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Abstract—In this paper, we present a low-complexity algorithm
for detection in high-rate, non-orthogonal space-time block coded
(STBC) large-MIMO systems that achieve high spectral efficien-
cies of the order of tens of bps/Hz. We also present a training-
based iterative detection/channel estimation scheme for such
large STBC MIMO systems. Our simulation results show that
excellent bit error rate and nearness-to-capacity performance
are achieved by the proposed multistagelikelihood ascent search
(M -LAS) detector in conjunction with the proposed iterative
detection/channel estimation scheme at low complexities.The
fact that we could show such good results for large STBCs like
16×16 and 32×32 STBCs from Cyclic Division Algebras (CDA)
operating at spectral efficiencies in excess of 20 bps/Hz (even after
accounting for the overheads meant for pilot based trainingfor
channel estimation and turbo coding) establishes the effectiveness
of the proposed detector and channel estimator. We decode
perfect codes of large dimensions using the proposed detector.
With the feasibility of such a low-complexity detection/channel
estimation scheme, large-MIMO systems with tens of antennas
operating at several tens of bps/Hz spectral efficiencies can
become practical, enabling interesting high data rate wireless
applications.

Index Terms—Large-MIMO systems, low-complexity detec-
tion, channel estimation, non-orthogonal space-time block codes,
high spectral efficiencies.

I. I NTRODUCTION

Current wireless standards (e.g., IEEE 802.11n and 802.16e)
have adopted MIMO techniques [1]-[3] to achieve the benefits
of transmit diversity (using space-time coding) and high data
rates (using spatial multiplexing). They, however, harness only
a limited potential of MIMO benefits since they use only a
small number of transmit antennas (e.g., 2 to 4 antennas).
Significant benefits can be realized if large number of antennas
are used; e.g., large-MIMO systems with tens of antennas
in communication terminals can enable multi-giga bit rate
transmissions at high spectral efficiencies of the order of
several tens of bps/Hz1. Key challenges in realizing such large-
MIMO systems include low-complexity detection and channel
estimation, RF/IF technologies, and placement of large number
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1Spectral efficiencies achieved in current MIMO wireless standards are only

about 10 bps/Hz or less.

of antennas in communication terminals2. Our focus in this
paper is on low-complexity detection and channel estimation
for large-MIMO systems.

Spatial multiplexing (V-BLAST) with large number of trans-
mit antennas can offer high spectral efficiencies, but it does not
give transmit diversity. On the other hand, well known orthog-
onal space-time block codes (STBC) have the advantages of
full transmit diversity and low decoding complexity, but they
suffer from rate loss for increasing number of transmit an-
tennas [3],[5],[6]. However,full-rate, non-orthogonal STBCs
from Cyclic Division Algebras (CDA)[7] are attractive to
achieve high spectral efficiencies in addition to achievingfull
transmit diversity, using large number of transmit antennas.
For example, a32 × 32 STBC matrix from CDA has 1024
symbols (i.e., 32 complex symbols per channel use), and using
this STBC along with 16-QAM and rate-3/4 turbo code offers
a spectral efficiency of 96 bps/Hz. While maximum-likelihood
(ML) decoding of orthogonal STBCs can be achieved in
linear complexity, ML or near-ML decoding of non-orthogonal
STBCs with large number of antennas at low complexities
has been a challenge. Channel estimation is also a key issue
in large-MIMO systems. In this paper, we address these two
challenging problems; our proposed solutions can potentially
enable realization of large-MIMO systems in practice.

Sphere decoding and several of its low-complexity variants
are known in the literature [8]-[11]. These detectors, however,
are prohibitively complex for large number of antennas. Re-
cent approaches to low-complexity multiuser/MIMO detection
involve application of techniques from belief propagation[12],
Markov Chain Monte-Carlo methods [13], neural networks
[14],[15],[16], etc. In particular, in [15],[16], we presented
a powerful Hopfield neural network based low-complexity
search algorithm for detecting large-MIMO V-BLAST signals,
and showed that it performs quite close to (within 4.6 dB
of) the theoretical capacity, at high spectral efficienciesof the
order of tens to hundreds of bps/Hz using tens to hundreds
of antennas, at an average per-symbol detection complexity

2WiFi products in 2.5 GHz band which use 12 transmit antennas for
beamforming purposes are becoming commercially available[4]. With such
RF and antenna technologies for placing large number of antennas in
medium/large aperture communication terminals (like set-top boxes/laptops)
getting increasingly matured, low-complexity high-performance MIMO base-
band receiver techniques (e.g., detection and channel estimation) are crucial
to enable practical implementations of high spectral efficiency large-MIMO
systems, which, in turn, can enable high data rate applications like wireless
IPTV/HDTV distribution.

http://arxiv.org/abs/0809.2446v3
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of just O(NtNr), whereNt and Nr denote the number of
transmit and receive antennas, respectively.

In this paper, we presenti) a low-complexity near-ML
achieving detector, andii) an iterative detection/channel es-
timation scheme for large non-orthogonal STBC MIMO sys-
tems having tens of transmit and receive antennas. Our key
contributions here can be summarized as follows:

1) We generalize the 1-symbol update basedlikelihood
ascent search(LAS) algorithm we proposed in [15],[16],
by employing a low-complexity multistage multi-symbol
update based strategy; we refer to this new algorithm as
multistage LAS (M -LAS) algorithm. We show that the
M -LAS algorithm outperforms the basic LAS algorithm
with some increase in complexity.

2) We propose a method to generate soft outputs from
the M -LAS output vector. Soft outputs generation was
not considered in [15],[16]. The proposed soft outputs
generation for the individual bits results in about 1 to 1.5
dB improvement in coded bit error rate (BER) compared
to hard decisionM -LAS outputs.

3) Assuming i.i.d. fading and perfect channel state infor-
mation at the receiver (CSIR), our simulation results
show that the proposedM -LAS algorithm is able to
decode large non-orthogonal STBCs (e.g.,16× 16 and
32 × 32 STBCs) and achieve near single-input single-
output (SISO) AWGN uncoded BER performance as
well as near-capacity (within 4 dB from theoretical
capacity) coded BER performance.

4) Using the proposed detector, we decode and report the
simulated BER performance of ‘perfect codes’ [17]-[21]
of large dimensions.

5) Presenting a BER performance and complexity com-
parison of the proposed CDA STBC/M -LAS detection
approach with other large-MIMO/detector approaches
(e.g., stacked Alamouti codes/QOSTBCs and associated
interference canceling receivers reported in [22]), we
show that the proposed approach outperforms the other
considered approaches, both in terms of performance as
well as complexity.

6) We present simulation results that quantify the loss in
BER performance due to spatial correlation in large-
MIMO systems, by considering a more realistic spatially
correlated MIMO fading channel model proposed by
Gesbertet al in [23]. We show that this loss in per-
formance can be alleviated by providing more receive
dimensions (i.e., more receive antennas than transmit
antennas).

7) Finally, we present a training-based iterative detec-
tion/channel estimation scheme for large STBC MIMO
systems. We report BER and nearness-to-capacity results
when the channel matrix is estimated using the proposed
iterative scheme and compare these results with those
obtained using perfect CSIR assumption.

The rest of the paper is organized as follows. In Section II,
we present the STBC MIMO system model considered. The
proposed detection algorithm is presented in Section III. BER
performance results with perfect CSIR are presented in Section

IV. This section includes the results on the effect of spatial
correlation, BER performance of large perfect codes, and
comparison of the proposed scheme with other large-MIMO
architecture/detector combinations. The proposed iterative de-
tection/channel estimation scheme and the corresponding per-
formance results are presented in Section V. Conclusions are
presented in Section VI.

II. SYSTEM MODEL

Consider a STBC MIMO system with multiple transmit and
multiple receive antennas. An(n, p, k) STBC is represented
by a matrixXc ∈ C

n×p, wheren andp denote the number of
transmit antennas and number of time slots, respectively, and
k denotes the number of complex data symbols sent in one
STBC matrix. The(i, j)th entry inXc represents the complex
number transmitted from theith transmit antenna in thejth

time slot. The rate of an STBC,r, is given byr
△
= k

p
. Let

Nr andNt = n denote the number of receive and transmit
antennas, respectively. LetHc ∈ CNr×Nt denote the channel
gain matrix, where the(i, j)th entry in Hc is the complex
channel gain from thejth transmit antenna to theith receive
antenna. We assume that the channel gains remain constant
over one STBC matrix duration. Assuming rich scattering, we
model the entries ofHc as i.i.dCN (0, 1)3. The received space-
time signal matrix,Yc ∈ C

Nr×p, can be written as

Yc = HcXc +Nc, (1)

whereNc ∈ CNr×p is the noise matrix at the receiver and its
entries are modeled as i.i.dCN

(
0, σ2 = NtEs

γ

)
, whereEs is

the average energy of the transmitted symbols, andγ is the
average received SNR per receive antenna [3], and the(i, j)th
entry inYc is the received signal at theith receive antenna in
the jth time slot. In a linear dispersion (LD) STBC,Xc can
be decomposed into a linear combination of weight matrices
corresponding to each data symbol and its conjugate as [3]

Xc =

k∑

i=1

x(i)
c A(i)

c + (x(i)
c )∗E(i)

c , (2)

wherex(i)
c is the ith complex data symbol, andA(i)

c ,E
(i)
c ∈

CNt×p are its corresponding weight matrices. The detection
algorithm we propose in this paper can decode general LD
STBCs of the form in (2). For the purpose of simplicity in
exposition, here we consider a subclass of LD STBCs, where
Xc can be written in the form

Xc =

k∑

i=1

x(i)
c A(i)

c . (3)

From (1) and (3), applying thevec (.) operation4 we have

vec (Yc) =

k∑

i=1

x(i)
c vec (HcA

(i)
c ) + vec (Nc). (4)

3CN (0, σ2) denotes a circularly symmetric complex Gaussian distribution
with mean zero and varianceσ2 .

