efficiency due to pilot matrix
to capacity bound improves by about 0.6 dB for the iteratiRverhead. This resultis significant becalses typically large
detection/estimation scheme. We note that for the system!ifhfixed/low-mobility wireless applications, and the prepd
Fig.[I3 with parameterss x 16 STBC, 4-QAM, rate-3/4 turbo system can effectively ach|eve high s.pec.tral efficiencies a
code, and 1P+8D training withi = 144, 7 — 16, we achieve a Well as good performance in such applications.
high spectral efficiency of6 x 2 x 2 x & = 21.3 bps/Hz even
after accounting for the overheads involved in channel esB. On Optimumq; for a GivenN,. and T
mation (i.e., pilot matrix) and channel coding, while acig In [43], through theoretical capacity bounds it has been
good near-capacity performance at low complexity. Thisifsi shown that, for a givetV,, T and SNR, there is an optimum
to the suitability of the proposed approach of using LASalue of N; that maximizes the capacity bourfckfer Figs. 5
detection along with iterative detection/estimation iagiical and 6 in [43], where the optimurV, is shown to be greater
implementation of large STBC MIMO systems. than N, in Fig. 5 and less thaiV, in Fig. 6). For example,
Finally, in Fig.[14, we illustrate the coded BER performancier N, = 16, T = 48, and SNR = 10 dB, the capacity
of 1-LAS detection and iterative detection/estimationesnk bound evaluated using_(47) with optimum power allocation
for different coherence timeq;, for a fixed N, = N, = 16, for N, = 12 is 19.73 bps/Hz, whereas fav; = 16 the
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Fig. 14.  Turbo coded BER performance of 1-LAS detection dachiive Fig. 15. Comparison between two 1NzD training-based systems, one with
estimation/detection as a function of coherence tifies 32, 144, 400, 784,

a largerN; than the other for a giveV,. and7". With V,. = 16, T' = 48 and
for a given N; = N, = 16, 16 x 16 ILL-only STBC, 4-QAM, rate-3/4 optimum power allocation in both systems, System-Il With= 12 achieves
turbo code.Spectral efficiency and BER performance with estimated CSERhigher spectral efficiency(13.5 vs 10.33 bps/Hzwhile achieving10~3

approaches to those with perfect CSIR in slow fading (isegd T'). coded BER at a lesser SNR.6 vs 8.9 dB than System-| withV; = 16.

[ Parameters [ System-l | System-ll | achieved in System-l id6 x 2 x 7 x 2 = 10.33 bps/Hz,

# Rx antennas 16 16 whereas System-ll achieves a higher spectral efficiency of
Coherence time(lr“ 48 48 12 x 2 x 3 x 3 = 13.5 bps/Hz. In Fig.[Ib, we plot the

# Tx antennas, N, 16 12 coded BER of both these systems using 1-LAS detection
STBC from CD,A 16 % 16 12 % 12 and iterative detection/estimation. From the simulatiom{s
Pilot duration. 16 12 shown in Fig.[1b, it can be observed that System-Il with a
Training ' 1P+2D 1P+3D smaller N; and higher spectral efficiency in fact achieves a
govt 1.2426 1.4641 certain coded BER performance at a lesser SNR compared to

oot 0.8786 0.8453 System-1. For example, to achievé—2 coded BER, System-|

d : ) ) requires an SNR of about 8.9 dB, whereas System-Il requires
Modulation 4-QAM 4-QAM L ' )

Turb d only 8.6 dB. This implies that because of the reduction of

urbo code rate 1/2 3/4 h hout d i boléh ¢ fT-7 ¢
Spectral efficiency 10.33bps/Hz | 13.5bps/Hz t roug put due to pilot sym O$ y a factor of or
SNR at 10-3 coded BER 8.9dB 8.6 dB a givenT andr = Nt), a larger N; does not necessarily

mean a higher spectral efficiency. Such an observation has
TABLE Il also been made in [43] based on theoretical capacity bounds.
ON OPTIMUM N; FOR A GIVEN N;. AND T'. SYSTEM-II WITH A SMALLER - The proposed detection/channel estimation scheme allosvs t
Nt ACHIEVES A HIGHER SPECTRAL EFFICIENCY WHILE ACHIEVINGIO ™+ P . . . . .
CODEDBERAT A LESSERSNRTHAN SYSTEM-| WITH A LARGER Nj. prediction of such behavior through simulations, which, in
turn, allows system designers to find optimuyih and STBC

size to achieve a certain spectral efficiency in large STBC
capacity bound reduces to 17.53 bps/Hz showing that tMﬂ!MO systems.

optimum V; in this case will be less thai,.. We demonstrate
such an observation in practical systems by comparing the VI. CONCLUSION

simulated coded BER performance of two systems, referred tolMe presented a low-complexity algorithm for the detection
as System-l and System-II, using 1-LAS detection and iterat of high-rate, non-orthogonal STBC large-MIMO systems with
detection/estimation scheme. The parameters of Systerd-1 #ens of antennas that achieve high spectral efficienciebeof t
System-Il are listed in Table IlV,. andT are fixed at 16 and order of several tens of bps/Hz. We also presented a training
48, respectively, in both systems. System-1 uses 16 trarmsmi based iterative detection/channel estimation schemeudn s
tennas and6 x 16 STBC, whereas System-Il uses 12 transmiarge STBC MIMO systems. Our simulation results showed
antennas and2 x 12 STBC. Since the pilot matrix i/ Iy,, that the proposed 1-LAS detector along with the proposed
the pilot durationr is 16 and 12, respectively, for Systemiterative detection/channel estimation scheme achievag v

| and System-Il. Optimum pilot/data power allocation andood performance at low complexities. With the feasibil-
4-QAM modulation are employed in both systems. Systerity of low-complexity high-performance receivers, likeeth

| uses rate-1/2 turbo code and system-Il uses rate-3/4 tugmoposed detection/channel estimation scheme, large@IM
code. With the above system parameters, the spectral afficiesystems with tens of antennas at high spectral efficiencies c
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