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Sequential Compressed Sensing
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Abstract—Compressed sensing allows perfect recovery magnetic resonance imaging (MRI[)! [3], computational

of sparse signals (or signals sparse in some basis) usingphotography [[4], wireless networks][5], and structure
only a small number of random measurements. Existing discovery in biological networks [6].

results in compressed sensing literature have focused on Th licati h d L t
characterizing the achievable performance by bounding the € applications where COmMpressead sensing 1S mos

number of samples required for a given level of signal Peneficial (e.g. MRI) have a high cost of acquiring each
sparsity. However, using these bounds to minimize the additional sample. If this cost (in terms of time, power,
number of samples requires a-priori knowledge of the e t.c) is high as compared to the cost of computation,
sparsity of the unknown signal, or the decay structure for han it is suitable to use sophisticated recovery algo-

near-sparse signals. Furthermore, there are some popular . . - . .
recovery methods for which no such bounds are known. rithms which include the/;-basedbasis pursuit[7],

In this paper, we investigate an alternative scenario greedy approaches; [8], and even non-convgy (Er
where observations are available in sequence. For any iterative formulations[[9]-+[11] to enable recovery from
recovery method, this means that there is now a sequencefewer measurements.

of candidate reconstructions. We propose a method t0  \while some of the recovery methods, especially those

estimate the reconstruction error directly from the samples based on/:-reqularization. have analvtically provable
themselves, for every candidate in this sequence. This 1-reg ' y y p

estimate is universal in the sense that it is based only on the Pe€rformance guarantees [2], [12], others, such as non-
measurement ensemble, and not on the recovery method or convex ¢, reweighted?; [11], and sparse Bayesian
any assumed level of sparsity of the unknown signal. With |earning (SBL) [13] do not, and they have been shown
these estimates, one can now stop observations as s0on agmpjrically to often require even fewer samples tiian

there is reasonable certainty of either exact or sufficiengt based methods. Eurthermore. when guarantees do exist
accurate reconstruction. They also provide a way to obtain : ! g ’

“run-time” guarantees for recovery methods that otherwise they have been empirically observed to sometimes be
lack a-priori performance bounds. highly pessimistic and may require large dimensions to
We investigate both continuous (e.g. Gaussian) and hold with high probability [[1], [14]. Another drawback
giscr:]refte (e.g. IBernouIIi) rangom mealtsurement ense.mbleis, is that much of the existing analysis characterizes how
agtj wic:L %é?r?tgoiss?/a;i% ﬁgise?eesnseﬁegstzjarreﬁ):ss signais, many.measurements are needed for_a signal .With a given

_ ) sparsity level. However, as the sparsity level is often not
mégt‘lexs;eggigfu‘i?pressed sensing, sequential measure-inown a-priori, it can be very challenging to use these
' : results in practical settings.
In this paper we take an alternative approach and
. INTRODUCTION we develop estimates and bounds for the reconstruction

. error using only the observations, without any a-priori

In compressed sensing (CS) [11,! [2] a few random ng on'y ¢ X ' y a-prio

. . . assumptions on signal sparsity, or on the reconstruction

linear measurements of a signal are taken, and the sigha . . .

. . = . °method. We consider a scenario where one is able to get

is recovered using the additional knowledge that eithe . : : .
Observations in sequence, and perform computations in

the signal or some linear transform of it is sparse. ; .

. . : etween observations to decide whether enough samples
These ideas have generated a lot of excitement in thé : ) .
: ) . . ... have been obtained — thus allowing to recover the signal
signal processing and machine learning communities .
. ! either exactly or to a given tolerance from the smallest

and have been applied to a range of applications such as__. X .
possible number of random observations. This, however,
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applied to our recovered signal will result in a value thats search for the new solution. We show empirically

is far from the actual observation, with high probabilitythat this approach significantly reduces computational

Our results provide estimates of the reconstruction erroomplexity.

based on the statistics of the measurement model. TheyDuring the review process we learned about a very

can thus be used to provide 'run-time’ guarantees eveecent analysis in_[15] for the cross-validation setting,

for decoders that are otherwise not amenable to analysising the Johnson-Lindenstrauss lemma. We describe
We first consider the case when noiseless measusimilarities and differences from our work in the discus-

ments are taken using the random Gaussian (or genegion in Sectio V. Our current paper extends our earlier

continuous) ensemble, and we show that simply checkingsults presented in [16].