4For ap×q matrix M = [m1m2 · · ·mq], wheremi is theith column of
M, vec(M) is a pq × 1 vector defined asvec(M) = [mT

1 m
T
2 · · ·mT

q ]T ,
where[.]T denotes the transpose operation.
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If U,V,W,D are matrices such thatD = UWV, then it is
true thatvec (D) = (VT ⊗U) vec (W), where⊗ denotes tensor
product of matrices [24]. Using this, we can write (4) as

vec (Yc) =

k∑

i=1

x(i)
c (I⊗Hc) vec (A

(i)
c ) + vec (Nc), (5)

where I is the p × p identity matrix. Further, defineyc
△
=

vec (Yc), Ĥc
△
= (I ⊗ Hc), a

(i)
c

△
= vec (A

(i)
c ), and nc

△
=

vec (Nc). From these definitions, it is clear thatyc ∈ CNrp×1,
Ĥc ∈ CNrp×Ntp, a

(i)
c ∈ CNtp×1, and nc ∈ CNrp×1. Let

us also define a matrix̃Hc ∈ CNrp×k, whoseith column is
Ĥc a

(i)
c , i = 1, · · · , k. Let xc ∈ Ck×1, whoseith entry is the

data symbolx(i)
c . With these definitions, we can write (5) as

yc =

k∑

i=1

x(i)
c (Ĥc a

(i)
c ) + nc = H̃cxc + nc. (6)

Each element ofxc is anM-PAM or M-QAM symbol.M-
PAM symbols take discrete values from{Am,m = 1, · · · ,M},
whereAm = (2m−1−M), andM-QAM is nothing but two
PAMs in quadrature. Letyc, H̃c, xc, andnc be decomposed
into real and imaginary parts as

yc = yI + jyQ, xc = xI + jxQ,

nc = nI + jnQ, H̃c = H̃I + jH̃Q. (7)

Further, we definexr ∈ R2k×1, yr ∈ R2Nrp×1, Hr ∈
R2Nrp×2k, andnr ∈ R2Nrp×1 as

xr = [xT
I xT

Q]
T , yr = [yT

I yT
Q]

T ,

Hr =

(
H̃I − H̃Q

H̃Q H̃I

)
, nr = [nT

I nT
Q]

T . (8)

Now, (6) can be written as

yr = Hrxr + nr. (9)

Henceforth, we work with the real-valued system in (9). For
notational simplicity, we drop subscriptsr in (9) and write

y = Hx+ n, (10)

whereH = Hr ∈ R
2Nrp×2k, y = yr ∈ R

2Nrp×1, x = xr ∈
R2k×1, and n = nr ∈ R2Nrp×1. The channel coefficients
are assumed to be known only at the receiver but not at the
transmitter. LetAi denote theM-PAM signal set from which
xi (ith entry ofx) takes values,i = 1, · · · , 2k. Now, define a
2k-dimensional signal spaceS to be the Cartesian product of
A1 to A2k. The ML solution is given by




∑n−1
i=0 x0,i t

i δ
∑n−1

i=0 xn−1,i ω
i
n t

i δ
∑n−1

i=0 xn−2,i ω
2i
n ti · · · δ

∑n−1
i=0 x1,i ω

(n−1)i
n ti∑n−1

i=0 x1,i t
i

∑n−1
i=0 x0,i ω

i
n t

i δ
∑n−1

i=0 xn−1,i ω
2i
n ti · · · δ

∑n−1
i=0 x2,i ω

(n−1)i
n ti∑n−1

i=0 x2,i t
i

∑n−1
i=0 x1,i ω

i
n t

i
∑n−1

i=0 x0,i ω
2i
n ti · · · δ

∑n−1
i=0 x3,i ω

(n−1)i
n ti

...
...

...
...

...∑n−1
i=0 xn−2,i t

i
∑n−1

i=0 xn−3,i ω
i
n t

i
∑n−1

i=0 xn−4,i ω
2i
n ti · · · δ

∑n−1
i=0 xn−1,i ω

(n−1)i
n ti∑n−1

i=0 xn−1,i t
i

∑n−1
i=0 xn−2,i ω

i
n t

i
∑n−1

i=0 xn−3,i ω
2i
n ti · · · ∑n−1

i=0 x0,i ω
(n−1)i
n ti




. (11.a)

dML =
arg min
d ∈ S

‖y −Hd‖2

=
arg min
d ∈ S

dTHTHd− 2yTHd, (11)

whose complexity is exponential ink [25].

A. High-rate Non-orthogonal STBCs from CDA

We focus on the detection of square (i.e.,n = p = Nt),
full-rate (i.e., k = pn = N2

t ), circulant (where the weight
matricesA(i)

c ’s are permutation type), non-orthogonal STBCs
from CDA [26], whose construction for arbitrary number of
transmit antennasn is given by the matrix in (11.a) given at
the bottom of this page [7]:

In (11.a),ωn = e
j2π
n , j =

√
−1, andxu,v, 0 ≤ u, v ≤ n − 1

are the data symbols from a QAM alphabet. Whenδ = e
√
5 j

andt = ej, the STBC in (11.a) achieves full transmit diversity
(under ML decoding) as well as information-losslessness [7].
When δ = t = 1, the code ceases to be of full-diversity
(FD), but continues to be information-lossless (ILL) [27],[52].
High spectral efficiencies with largen can be achieved using
this code construction. For example, withn = 32 transmit
antennas, the32 × 32 STBC from (11.a) with16-QAM and
rate-3/4 turbo code achieves a spectral efficiency of 96 bps/Hz.
This high spectral efficiency is achieved along with the full-
diversity of ordernNr. However, since these STBCs are non-
orthogonal, ML detection gets increasingly impractical for
largen. Consequently, a key challenge in realizing the benefits
of these large STBCs in practice is that of achieving near-ML
performance for largen at low detection complexities. Our
proposed detector, termed as themultistage likelihood ascent
search (M -LAS) detector, presented in the following section
essentially addresses this challenging issue.

III. PROPOSEDMULTISTAGE LAS DETECTOR

The proposedM -LAS algorithm consists of a sequence of
likelihood-ascent search stages, where the likelihood increases
monotonically with every search stage. Each search stage
consists of several sub-stages. There can be at mostM sub-
stages, each consisting of one or more iterations (the first sub-
stage can have one or more iterations, whereas all the other
sub-stages can have at most one iteration). In the first sub-
stage, the algorithm updates one symbol per iteration such
that the likelihood monotonically increases from one iteration
to the next until a local minima is reached. Upon reaching this
local minima, the algorithm initiates the second sub-stage.
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In the second sub-stage, a 2-symbol update is tried to further
increase the likelihood. If the algorithm succeeds in increasing
the likelihood by 2-symbol update, it starts the next search
stage. If the algorithm does not succeed in the second sub-
stage, it goes to the third sub-stage where a 3-symbol updateis
tried to further increase the likelihood. Essentially, in theKth
sub-stage, aK-symbol update is tried to further increase the
likelihood. This goes on untila) either the algorithm succeeds
in theKth sub-stage for someK ≤ M (in which case a new
search stage is initiated), orb) the algorithm terminates.

The M -LAS algorithm starts with an initial solutiond(0),
given by d(0) = By, whereB is the initial solution filter,
which can be a matched filter (MF) or zero-forcing (ZF) filter
or MMSE filter. The indexm in d(m) denotes the iteration
number in a sub-stage of a given search stage. The ML cost
function after thekth iteration in a given search stage is

C(k) = d(k)THTHd(k) − 2yTHd(k). (12)

A. One-symbol Update

Let us assume that we update thepth symbol in the(k+1)th
iteration; p can take value from1, · · · , Nt for M-PAM and
1, · · · , 2Nt for M-QAM. The update rule can be written as

d(k+1) = d(k) + λ(k)
p ep, (13)

whereep denotes the unit vector with itspth entry only as one,
and all other entries as zero. Also, for any iterationk, d(k)

should belong to the spaceS, and thereforeλ(k)
p can take only

certain integer values. For example, in case of 4-PAM or 16-
QAM

(
both have the same signal setAp = {−3,−1, 1, 3}

)
,

λ
(k)
p can take values only from{−6,−4,−2, 0, 2, 4, 6}. Using

(12) and (13), and defining a matrixG as

G
△
= HTH, (14)

we can write the cost difference as

∆Ck+1
p

△
= C(k+1) − C(k)

= λ(k)2

p (G)p,p − 2λ(k)
p z(k)p , (15)

wherehp is thepth column ofH, z(k) = HT (y−Hd(k)), z(k)p

is the pth entry of thez(k) vector, and(G)p,p is the (p, p)th

entry of theG matrix. Also, let us defineap and l(k)p as

ap = (G)p,p , l(k)p = |λ(k)
p |. (16)

With the above variables defined, we can rewrite (15) as

∆Ck+1
p = l(k)

2

p ap − 2l(k)p |z(k)p | sgn(λ(k)
p ) sgn(z(k)p ), (17)

where sgn(.) denotes the signum function. For the ML cost
function to reduce from thekth to the(k +1)th iteration, the
cost difference should be negative. Using this fact and that
ap andl(k)p are non-negative quantities, we can conclude from
(17) that the sign ofλ(k)

p must satisfy

sgn(λ(k)
p ) = sgn(z(k)p ). (18)

Using (18) in (17), the ML cost difference can be rewritten as

F(l(k)p )
△
= ∆Ck+1

p = l(k)
2

p ap − 2l(k)p |z(k)p |. (19)

For F(l
(k)
p ) to be non-positive, the necessary and sufficient

condition from (19) is that

l(k)p <
2|z(k)p |
ap

. (20)

However, we can find the value ofl(k)p which satisfies (20)
and at the same time gives the largest descent in the ML
cost function from thekth to the (k + 1)th iteration (when
symbol p is updated). Also,l(k)p is constrained to take only
certain integer values, and therefore the brute-force way to
get optimuml

(k)
p is to evaluateF(l

(k)
p ) at all possible values

of l(k)p . This would become computationally expensive as the
constellation sizeM increases. However, for the case of 1-
symbol update, we could obtain a closed-form expression for
the optimuml

(k)
p that minimizesF(l

(k)
p ), which is given by

(corresponding theorem and proof are given in the Appendix)

l
(k)
p,opt = 2

⌊
|z(k)p |
2ap

⌉
, (21)

where ⌊.⌉ denotes the rounding operation, where for a real
numberx, ⌊x⌉ is the integer closest tox. If the pth symbol
in d(k), i.e.,d(k)p , were indeed updated, then the new value of
the symbol would be given by

d̃(k+1)
p = d(k)p + l(k)p sgn(z(k)p ). (22)

However, d̃(k+1)
p can take values only in the setAp, and

therefore we need to check for the possibility ofd̃(k+1)
p

being greater than(M − 1) or less than−(M − 1). If
d̃
(k+1)
p > (M− 1), thenl(k)p is adjusted so that the new value

of d̃(k+1)
p with the adjusted value ofl(k)p using (22) is(M−1).

Similarly, if d̃(k+1)
p < −(M− 1), thenl(k)p is adjusted so that

the new value ofd̃(k+1)
p is −(M− 1). Let l̃(k)p,opt be obtained

from l
(k)
p,opt after these adjustments. It can be shown that if

F(l
(k)
p,opt) is non-positive, thenF(l̃

(k)
p,opt) is also non-positive.

We computeF(l̃
(k)
p,opt), ∀ p = 1, · · · , 2N2

t . Now, let

s =
arg min

p
F(l̃

(k)
p,opt). (23)

If F(l̃
(k)
s,opt) < 0, the update for the(k + 1)th iteration is

d(k+1) = d(k) + l̃
(k)
s,opt sgn(z(k)s ) es, (24)

z(k+1) = z(k) − l̃
(k)
s,opt sgn(z(k)s )gs, (25)

wheregs is thesth column ofG. The update in (25) follows
from the definition ofz(k) in (15). If F(l̃

(k)
s,opt) ≥ 0, then

the 1-symbol update search terminates. The data vector at
this point is referred to as ‘1-symbol update local minima.’
After reaching the 1-symbol update local minima, we look for
a further decrease in the cost function by updating multiple
symbols simultaneously.

B. Why Multiple Symbol Updates?

The motivation for trying out multiple symbol updates can
be explained as follows. LetLK ⊆ S denote the set of data
vectors such that for anyd ∈ LK , if a K-symbol update is
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performed ond resulting in a vectord′, then ||y −Hd′|| ≥
||y−Hd||. We note thatdML ∈ LK , ∀K = 1, 2, · · · , 2Nt, be-
cause any number of symbol updates ondML will not decrease
the cost function. We define another setMK =

⋂K
j=1 Lj . Note

thatdML ∈ MK , ∀K = 1, 2, · · · , 2Nt, andM2Nt
= {dML},

i.e., M2Nt
is a singleton set withdML as the only element.

It is noted that if the updates are done optimally, then the
output of theK-LAS algorithm converges to a vector inMK .
Also, |MK+1| ≤ |MK |, K = 1, 2, · · · , 2Nt − 1. For any
d ∈ MK , K = 1, 2, · · · , 2Nt and d 6= dML, it can be
seen thatd anddML will differ in K + 1 or more locations.
The probability thatdML = x increases with increasing
SNR, and so the separation betweend ∈ MK and x will
monotonically increase with increasingK. SincedML ∈ MK ,
and |MK | decreases monotonically with increasingK, there
will be lesser non-ML data vectors to which the algorithm
can converge to for increasingK. Therefore, the probability
of the noise vectorn inducing an error would decrease with
increasingK. This indicates thatK-symbol updates with
large K could get near to ML performance with increasing
complexity for increasingK.

C. K-symbol Update,1 < K ≤ 2N2
t

In this subsection, we present the update algorithm for
the general case whereK symbols,1 < K ≤ 2N2

t , are
updated simultaneously in one iteration.K-symbol updates
can be done in

(
2N2

t

K

)
ways, among which we seek to find

that update which gives the largest reduction in the ML
cost. Assume that in the(k + 1)th iteration, K symbols
at the indicesi1, i2, · · · , iK of d(k) are updated. Eachij,
j = 1, 2, · · · ,K, can take values from1, 2, · · · , N2

t for M-
PAM and1, 2, · · · , 2N2

t for M-QAM. Further, define the set

of indices,U △
= {i1, i2, · · · , iK}. The update rule for theK-

symbol update can then be written as

d(k+1) = d(k) +

K∑

j=1

λ
(k)
ij

eij . (26)

For any iterationk, d(k) belongs to the spaceS, and therefore
λ
(k)
ij

can take only certain integer values. In particular,λ
(k)
ij

∈
A

(k)
ij

, whereA(k)
ij

△
= {x|(x+d

(k)
ij

) ∈ Aij , x 6= 0}. For example,

for 16-QAM, Aij = {−3,−1, 1, 3}, and if d(k)ij
is -1, then

A
(k)
ij

= {−2, 2, 4}. Using (12), we can write the cost difference

function∆Ck+1
U (λ

(k)
i1

, λ
(k)
i2

, · · · , λ(k)
iK

)
△
= C(k+1) − C(k) as

∆Ck+1
U (λ

(k)
i1

, λ
(k)
i2

, · · · , λ(k)
iK

) =

K∑

j=1

λ
(k)2

ij
(G)ij ,ij

+ 2
K∑

q=1

K∑

p=q+1

λ
(k)
ip

λ
(k)
iq

(G)ip,iq − 2
K∑

j=1

λ
(k)
ij

z
(k)
ij

, (27)

where λ
(k)
ij

∈ A
(k)
ij

, which can be compactly written as

(λ
(k)
i1

, λ
(k)
i2

, · · · , λ(k)
iK

) ∈ A
(k)
U

, whereA(k)
U denotes the Cartesian

product ofA(k)
i1

, A(k)
i2

through toA(k)
iK

.
For a givenU , in order to decrease the ML cost, we would

like to choose the value of theK-tuple (λ
(k)
i1

, λ
(k)
i2

, · · · , λ(k)
iK

)

such that the cost difference given by (27) is negative. If mul-
tiple K-tuples exist for which the cost difference is negative,
we choose theK-tuple which gives the most negative cost
difference.

Unlike for 1-symbol update, forK-symbol update we do not
have a closed-form expression for(λ

(k)
i1,opt

, λ
(k)
i2,opt

, · · · , λ(k)
iK ,opt)

which minimizes the cost difference overA(k)
U , since the

cost difference is a function ofK discrete valued vari-
ables. Consequently, a brute-force method is to evalu-
ate ∆Ck+1

U
(λ

(k)
i1

, λ
(k)
i2

, · · · , λ(k)
iK

) over all possible values of

(λ
(k)
i1

, λ
(k)
i2

, · · · , λ(k)
iK

). Approximate methods can be adopted
to solve this problem using lesser complexity. One method
based on zero-forcing is as follows. The cost difference
function in (27) can be rewritten as

∆Ck+1
U (λ

(k)
i1

, λ
(k)
i2

, · · · , λ(k)
iK

) = Λ
(k)T

U FU Λ
(k)
U

− 2Λ
(k)T

U z
(k)
U , (28)

where Λ
(k)
U

△
= [λ

(k)
i1

λ
(k)
i2

· · ·λ(k)
iK

]T , z
(k)
U

△
= [z

(k)
i1

z
(k)
i2

· · · z(k)iK
]T ,

and FU ∈ RK×K , where (FU)p,q = (G)ip,iq and p, q ∈
{1, 2, · · · ,K}. Since∆Ck+1

U (λ
(k)
i1

, λ
(k)
i2

, · · · , λ(k)
iK

) is a strictly

convex quadratic function ofΛ(k)
U (the HessianFU is positive

definite with probability 1), a unique global minima exists,
and is given by

Λ̃
(k)
U = F−1

U z
(k)
U . (29)

However, the solution given by (29) need not lie inA(k)
U . So,

we first round-off the solution as

Λ̂
(k)
U = 2

⌊
0.5Λ̃

(k)
U

⌉
, (30)

where the operation in (30) is done element-wise, sinceΛ̃
(k)
U

is a vector. Further, letbΛ(k)
U

△
= [bλ(k)

i1
bλ(k)
i2

· · · bλ(k)
iK

]T . It is still

possible that the solution̂Λ(k)
U in (30) need not lie inA(k)

U .
This would result ind(k+1)

ij
/∈ Aij for somej. For example,

if Aij is M-PAM, thend(k+1)
ij

/∈ Aij if d
(k)
ij

+ bλ(k)
ij

> (M− 1)

or d
(k)
ij

+ bλ(k)
ij

< −(M − 1) . In such cases, we propose the

following adjustment tôλ(k)
ij

for j = 1, 2, · · · ,K:

bλ(k)
ij

=

(
(M− 1)− d

(k)
ij

, when bλ(k)
ij

+ d
(k)
ij

> (M− 1)

−(M− 1)− d
(k)
ij

,when bλ(k)
ij

+ d
(k)
ij

< −(M− 1).
(31)

After these adjustments, we are guaranteed thatbΛ(k)
U

∈ A
(k)
U

.
Therefore, the new cost difference function value is given by
∆Ck+1

U (λ̂
(k)
i1

, λ̂
(k)
i2

, · · · , λ̂(k)
iK

). It is noted that the complexity
of this approximate method does not depend on the size
of the setA(k)

U , i.e., it has constant complexity. Through
simulations, we have observed that this approximation results
in a performance close to that of the brute-force method for
K = 2 and 3. Defining the optimumU for the approximate
method asÛ , we can write

Û △
= (̂i1, î2, · · · , îK)

=
arg min

U ∆Ck+1
U (λ̂

(k)
i1

, λ̂
(k)
i2

, · · · , λ̂(k)
iK

). (32)

The K-update is successful and the update is done only if
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∆Ck+1

Û
(bλ(k)

î1
, bλ(k)

î2
, · · · , bλ(k)

ˆiK
) < 0. The update rules for thez(k)

andd(k) vectors are given by

z(k+1) = z(k) −
K∑

j=1

λ̂
(k)

îj
gîj

, (33)

d(k+1) = d(k) +
K∑

j=1

λ̂
(k)

îj
eîj . (34)

D. Computational Complexity of theM -LAS Algorithm

The complexity of the proposedM -LAS algorithm com-
prises of three components, namely,i) computation of the
initial vector d(0), ii) computation ofHTH, and iii) the
search operation. Figure 1 shows the per-symbol complexity
plots as a function ofNt = Nr for 4-QAM at an SNR of 6 dB
using MMSE initial vector. Two good properties of the STBCs
from CDA are useful in achieving low orders of complexity for
the computation ofd(0) andHTH. They are:i) the weight
matricesA(i)

c ’s are permutation type, and ii) the N2
t × N2

t

matrix formed withN2
t × 1-sizeda(i)c vectors as columns is a

scaled unitary matrix. These properties allow the computation
of MMSE/ZF initial solution inO(N3

t Nr) complexity, i.e., in
O(NtNr) per-symbol complexity since there areN2

t symbols
in one STBC matrix. Likewise, the computation ofHTH can
be done inO(N3

t ) per-symbol complexity.
The average per-symbol complexities of the 1-LAS and 2-

LAS search operations areO(N2
t ) andO(N2

t logNt), respec-
tively, which can be explained as follows. The average search
complexity is the complexity of one search stage times the
mean number of search stages till the algorithm terminates.
For 1-LAS, the number of search stages is always one. There
are multiple iterations in the search, and in each iterationall
possible

(
2N2

t

1

)
1-symbol updates are considered. So, the per-

iteration complexity in 1-LAS isO(N2
t ), i.e.,O(1) complexity

per symbol. Further, the mean number of iterations before
the algorithm terminates in 1-LAS was found to beO(N2

t )
through simulations. So, the overall per-symbol complexity
of 1-LAS is O(N2

t ). In 2-LAS, the complexity of the 2-
symbol update dominates over the 1-symbol update. Since
there are

(
2N2

t

2

)
possible 2-symbol updates, the complex-

ity of one search stage isO(N4
t ), i.e., O(N2

t ) complexity
per symbol. The mean number of stages till the algorithm
terminates in 2-LAS was found to beO(logNt) through
simulations. Therefore, the overall per-symbol complexity of
2-LAS is O(N2

t logNt). These can be observed from Fig.
1, where it can be seen that the per-symbol complexity in
the initial vector computation plus the 1-LAS/2-LAS search
operation isO(N2

t )/O(N2
t logNt); i.e., 1-LAS and 2-LAS

complexity plots run parallel to thec1N2
t and c2N

2
t logNt

lines, respectively. With the computation ofHTH included,
the complexity order is more thanN2

t . From the slopes of
the plots in Fig. 1, we find that the overall complexities
for Nt = 16 and 32 are proportional toN2.5

t and N2.7
t ,

respectively.
For the special case of ILL-only STBCs (i.e.,δ = t = 1),

the complexity involved in computingd(0) andHTH can be
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d(0), HTH, search (1−LAS)

d(0), HTH, search (2−LAS)

d(0), search (1−LAS)

d(0), search (2−LAS)

SNR = 6 dB

Fig. 1. Computational complexity of the proposedM -LAS algorithm in
decoding non-orthogonal STBCs from CDA. MMSE initial vector, 4-QAM,
SNR = 6 dB.

reduced further. This becomes possible due to the follow-
ing property of ILL-only STBCs. LetVa be the complex
N2

t × N2
t matrix with a

(i)
c as its ith column. The com-

putation of d(0) (or HTH) involves multiplication ofVH
a

with another vector (or matrix). The columns ofVH
a can be

permuted in such a way that the permuted matrix is block-
diagonal, where each block is aNt × Nt DFT matrix for
δ = t = 1. So, the multiplication ofVH

a by any vector
becomes equivalent to aNt-point DFT operation, which can
be efficiently computed using FFT inO(Nt logNt) complex-
ity. Using this simplification, the per-symbol complexity of
computingHTH is reduced fromO(N3

t ) to O(N2
t logNt).

Computingd(0) using MMSE filter involves the computation
of 1

Nt
VH

a (I ⊗ ((HH
c Hc +

1
γNt

I)−1HH
c ))yc. The complexity

of computing the vector(I ⊗ ((HH
c Hc + 1

γNt
I)−1HH

c ))yc

is O(N2
t Nr), and the complexity of computingVH

a (I ⊗
((HH

c Hc + 1
γNt

I)−1HH
c ))yc is O(N3

t Nr). In the case of
ILL-only STBC, because of the above-mentioned property, the
complexity of computingVH

a (I⊗((HH
c Hc+

1
γNt

I)−1HH
c ))yc

gets reduced toO(N2
t logNt) from O(N3

t Nr). So the to-
tal complexity for computingd(0) in ILL-only STBC is
O(N2

t Nr) + O(N2
t logNt), which gives a per-symbol com-

plexity ofO(Nr)+O(logNt). So, the overall per-symbol com-
plexity for 1-LAS detection of ILL-STBCs isO(N2

t logNt).

E. Generation of Soft Outputs

We propose to generate soft values at theM -LAS output
for all the individual bits that constitute theM-PAM/M-QAM
symbols as follows. These output values are fed as soft inputs
to the decoder in a coded system. Letd = [bx1, bx2, · · · , bx2N2

t
],

x̂i ∈ Ai denote the detected output symbol vector from the
M -LAS algorithm. Let the symbol̂xi map to the bit vector
bi = [bi,1, bi,2, · · · , bi,Ki

]T , whereKi = log2 |Ai|, and bi,j ∈
{+1,−1}, i = 1, 2, · · · , 2N2

t and j = 1, 2, · · · ,Ki. Let b̃i,j ∈ R

denote the soft value for thejth bit of the ith symbol. Given
d, we need to find̃bi,j , ∀ (i, j).
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Note that the quantity‖y − Hd‖2 is inversely related to
the likelihood thatd is indeed the transmitted symbol vector.
Let the d vector with its jth bit of the ith symbol forced
to +1 be denoted as vectordj+

i . Likewise, let dj−
i be the

vectord with its jth bit of the ith symbol forced to -1. Then
the quantities‖y−Hd

j+
i ‖2 and‖y−Hd

j−
i ‖2 are inversely

related to the likelihoods that thejth bit of theith transmitted
symbol is +1 and -1, respectively. So, if‖y−Hd

j−
i ‖2−‖y−

Hd
j+
i ‖2 is +ve (or -ve), it indicates that thejth bit of theith

transmitted symbol has a higher likelihood of being +1 (or -1).
So, the quantity‖y−Hd

j−
i ‖2−‖y−Hd

j+
i ‖2, appropriately

normalized to avoid unbounded increase for increasingNt,
can be a good soft value for thejth bit of the ith symbol.
With this motivation, we generate the soft output value for the
jth bit of the ith symbol as

b̃i,j =
‖y −Hd

j−
i ‖2 − ‖y −Hd

j+
i ‖2

‖hi‖2
, (35)

where the normalization by‖hi‖2 is to contain unbounded
increase of̃bi,j for increasingNt. The RHS in the above can
be efficiently computed in terms ofz andG as follows. Since
d
j+
i andd

j−

i differ only in the ith entry, we can write

d
j−
i = d

j+
i + λi,jei. (36)

Since we knowd
j−
i and d

j+
i , we know λi,j from (36).

Substituting (36) in (35), we can write

b̃i,j ‖hi‖2 = ‖y −Hd
j+
i − λi,jhi‖2 − ‖y−Hd

j+
i ‖2

= λ
2

i,j‖hi‖2 − 2λi,jh
T
i (y −Hd

j+
i ) (37)

= −λ
2

i,j‖hi‖2 − 2λi,jh
T
i (y −Hd

j−
i ). (38)

If bi,j = 1, thend
j+
i = d and substituting this in (37) and

dividing by ‖hi‖2, we get

b̃i,j = λ
2

i,j − 2λi,j

zi
(G)i,i

. (39)

If bi,j = −1, thendj−
i = d and substituting this in (38) and

dividing by ‖hi‖2, we get

b̃i,j = −λ
2

i,j − 2λi,j

zi
(G)i,i

. (40)

It is noted thatz and G are already available upon the ter-
mination of theM -LAS algorithm, and hence the complexity
of computing b̃i,j in (39) and (40) is constant. Hence, the
overall complexity in computing the soft values for all the
bits isO(Nt log2 M). We also see from (39) and (40) that the
magnitude of̃bi,j depends uponλi,j . For large-size signal sets,
the possible values ofλi,j will also be large in magnitude. We
therefore have to normalizẽbi,j for the turbo decoder to func-
tion properly. It has been observed through simulations that
normalizingb̃i,j by

(λi,j

2

)2
resulted in good performance. In

[28], we have shown that this soft decision output generation
method, when used in large V-BLAST systems, offers about 1
to 1.5 dB improvement in coded BER performance compared
to that achieved using hard decision outputs from theM -LAS
algorithm. We have observed similar improvements in STBC
MIMO systems also. In all coded BER simulations in this
paper, we use the soft outputs proposed here as inputs to the

decoder.

IV. BER PERFORMANCE WITHPERFECTCSIR

In this section, we present the uncoded/turbo coded BER
performance of the proposedM -LAS detector in decoding
non-orthogonal STBCs from CDA, assuming perfect knowl-
edge of CSI at the receiver5. In all the BER simulations in this
section, we have assumed that the fade remains constant over
one STBC matrix duration and varies i.i.d. from one STBC
matrix duration to the other. We consider two STBC designs;
i) ‘FD-ILL’ STBCs where δ = e

√
5 j, t = ej in (11.a), and

ii) ‘ILL-only’ STBCs where δ = t = 1. The SNRs in all
the BER performance figures are the average received SNR
per received antenna,γ, defined in Sec. II [3]. We have used
MMSE filter as the initial filter in all the simulations.

A. Uncoded BER as a Function of IncreasingNt = Nr

In Fig. 2, we plot the uncoded BER performance of the
proposed 1-, 2-, and 3-LAS algorithms in decoding ILL-
only STBCs (4 × 4, 8 × 8, 16 × 16, 32 × 32 STBCs)
for Nt = Nr = 4, 8, 16, 32 and 4-QAM. SISO AWGN
performance (without fading) and MMSE-only performance
(i.e., without the search using LAS) are also plotted for com-
parison. It can be seen that MMSE-only performance does not
improve with increasing STBC size (i.e., increasingNt = Nr).
However, it is interesting to see that, when the proposed search
using LAS is performed following the MMSE operation, the
performance improves for increasingNt = Nr, illustrating
the performance benefit due to the proposed search strategy.
For example, though the LAS detector performs far from
SISO AWGN performance for small number of dimensions
(e.g.,4 × 4, 8 × 8 STBCs with 32 and 128 real dimensions,
respectively), its large system behavior at increased number of
dimensions (e.g.,16 × 16 and32 × 32 STBCs with 512 and
2048 real dimensions, respectively) effectively renders near
SISO AWGN performance; e.g., withNt = Nr = 16, 32,
for BERs better than10−3, the LAS detector performs very
close to SISO AWGN performance. We also observe that 3-
LAS performs better than 2-LAS forNt = Nr = 4, 8, and 2-
LAS performs better than 1-LAS. Since close to SISO AWGN
performance is achieved with 1-, 2-, or 3-symbol update itself,
the cases of more than 3-symbol update, which will result in
increased complexity with diminishing returns in performance
gain, are not considered in the performance evaluation.

B. Performance of FD-ILL Versus ILL-only STBCs

In Fig. 3, we present uncoded BER performance comparison
between FD-ILL versus ILL-only STBCs for 4-QAM at differ-
entNt = Nr using 1-LAS detection. The BER plots in Fig. 3
illustrate that the performance of ILL-only STBCs with 1-LAS
detection forNt = Nr = 4, 8, 16, 32 and 4-QAM are almost as
good as those of the corresponding FD-ILL STBCs. A similar
closeness between the performance of ILL-only and FD-ILL

5We will relax this perfect channel knowledge assumption in the next
section, where we present an iterative detection/channel estimation scheme
for the considered large STBC MIMO system.
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Fig. 2. Uncoded BER of the proposed 1-LAS, 2-LAS and 3-LAS detectors
for ILL-only STBCs for differentNt = Nr. 4-QAM, 2Nt bps/Hz. BER
improves asNt = Nr increases and approaches SISO AWGN performance
for large Nt = Nr .
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Fig. 3. Uncoded BER comparison betweenFD-ILL and ILL-only STBCs
for different Nt = Nr . 4-QAM, 2Nt bps/Hz, 1-LAS detection.ILL-only
STBCs perform almost same as FD-ILL STBCs.

STBCs is observed in the turbo coded BER performance as
well, which is shown in Fig. 8 for a16 × 16 STBC with 4-
QAM and turbo code rates of 1/3, 1/2 and 3/4. This is an
interesting observation, since this suggests that, in suchcases,
the computational complexity advantage withδ = t = 1 in
ILL-only STBCs can be taken advantage of without incurring
much performance loss compared to FD-ILL STBCs.
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Fig. 4. Uncoded BER comparison betweenperfect codesand ILL-only
STBCs for differentNt = Nr , 4-QAM, 2Nt bps/Hz, 1-LAS detection.For
small dimensions (e.g.,4×4, 6×6, 8×8), perfect codes with 1-LAS detection
perform worse than ILL-only STBCs. For large dimensions (e.g., 16 × 16,
32× 32), ILL-only STBCs and perfect codes perform almost same.

C. Decoding and BER of Perfect Codes of Large Dimensions

While the STBC design in (11.a) offers both ILL and FD,
perfect codes6 under ML decoding can provide coding gain
in addition to ILL and FD [17]-[21]. Decoding of perfect
codes has been reported in the literature for only up to 5
antennas using sphere/lattice decoding [20]. The complexity of
these decoders are prohibitive for decoding large-sized perfect
codes, although large-sized codes are of interest from a high
spectral efficiency view point. We note that, because of its low-
complexity attribute, the proposedM -LAS detector is able to
decode perfect codes of large dimensions. In Figs. 4 and 5,
we present the simulated BER performance of perfect codes
in comparison with those of ILL-only and FD-ILL STBCs for
up to 32 transmit antennas using 1-LAS detector.

In Fig. 4, we show uncoded BER comparison between
perfect codes and ILL-only STBCs for differentNt = Nr

and 4-QAM using 1-LAS detection. The4 × 4 and 6 × 6
perfect codes are from [19], and the8 × 8, 16 × 16 and
32 × 32 perfect codes are from [20]. From Fig. 4, it can
be seen that the 1-LAS detector achieves better performance
for ILL-only STBCs than for perfect codes, when codes
with small number of transmit antennas are considered (e.g.,
Nt = 4, 6, 8). While perfect codes are expected to perform
better than ILL-only codes under ML detection for anyNt,
we observe the opposite behavior under 1-LAS detection for
smallNt (i.e., ILL-only STBCs performing better than perfect
codes for small dimensions). This behavior could be attributed
to the nature of the LAS detector, which achieves near-
optimal performance only when the number of dimensions is

6We note that the definition of perfect codes differ in [19] and[20]. The
perfect codes covered by the definition in [20] includes the perfect codes
of [19] as a proper subclass. However, for our purpose of illustrating the
performance of the proposed detector in large STBC MIMO systems, we
refer to the codes in [19] as well as [20] as perfect codes.



SAIF K. MOHAMMED et al.: HIGH-RATE SPACE-TIME CODED LARGE-MIMO SYSTEMS: LOW-COMPLEXITY DETECTION AND CHANNEL ESTIMATION 9

5 10 15 20 25 30 35 40 45
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Average Received SNR (dB) 

 B
it 

E
rr

or
 R

at
e 

 

 

 
16x16 Perfect code
(1) : 16x16 ILL−only STBC
(2) : 16x16 FD−ILL STBC
32x32 Perfect code
(3) : 32x32 ILL−only STBC
(4) : 32x32 FD−ILL STBC
SISO AWGN

(1, 2)

(3, 4)

16−QAM, 1−LAS detection
 Nr = Nt, 4Nt bps/Hz.

Fig. 5. Uncoded BER comparison betweenperfect codes, ILL-only , and
FD-ILL STBCs for Nt = Nr = 16, 32, 16-QAM, 4Nt bps/Hz, 1-LAS
detection.For larger modulation alphabet sizes (e.g., 16 QAM), perfect codes
with 1-LAS detection perform poorer than ILL-only and FD-ILL STBCs.

large7, and it appears that, in the detection process, LAS is
more effective in disentangling the symbols in STBCs when
δ = t = 1 (i.e., in ILL-only STBCs) than in perfect codes.
The performance gap between perfect codes and ILL-only
STBCs with 1-LAS detection diminishes for increasing code
sizes such that the performance for32× 32 perfect code and
ILL-only STBC with 4-QAM are almost same and close to
the SISO AWGN performance. In Fig. 5, we show a similar
comparison between perfect codes, ILL-only and FD-ILL only
STBCs when larger modulation alphabet sizes (e.g., 16-QAM)
are used in the case of16× 16 and32× 32 codes. It can be
seen that with higher-order QAM like 16-QAM, perfect codes
with 1-LAS detection perform poorer than ILL-only and FD-
ILL STBCs, and that ILL-only and FD-ILL STBCs perform
almost same and close to the SISO AWGN performance. The
results in Figs. 4 and 5 suggest that, with 1-LAS detection,
owing to the complexity advantage and good performance in
using δ = t = 1, ILL-only STBCs can be a good choice for
practical large STBC MIMO systems [27],[52].

D. Comparison with Other Large-MIMO Architecture/Detec-
tor Combinations

In [30], Choi et al have presented an iterative soft interfer-
ence cancellation (ISIC) scheme for multiple antenna systems,
derived based on maximum a posteriori (MAP) criterion. We
compared the performance of the ISIC scheme in [30] with
that of the proposed 1-LAS algorithm in detecting4 × 4,
8 × 8 and 16 × 16 ILL-only STBCs with Nt = Nr and 4-
QAM. Figure 6 shows this performance comparison. In [30],
zero-forcing vector was used as the initial vector in the ISIC
scheme. However, performance is better with MMSE initial

7In [29], we have presented an analytical proof that the bit error perfor-
mance of 1-LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading
converges to that of the ML detector asNt, Nr → ∞, keepingNt = Nr .
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4x4 ILL−only STBC, ISIC (Choi et al [30])

8x8 ILL−only STBC, ISIC (Choi et al [30])

16x16 ILL−only STBC, ISIC (Choi et al [30])

4x4 ILL−only STBC, 1−LAS (Proposed)

8x8 ILL−only STBC, 1−LAS (Proposed)

16x16 ILL−only STBC, 1−LAS (Proposed)
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Nt = Nr, 4−QAM,  2Nt bps/Hz
10 iterations in ISIC

Fig. 6. Uncoded BER comparison between the proposed 1-LAS algorithm
and the ISIC algorithm in [30] forILL-only STBCs for differentNt = Nr.
4-QAM, 2Nt bps/Hz. MMSE initial vectors for both 1-LAS and ISIC.1-LAS
performs significantly better than ISIC in [30].

vector. Since we used MMSE initial vector for1-LAS, we
have used MMSE initial vector for the ISIC algorithm as well.
Also, in [30], 4 to 5 iterations were shown to be good enough
for the ISIC algorithm to converge. In our simulations of the
ISIC algorithm, we used 10 iterations. Two key observations
can be made from Fig. 6:i) like the1-LAS algorithm, the ISIC
algorithm also shows large system behavior (i.e., improved
BER for increasingNt = Nr), and 2) the proposed 1-LAS
algorithm outperforms the ISIC algorithm by about 3 to 5
dB at 10−3 uncoded BER. In addition, the complexity of
the ISIC scheme is higher than the proposed scheme (see the
complexity comparison in Table I).

Next, we compare the proposed large-MIMO architecture
using STBCs from CDA andM -LAS detection with other
large-MIMO architectures and associated detectors reported
in the literature. Large-MIMO architectures that use stack-
ing of multiple small-sized STBCs and interference cancel-
lation (IC) detectors for these schemes have been investi-
gated in [22],[31],[32]. Here, we compare different architec-
ture/detector combinations, fixing the total number of trans-
mit/receive antennas and spectral efficiency to be same in
all the considered combinations. Specifically, we fixNt =
Nr = 16 and a spectral efficiency of 32 bps/Hz for all
the combinations. We compare the following seven differ-
ent architecture/detector combinations which use the same
Nt = Nr = 16 and achieve 32 bps/Hz spectral efficiency (see
Table I): i) proposed scheme using16 × 16 ILL-only STBC
(rate-16) with 4-QAM and 1-LAS detection,ii) 16× 16 ILL-
only STBC (rate-16) with 4-QAM and ISIC algorithm in [30]
with 10 iterations,iii) four 4 × 4 stacked QOSTBCs (rate-
1) with 256-QAM and IC algorithm presented in [22],iv)
eight 2 × 2 stacked Alamouti codes (rate-1) with 16-QAM
and IC algorithm in [22],v) 16× 16 V-BLAST scheme (rate-
16) with 4-QAM and sphere decoder (SD),vi) 16 × 16 V-
BLAST scheme (rate-16) with 4-QAM and ZF-SIC detector,
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 16x16 V−BLAST, 4−QAM, ZF−SIC detector

Four 4x4 Stacked QOSTBCs, 256−QAM, IC in [22]

Eight 2x2 Stacked Alamouti codes, 16−QAM, IC in [22]

16x16 V−BLAST, 4−QAM, ISIC with 10 iterations in [30]

16x16 ILL−only STBC, 4−QAM, ISIC with 10 iterations in [30]

16x16 V−BLAST, 4−QAM, Sphere decoder

16x16 ILL−only STBC, 4−QAM, 1−LAS detector (Proposed)

SISO AWGN, 4−QAM

For all architectures
Nr = Nt = 16
Spectral efficiency = 32 bps/Hz

Fig. 7. Uncoded BER comparison between different large-MIMO archi-
tecture/detector combinations for given number of transmit/receive antennas
(Nt = Nr = 16) and spectral efficiency (32 bps/Hz).Proposed scheme
performs better than other architecture/detector combinations considered. It
outperforms them in complexity as well (see Table I).

and vii) 16 × 16 V-BLAST scheme (rate-16) with 4-QAM
and ISIC algorithm in [30]. We present the BER performance
comparison of these different combinations in Fig. 7. We also
obtained the complexity numbers (in number of real operations
per bit) from simulations for these different combinationsat
an uncoded BER of5 × 10−2; these numbers are presented
in Table I, along with the SNRs at which5 × 10−2 uncoded
BER is achieved. The following interesting observations can
be made from Fig. 7 and Table I:

• the proposed scheme
(
combinationi)

)
significantly out-

performs the stacked architecture/IC detector combina-
tions presented in [22]

(
combinationsiii) andiv)

)
; e.g.,

at 5×10−2 uncoded BER, the proposed scheme performs
better than the stacked architecture/IC in [22] by 17 dB
(for four 4 × 4 QOSTBCs) and 10 dB (for eight2 × 2
Alamouti codes). Also, the proposed scheme achieves
this significant performance advantage at a much lesser
complexity than those of the stacked architecture/IC
combinations (see Table I).

• the proposed scheme performs slightly better than the V-
BLAST/sphere decoder combination

(
combinationv)

)
;

6.8 dB in proposed scheme versus 7 dB in V-BLAST
with sphere decoding at5 × 10−2 uncoded BER. Im-
portantly, the proposed scheme enjoys a significant com-
plexity advantage (by more than an order) over the V-
BLAST/sphere decoder combination.

• the ISIC algorithm in [30] applied to ILL-only STBC
detection (combinationii)) is inferior to the proposed
scheme in both performance (by about 4.5 dB at5 ×
10−2 uncoded BER) as well as complexity (by about two
orders).

• the ISIC algorithm in [30] applied to16× 16 V-BLAST
detection

(
combinationvii)

)
is also inferior to the pro-

posed scheme in BER performance (by about 3.8 dB at
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(1) : Rate−1/3 turbo (ILL−Only STBC)

(2) : Rate−1/2 turbo (ILL−Only STBC)
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(1, 4)

(3, 6)

Fig. 8. Turbo coded BER of 1-LAS detector for16 × 16 FD-ILL and
ILL-only STBCs.Nt = Nr = 16, 4-QAM, turbo code rates: 1/3, 1/2, 3/4
(10.6, 16, 24 bps/Hz). 1-LAS detector performs close to within 4 dB from
capacity. ILL-only STBCs preform as good as FD-ILL STBCs.

5× 10−2 uncoded BER) as well as complexity (by about
a factor of 2).

• comparing the stacked architecture/IC combinations
with V-BLAST/ZF-SIC

(
combination vi)

)
and V-

BLAST/ISIC combinations, we see that although the
diversity orders achieved in stacked architecture/IC com-
binations are high (see their slopes at high SNRs in Fig.
7), V-BLAST with ZF-SIC and ISIC detectors perform
much better at low and medium SNRs.

In summary, the proposed scheme outperforms the other
considered architecture/detector combinations both in terms
of performance as well as complexity.

E. Turbo Coded BER and Nearness-to-Capacity Results

Next, we evaluated the turbo coded BER performance of
the proposed scheme. In all the coded BER simulations, we
fed the soft outputs presented in Sec. III-E as input to the
turbo decoder. In Fig. 8, we plot the turbo coded BER of
the 1-LAS detector in decoding16 × 16 FD-ILL and ILL-
only STBCs, withNt = Nr = 16, 4-QAM and turbo code
rates 1/3 (10.6 bps/Hz), 1/2 (16 bps/Hz), 3/4 (24 bps/Hz).
The minimum SNRs required to achieve these capacities in a
16 × 16 MIMO channel (obtained by evaluating the ergodic
capacity expression in [1] through simulation) are also shown.
It can be seen that the 1-LAS detector performs close to within
just about 4 dB from capacity, which is very good in terms of
nearness-to-capacity considering the high spectral efficiencies
achieved. It can also be seen that the coded BER performance
of FD-ILL and ILL-only STBCs are almost the same for the
system parameters considered.

F. Effect of MIMO Spatial Correlation

In generating the BER results in Figs. 2 to 8, we have
assumed i.i.d. fading. However, MIMO propagation conditions
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Complexity SNR required
No. Large-MIMO Architecture/Detector Combinations(in # real operations to achieve5× 10−2

(fixed Nt = Nr = 16 and 32 bps/Hz per bit) at5× 10−2 uncoded BER
for all combinations) uncoded BER (from Fig. 7)

16× 16 ILL-only CDA STBC (rate-16) ,
i) 4-QAM and 1-LAS detection 3.473× 103 6.8 dB

[Proposed scheme]
ii) 16× 16 ILL-only CDA STBC (rate-16),

4-QAM and ISIC algorithm in [30] 1.187× 105 11.3 dB
iii) Four 4× 4 stacked rate-1 QOSTBCs,

256-QAM and IC algorithm in [22] 5.54× 106 24 dB
iv) Eight 2× 2 stacked rate-1 Alamouti codes,

16-QAM and IC algorithm in [22] 8.719× 103 17 dB
v) 16× 16 V-BLAST (rate-16) scheme,

4-QAM and sphere decoding 4.66× 104 7 dB
vi) 16× 16 V-BLAST (rate-16) scheme,

4-QAM and V-BLAST detector (ZF-SIC) 1.75× 104 13 dB
vii) 16× 16 V-BLAST (rate-16) scheme,

4-QAM and ISIC algorithm in [30] 7.883× 103 10.6 dB

TABLE I
COMPLEXITY AND PERFORMANCE COMPARISON OF DIFFERENT LARGE-MIMO ARCHITECTURE/DETECTOR COMBINATIONS, ALL WITH Nt = Nr = 16

AND ACHIEVING 32 BPS/HZ SPECTRAL EFFICIENCY. Proposed scheme outperforms the other considered architectures/detectors both in terms of
performance as well as complexity.

witnessed in practice often render the i.i.d. fading model as
inadequate. More realistic MIMO channel models that take
into account the scattering environment, spatial correlation,
etc., have been investigated in the literature [23],[33]. For
example, spatial correlation at the transmit and/or receive side
can affect the rank structure of the MIMO channel resulting in
degraded MIMO capacity [33]. The structure of scattering in
the propagation environment can also affect the capacity [23].
Hence, it is of interest to investigate the performance of theM -
LAS detector in more realistic MIMO channel models. To this
end, we use the non-line-of-sight (NLOS) correlated MIMO
channel model proposed by Gesbertet al8 in [23], and evaluate
the effect of spatial correlation on the BER performance of the
M -LAS detector [34].

We consider the following parameters9 in the simulations:
fc = 5 GHz, R = 500 m, S = 30, Dt = Dr = 20 m, θt =
θr = 90◦, anddt = dr = 2λ/3. For fc = 5 GHz, λ = 6 cm
anddt = dr = 4 cm. In Fig. 7, we plot the BER performance
of the 1-LAS detector in decoding16 × 16 ILL-only STBC
with Nt = Nr = 16 and 16-QAM. Uncoded BER as well as
rate-3/4 turbo coded BER (48 bps/Hz spectral efficiency) for
i.i.d. fading as well as correlated fading are shown. In addition,

8Please see [23] for more elaborate details of the spatially correlated MIMO
channel model. We note that this model can be appropriate in application
scenarios like high data rate wireless IPTV/HDTV distribution using high
spectral efficiency large-MIMO links, where largeNt andNr can be placed
at the base station (BS) and customer premises equipment (CPE), respectively.

9The parameters used in the model in [23] include:Nt, Nr : # transmit and
receive (omni-directional) antennas;dt, dr : spacing between antenna elements
at the transmit side and at the receive side;R: distance between transmitter
and receiver,Dt,Dr: transmit and receive scattering radii;S: number of
scatterers on each side;θt, θr : angular spread at the transmit and receiver
sides, andfc, λ: carrier frequency, wavelength.

from the MIMO capacity formula in [1], we evaluated the
theoretical minimum SNRs required to achieve a capacity of
48 bps/Hz in i.i.d. as well as correlated fading, and plotted
them also in Fig. 7. It is seen that the minimum SNR required
to achieve a certain capacity (48 bps/Hz) gets increased for
correlated fading compared to i.i.d. fading. From the BER
plots in Fig. 7, it can be observed that at an uncoded BER
of 10−3, the performance in correlated fading degrades by
about 7 dB compared that in i.i.d. fading. Likewise, at a rate-
3/4 turbo coded BER of10−4, a performance loss of about 6
dB is observed in correlated fading compared to that in i.i.d.
fading. In terms of nearness to capacity, the vertical fall of the
coded BER for i.i.d. fading occurs at about 24 dB SNR, which
is about 13 dB away from theoretical minimum required SNR
of 11.1 dB. With correlated fading, the detector is observed
to perform close to capacity within about 18.5 dB. One way
to alleviate such degradation in performance due to spatial
correlation can be by providing more number of dimensions
at the receive side, which is highlighted in Fig. 9.

Figure 9 illustrates that the 1-LAS detector can achieve
substantial improvement in uncoded as well as coded BER
performance in decoding12×12 ILL-only STBC by increasing
Nr beyond Nt for 16-QAM in correlated fading. In the
simulations, we have maintainedNrdr = 72 cm anddt = dr
in both the cases of symmetry (i.e.,Nt = Nr = 12) as well
as asymmetry (i.e.,Nt = 12, Nr = 18). By comparing the
1-LAS detector performance with[Nt = Nr = 12] versus
[Nt = 12, Nr = 18], we observe that the uncoded BER
performance with[Nt = 12, Nr = 18] improves by about 17
dB compared to that of[Nt = Nr = 12] at 2 × 10−3 BER.
Even the uncoded BER performance with[Nt = 12, Nr = 18]
is significantly better than the coded BER performance with
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Fig. 9. Effect ofNr > Nt in correlated MIMO fading in [23] keeping
Nrdr constant anddt = dr . Nrdr = 72 cm, fc = 5 GHz, R = 500 m,
S = 30, Dt = Dr = 20 m, θt = θr = 90◦, 12 × 12 ILL-only STBC,
Nt = 12, Nr = 12, 18, 16-QAM, rate-3/4 turbo code,36 bps/Hz. Increasing
# receive dimensions alleviates the loss due to spatial correlation.

[Nt = Nr = 12] by about 11.5 dB at10−3 BER. This
improvement is essentially due to the ability of the 1-LAS
detector to effectively pick up the additional diversity orders
provided by the increased number of receive antennas. With
a rate-3/4 turbo code (i.e., 36 bps/Hz), at a coded BER of
10−4, the 1-LAS detector achieves a significant performance
improvement of about 13 dB with [Nt = 12, Nr = 18] com-
pared to that with[Nt = Nr = 12]. With [Nt = 12, Nr = 18],
the vertical fall of coded BER is such that it is only about
8 dB from the theoretical minimum SNR needed to achieve
capacity. This points to the potential for realizing high spectral
efficiency multi-gigabit large-MIMO systems that can achieve
good performance even in the presence of spatial correlation.
We further remark that transmit correlation in MIMO fading
can be exploited by using non-isotropic inputs (precoding)
based on the knowledge of the channel correlation matrices
[35]-[37]. While [35]-[37] propose precoders in conjunction
with orthogonal/quasi-orthogonal small MIMO systems in
correlated Rayleigh/Ricean fading, design of precoders for
large-MIMO systems can be investigated as future work.

V. I TERATIVE DETECTION/CHANNEL ESTIMATION

In this section, we relax the perfect CSIR assumption
made in the previous section, and estimate the channel matrix
based on a training-based iterative detection/channel estima-
tion scheme [38]. Training-based schemes, where a pilot
signal known to the transmitter and the receiver is sent to
get a rough estimate of the channel (training phase) has
been studied for STBC MIMO systems in [39]-[42]. Here,
we adopt a training-based approach for channel estimation
in large STBC MIMO systems. In the considered training-
based channel estimation scheme, transmission is carried out
in frames, where oneNt ×Nt pilot matrix, X(P)

c ∈ CNt×Nt ,
for training purposes, followed byNd data STBC matrices,
X

(i)
c ∈ C

Nt×Nt , i = 1, 2, ..., Nd, are sent in each frame
as shown in Fig. 11. One frame length,T , (taken to be the
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Fig. 10. Transmission scheme with one pilot matrix followedby Nd data
STBC matrices in each frame.

channel coherence time) isT = (Nd + 1)Nt channel uses. A
frame of transmitted pilot and data matrices is of dimension
Nt ×Nt(1 +Nd), which can be written as

Xc =
[
X(P)

c X(1)
c X(2)

c · · · X(Nd)
c

]
. (41)

As in [43], let γp and γd denote the average SNR during
pilot and data phases, respectively, which are related to the
average received SNRγ as γ(Nd + 1) = γp + Ndγd.

Define βp
△
=

γp

γ
, and βd

△
= γd

γ
. Let Es denote the average

energy of the transmitted symbol during the data phase. The
average received signal power during the data phase is given

by E
[
tr
(
X

(i)
c X

(i)
c

H)]
= N2

t Es, and the average received

signal power during the pilot phase isE
[
tr
(
X

(P)
c X

(P)
c

H)]
=

N2
t Esβp

βd
= µNt, whereµ

△
=

NtEsβp

βd
. For optimal training,

the pilot matrix should be such thatX(P)
c X(P)

c

H
= µINt

[43].
As in Sec. II, letHc ∈ C

Nr×Nt denote the channel matrix,
which we want to estimate. We assume block fading, where
the channel gains remain constant over one frame consisting
of (1 + Nd)Nt channel uses, which can be viewed as the
channel coherence time. This assumption can be valid in
slow fading fixed wireless applications (e.g., as in possible
applications like BS-to-BS backbone connectivity and BS-
to-CPE wireless IPTV/HDTV distribution). For this training-
based system and channel model, Hassibi and Hochwald
presented a lower bound on the capacity in [43]; we will
illustrate the nearness of the performance achieved by the
proposed iterative detection/estimation scheme to this bound.
The received frame is of dimensionNr × Nt(1 + Nd), and
can be written as

Yc =
[
Y(P)

c Y(1)
c Y(2)

c · · · Y(Nd)
c

]
= HcXc +Nc , (42)

where Nc =
h
N(P)

c N
(1)
c N

(2)
c · · · N(Nd)

c

i
is the Nr ×

Nt(1 +Nd) noise matrix and its entries are modeled as i.i.d.
CN (0, σ2 = NtEs

γβd
). Equation (42) can be decomposed into

two parts, namely, the pilot matrix part and the data matrices
part, as

Y(P)
c = HcX

(P)
c +N(P)

c , (43)

Y(D)
c =

[
Y(1)

c Y(2)
c · · · Y(Nd)

c

]

= Hc

[
X(1)

c X(2)
c · · · X(Nd)

c

]
+
[
N(1)

c N(2)
c · · · N(Nd)

c

]
.(44)
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A. MMSE Estimation Scheme

A straight-forward way to achieve detection of data symbols
with estimated channel coefficients is as follows:

1) Estimate the channel gains via anMMSE estimatorfrom
the signal received during the firstNt channel uses (i.e.,
during pilot transmission); i.e., givenY(P)

c andX(P)
c , an

estimate of the channel matrixHc is found as

Hest
c = Y(P)

c (X(P)
c )H

[
σ2INt

+X(P)
c (X(P)

c )H
]−1

. (45)

2) Use the aboveHest
c in place ofHc in the LAS algorithm

(as described in Sections II and III) and detect the
transmitted data symbols.

We refer to the above scheme as the‘MMSE estimation
scheme.’In the absence of the knowledge ofσ2, a zero-forcing
estimate can be obtained at the cost of some performance
loss compared to the MMSE estimate. The performance of
the estimator can be improved by using a cyclic minimization
technique for minimizing the ML metric [44].

B. Proposed Iterative Detection/Estimation Scheme

Techniques that employ iterations between channel estima-
tion and detection can offer improved performance. Iterative
receiver algorithms are attractive to achieve a good tradeoff
between performance and complexity [45]-[51]. In [45]-[47],
receivers that iterate between channel estimation, multiuser
detection and channel decoding in coded CDMA systems are
presented. Similar iterative techniques in the context of MIMO
and MIMO-OFDM systems are presented in [48]-[51]. Here,
we propose an iterative scheme, where we iterate between
channel estimation and detection in the considered large STBC
MIMO system. The proposed scheme works as follows:

1) Obtain an initial estimate of the channel matrix using
the MMSE estimator in (45) from the pilot part.

2) Using the estimated channel matrix, detect the data
STBC matricesX(i)

c , i = 1, 2, · · · , Nd using the LAS
detector. Substituting these detected STBC matrices into
(41), formX est

c .
3) Re-estimate the channel matrix usingX est

c from the
previous step, via

Hest
c = Yc(X est

c )H
[
σ2INt

+ X est
c (X est

c )H
]−1

. (46)

4) Iterate steps 2 and 3 for a specified number of iterations.

The total complexity of obtaining the MMSE estimate of the
channel matrixHest

c in (45) and (46) isO(N2
t Nr) +O(N3

t ),
which is less than the total complexity of 1-LAS detection of
O(N4

t logNt) for ILL-only STBCs.

C. BER Performance with Estimated CSIR

We evaluated the BER performance of the 1-LAS detector
using estimated CSIR, where we estimate the channel gain
matrix through the training-based estimation schemes describ-
ed in the previous two subsections. We consider the BER
performance under three scenarios, namely,i) under perfect
CSIR, ii) under CSIR estimated using the MMSE estimation
scheme in Sec. V-A, andiii) under CSIR estimated using the
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Fig. 11. Hassibi-Hochwald (H-H) capacity bound for 1P+8D (T = 144, τ =
16, βp = βd = 1) and 1P+1D (T = 32, τ = 16, βp = βd = 1) training for
a 16× 16 MIMO channel. Perfect CSIR capacity is also shown.

iterative detection/estimation scheme in Sec. V-B. In the case
of estimated CSIR, we show plots for 1P+NdD training, where
by 1P+NdD training we mean a training scheme with a frame
size of1+Nd matrices, with 1 pilot matrix followedNd data
STBC matrices from CDA. For this 1P+NdD training scheme,
a lower bound on the capacity is given by [43]

C ≥
T − τ

T
E

2

4logdet

0

@INt
+

γ2βdβpτ

Nt(1 + γβd) + γβpτ

ĤcĤ
H
c

Ntσ
2
Ĥc

1

A

3

5, (47)

whereT and τ , respectively, are the frame size (i.e., chan-
nel coherence time) and pilot duration in number of chan-
nel uses, andσ2

Ĥc
= 1

NtNr
E
[
tr{ĤcĤ

H
c }
]
, where Ĥc =

E
[
Hc

∣∣ X(P)
c ,Y(P)

c

]
is the MMSE estimate of the channel

gain matrix. We computed the capacity bound in (47) through
simulations for 1P+8D and 1P+1D training for a16 × 16
MIMO channel. For 1P+8D trainingT = (1 + 8)16 = 144,
τ = 16, and for 1P+1D trainingT = (1+1)16 = 32, τ = 16.
In computing the bounds (shown in Fig. 11) and in BER
simulations (in Figs. 12 and 13), we have usedβp = βd = 1. In
Fig. 11, we plot the computed capacity bounds, along with the
capacity under perfect CSIR [1]. We obtain the minimum SNR
for a given capacity bound in (47) from the plots in Fig. 11,
and show (later in Fig. 11) the nearness of the coded BER of
the proposed scheme to this SNR limit. We note that improved
capacity and BER performance can be achieved if optimum
pilot/data power allocation derived in [43] is used insteadof
the allocation used in Figs. 11 to 13 (i.e.,βp = βd = 1). We
have used the optimum power allocation in [43] for generating
the BER plots in Figs. 14 and 15. In all the BER simulations
with training,

√
µ INt

is used as the pilot matrix. ILL-only
STBCs and 1-LAS detection are used.

First, in Fig. 12, we plot the uncoded BER performance
of 1-LAS detector when 1P+1D and 1P+8D training are used
for channel estimation in a16 × 16 STBC MIMO system
with Nt = Nr = 16 and 4-QAM. BER performance with
perfect CSIR is also plotted for comparison. From Fig. 12,
it can be observed that, as expected, the BER degrades with
estimated CSIR compared to that with perfect CSIR. With
MMSE estimation scheme, the performance with 1P+1D and
1P+8D are same because of the one-shot estimation. Also, with
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Fig. 12. Uncoded BER of 1-LAS detector for16 × 16 ILL-only STBC
with i) perfect CSIR,ii) CSIR using MMSE estimation scheme, andiii)
CSIR using iterative detection/channel estimation scheme(4 iterations).Nt =
Nr = 16, 4-QAM, 1P+1D

`

T = 32, τ = 16, βp = βd = 1
´

and 1P+8D
`

T = 144, τ = 16, βp = βd = 1
´

training.

1P+1D training, both the MMSE estimation scheme as well
as the iterative detection/estimation scheme (with 4 iterations
between detection and estimation) perform almost the same,
which is about 3 dB worse compared to that of perfect CSIR
at an uncoded BER of10−3. This indicates that with 1P+NdD
training, iteration between detection and estimation doesnot
improve performance much over the non-iterative scheme (i.e.,
the MMSE estimation scheme) for smallNd. With largeNd

(e.g., slow fading), however, the iterative scheme outperforms
the non-iterative scheme; e.g., with 1P+8D training, the perfor-
mance of the iterative detection/estimation improves by about
1 dB compared to the MMSE estimation.

Next, in Fig. 13, we present the rate-3/4 turbo coded BER
of 1-LAS detector using estimated CSIR for the cases of
1P+8D and 1P+1D training. From Fig. 13, it can be seen
that, compared to that of perfect CSIR, the estimated CSIR
performance is worse by about 3 dB in terms of coded BER
for 1P+8D training. With MMSE estimation scheme,10−4

coded BER occurs at about12− 7.7 = 4.3 dB away from the
capacity bound for 1P+1D and 1P+8D training. This nearness
to capacity bound improves by about 0.6 dB for the iterative
detection/estimation scheme. We note that for the system in
Fig. 13 with parameters16×16 STBC, 4-QAM, rate-3/4 turbo
code, and 1P+8D training withT = 144, τ = 16, we achieve a
high spectral efficiency of16× 2× 3

4 × 8
9 = 21.3 bps/Hz even

after accounting for the overheads involved in channel esti-
mation (i.e., pilot matrix) and channel coding, while achieving
good near-capacity performance at low complexity. This points
to the suitability of the proposed approach of using LAS
detection along with iterative detection/estimation in practical
implementation of large STBC MIMO systems.

Finally, in Fig. 14, we illustrate the coded BER performance
of 1-LAS detection and iterative detection/estimation scheme
for different coherence times,T , for a fixedNt = Nr = 16,
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Fig. 13. Turbo coded BER performance of 1-LAS detector for16×16 ILL-
only STBC with i) perfect CSIR,ii) CSIR using MMSE estimation, andiii)
CSIR using iterative detection/channel estimation (4 iterations).Nt = Nr =
16, 4-QAM, rate-3/4 turbo code, 1P+1D

`

T = 32, τ = 16, βp = βd = 1
´

and 1P+8D
`

T = 144, τ = 16, βp = βd = 1
´

training.

16× 16 STBC, 4-QAM, and rate-3/4 turbo code. The various
values ofT considered and the corresponding spectral effi-
ciencies are:i) T = 32, 1P+1D, 12 bps/Hz,ii) T = 144,
1P+8D, 21.3 bps/Hz,iii) T = 400, 1P+24D, 23.1 bps/Hz,
and iv) T = 784, 1P+48D, 23.5 bps/Hz. In all these cases,
the corresponding optimum pilot/data power allocations in[43]
are used. From Fig. 14, it can be seen that for these four cases,
10−4 coded BER occurs at around 12 dB, 10.6 dB, 9.7 dB, and
9.4 dB, respectively. The10−4 coded BER for perfect CSIR
happens at around 8.5 dB. This indicates that the performance
with estimated CSIR improves asT is increased, and that
a performance loss of less than 1 dB compared to perfect
CSIR can be achieved with largeT (i.e., slow fading). For
example, with 1P+48D training (T = 784), the performance
with estimated CSIR gets close to that with perfect CSIR both
in terms of spectral efficiency (23.5vs 24 bps/Hz) as well as
SNR at which10−4 coded BER occurs (8.5vs 9.4 dB). This
is expected, since the channel estimation becomes increasingly
accurate in slow fading (large coherent times) while incurring
only a small loss in spectral efficiency due to pilot matrix
overhead. This result is significant becauseT is typically large
in fixed/low-mobility wireless applications, and the proposed
system can effectively achieve high spectral efficiencies as
well as good performance in such applications.

D. On OptimumNt for a GivenNr andT

In [43], through theoretical capacity bounds it has been
shown that, for a givenNr, T and SNR, there is an optimum
value ofNt that maximizes the capacity bound

(
refer Figs. 5

and 6 in [43], where the optimumNt is shown to be greater
thanNr in Fig. 5 and less thanNr in Fig. 6

)
. For example,

for Nr = 16, T = 48, and SNR = 10 dB, the capacity
bound evaluated using (47) with optimum power allocation
for Nt = 12 is 19.73 bps/Hz, whereas forNt = 16 the
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1P+24D;T=400; 23.1 bps/Hz
1P+48D;T=784; 23.5 bps/Hz
Perfect CSIR; 24 bps/Hz

16x16 ILL−only STBC
Nt=Nr=16, 4−QAM
Rate −3/4 turbo code
1−LAS detection
Iterative Det/Est (4 iterns.)

Fig. 14. Turbo coded BER performance of 1-LAS detection and iterative
estimation/detection as a function of coherence time,T = 32, 144, 400, 784,
for a givenNt = Nr = 16, 16 × 16 ILL-only STBC, 4-QAM, rate-3/4
turbo code.Spectral efficiency and BER performance with estimated CSIR
approaches to those with perfect CSIR in slow fading (i.e., large T ).

Parameters System-I System-II

# Rx antennas,Nr 16 16
Coherence time,T 48 48
# Tx antennas,Nt 16 12
STBC from CDA 16× 16 12× 12
Pilot duration,τ 16 12
Training 1P+2D 1P+3D
βopt
p 1.2426 1.4641

βopt
d 0.8786 0.8453

Modulation 4-QAM 4-QAM
Turbo code rate 1/2 3/4
Spectral efficiency 10.33bps/Hz 13.5bps/Hz
SNR at 10−3 coded BER 8.9 dB 8.6 dB

TABLE II
ON OPTIMUM Nt FOR A GIVENNr AND T . SYSTEM-II WITH A SMALLER

Nt ACHIEVES A HIGHER SPECTRAL EFFICIENCY WHILE ACHIEVING10−3

CODED BER AT A LESSERSNRTHAN SYSTEM-I WITH A LARGER Nt .

capacity bound reduces to 17.53 bps/Hz showing that the
optimumNt in this case will be less thanNr. We demonstrate
such an observation in practical systems by comparing the
simulated coded BER performance of two systems, referred to
as System-I and System-II, using 1-LAS detection and iterative
detection/estimation scheme. The parameters of System-I and
System-II are listed in Table II.Nr andT are fixed at 16 and
48, respectively, in both systems. System-I uses 16 transmit an-
tennas and16×16 STBC, whereas System-II uses 12 transmit
antennas and12×12 STBC. Since the pilot matrix is

√
µ INt

,
the pilot durationτ is 16 and 12, respectively, for System-
I and System-II. Optimum pilot/data power allocation and
4-QAM modulation are employed in both systems. System-
I uses rate-1/2 turbo code and system-II uses rate-3/4 turbo
code. With the above system parameters, the spectral efficiency
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Sys−I: Nt=Nr=16, 4−QAM,
Rate−1/2 turbo, T=48
Sys−II: Nt=12,Nr=16, 4−QAM,
Rate−3/4 turbo,T=48

Sys−I: 16x16 ILL−only STBC, 10.33 bps/Hz
Sys−II: 12x12 ILL−only STBC, 13.5 bps/Hz
1−LAS detection
Iterative Det/Est (4 iterns.)

Fig. 15. Comparison between two 1P+NdD training-based systems, one with
a largerNt than the other for a givenNr andT . With Nr = 16, T = 48 and
optimum power allocation in both systems, System-II withNt = 12 achieves
a higher spectral efficiency

`

13.5 vs 10.33 bps/Hz
´

while achieving10−3

coded BER at a lesser SNR
`

8.6 vs 8.9 dB
´

than System-I withNt = 16.

achieved in System-I is16 × 2 × 1
2 × 2

3 = 10.33 bps/Hz,
whereas System-II achieves a higher spectral efficiency of
12 × 2 × 3

4 × 3
4 = 13.5 bps/Hz. In Fig. 15, we plot the

coded BER of both these systems using 1-LAS detection
and iterative detection/estimation. From the simulation points
shown in Fig. 15, it can be observed that System-II with a
smallerNt and higher spectral efficiency in fact achieves a
certain coded BER performance at a lesser SNR compared to
System-I. For example, to achieve10−3 coded BER, System-I
requires an SNR of about 8.9 dB, whereas System-II requires
only 8.6 dB. This implies that because of the reduction of
throughput due to pilot symbols

(
by a factor of T−τ

T
for

a givenT and τ = Nt

)
, a largerNt does not necessarily

mean a higher spectral efficiency. Such an observation has
also been made in [43] based on theoretical capacity bounds.
The proposed detection/channel estimation scheme allows the
prediction of such behavior through simulations, which, in
turn, allows system designers to find optimumNt and STBC
size to achieve a certain spectral efficiency in large STBC
MIMO systems.

VI. CONCLUSION

We presented a low-complexity algorithm for the detection
of high-rate, non-orthogonal STBC large-MIMO systems with
tens of antennas that achieve high spectral efficiencies of the
order of several tens of bps/Hz. We also presented a training-
based iterative detection/channel estimation scheme for such
large STBC MIMO systems. Our simulation results showed
that the proposed 1-LAS detector along with the proposed
iterative detection/channel estimation scheme achieved very
good performance at low complexities. With the feasibil-
ity of low-complexity high-performance receivers, like the
proposed detection/channel estimation scheme, large-MIMO
systems with tens of antennas at high spectral efficiencies can
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become practical, enabling interesting high data rate wireless
applications (e.g., wireless IPTV/HDTV distribution). This
can motivate the inclusion of large-MIMO architectures (e.g.,
12×12, 16×16 MIMO systems, including those using STBCs
from CDA) into wireless standards like IEEE 802.11n/VHT
and IEEE 802.16/LTE-A in their evolution to achieve high
data rates at increased spectral efficiencies.

APPENDIX

Theorem 1: The l(k)p in (21) minimizesF(l
(k)
p ) in (19) and

this minimum value is non-positive.

Proof: Let r
△
=

⌊
|z(k)

p |
2ap

⌋
. Then

|z(k)
p |
2ap

= r+f , where0 ≤ f < 1,

and so we can write

|z(k)p |
ap

= 2r + 2f. (48)

If l
(k)
p were unconstrained to be any real number, then the

optimal value of l(k)p is
|z(k)

p |
ap

, which would lie between

2r and 2r + 2 (as per (48)). SinceF(l
(k)
p ) is quadratic in

l
(k)
p , it is unimodular, and hence the optimal point (withl(k)p

constrained) would be either2r or 2r+2. Using (19) and (48),
we can evaluateF(2r + 2)−F(2r) to be

F(2r + 2)−F(2r) = 4ap(1 − 2f). (49)

Sinceap is a positive quantity, the sign ofF(2r+2)−F(2r)
depends upon the sign of(1 − 2f). If f ≥ 0.5, thenF(2r +
2) ≤ F(2r), and therefore2r + 2 is the optimal value of
l
(k)
p . Similarly, whenf < 0.5, 2r is the optimal value ofl(k)p .

Therefore, it follows that indeed the rounding solution given
by (21) is optimal.F(l

(k)
p ) is non-positive for all values of

l
(k)
p between zero and

2|z(k)
p |
ap

. If f < 0.5, then2r is optimal,

and, from (48), we know that2r ≤ |z(k)
p |
ap

, and therefore2r <

2
|z(k)

p |
ap

. HenceF (2r) = F (opt) is non-positive. Similarly, if
f ≥ 0.5, then 2r + 2 is optimal, andF(2r + 2) ≤ F(2r).

However, since2r is always less than2
|z(k)

p |
ap

, F(2r) is non-

positive and thereforeF(2r + 2) = F (opt) is non-positive.
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