for one-step agreement provides a way to check exactly

when enough samples have been received. Suppose thafj BRrIEF OVERVIEW OF COMPRESSED SENSING

after receivingM samplesy; = ax, ¢ = 1,..,M, . .

we apply a sparse reconstruction method of our choice,AS there IS ho dearth Of exc_ellen_t tutongls on com-

and obtain a solutio&™ satisfying all the)/ measure- pressed sensingl[1JU[2]L[17], in this section we give

ments. We can use any sparse decoder, including greé) ltha brief ou;l;nt(; mi]unlyttofset the stags for the re|‘.3t
matching pursuit, SBL/,, formulations, and even the O € Paper. € hearl of compressed sensing lies

brute-force decoder, but we require that the solution g}e sparse recovery p_robIEJ which tf'e_s to reconstruct
each step)/ satisfiesy; = a'™M, for i = 1,.., M. For an unknown sparse signal from a limited number of
pM T T YAy ’ — .

— MXxN
example, in the case of basis pursuit, we would Solvemeasuremenf[y n Ax’. WhereA € R » M << N.
Much of excitement in the field stems from the fact

M = argmin||x|[; st ajx=vy,;, i=1,.,M. (1) that the hard combinatorial problem of searching for
Next, we receive one more measurement, and cheJRarse solutions in the affine spa¢e : y = Ax}
for one step agreement: i.e. #/+! = %M, then the under <_:erta|n suitable conditions can be sqlved exactly
decoder declarez™ to be the reconstruction and stopd/@ Various tractable methods. The most widely known
requesting new measurements. In Seclioh 11l we shdWethods include greedy matching pursun_an_d |t_s varlarjts
in Propositiond 1L an@12 that this decoder gives exall» @nd approaches based on convex optimization, using
reconstruction with probability one. ¢, norms as a proxy for sparsity|[7]:
For some o_ther measurement ensembles, such as ran- min|jx||; subjectto y = Ax. )
dom Bernoulli and the ensemble of random rows from
a Fourier basis, the one-step agreement stopping rule né\n early sufficient condition for sparse recoveryl[18]
longer has zero probability of error. We modify the rulstates that the formulation iril(2) recovers the unique
to wait until 7 subsequent solutiong, ..., xM+7 all sparse solution ifl is well-posed andt is sparse enough,
agree. In Sectiop IV we show in Propositidn 3 that in thee. if |x||o < %, whereM (A) = max;; |aja;],
Bernoulli case the probability of making an error usingnd A has columnsa; normalized to 1. However,
this stopping rule decays exponentially with allowing this simple condition is very pessimistic. Much tighter
trade-off of error probability and delay. conditions are obtained by considering larger subsets
In Sections[V and_VI we show how the error inof columns of 4, e.g. the restricted isometry property
reconstruction can be estimated from the sequence (8fIP) depends on the maximum and minimum singular
recovered solutions. We first present analysis for thalues over allM x K submatrices ofd [12]. Namely,
Gaussian measurement ensemble in Propodifion 4, andnatrix A satisfies theK-RIP with constantéy if
then generalize to any sensing matrices with i.i.d. entrigd — dx)||x[|3 < ||Ax|3 < (1 + dxk)||x||3 for everyx
This enables the decoder to stop once the error is belowvhich has at mosf’ non-zero entries. While enabling
required tolerance — even for signals that are not exacttyuch tighter sufficient conditions for recovery of sparse
sparse, but in which the energy is largely concentratsifjnals [12], the RIP is very costly (exponential i)
in a few components, or for measurements which ate check for a given matrix.
corrupted by noise. Results in compressed sensing take advantage of RIP
Finally, in Section[VIl we motivate the need forby bringing in the theory of random matrices into
efficient solvers in the sequential setting. We considéhne picture. In compressed sensing we receive random
the basis pursuit sparse solver and show that rather than
re-solving the problem from scratch after an additional * The ground-breaking results [18] predating compressesiragn

ere in context of sparse signal representation where oeks s®

measurement is received, we could use an augmen‘ivg;gﬁsem a vectoy in an overcomplete dictionaryl € RM XN

linear program that uses the solution at sképto guide M << N, with coefficientsx, i.e.,y = Ax.



we see that they exhibit high variance, and so relying on

conditions that guarantee recovery with high probability

often means taking many unnecessary samples. This
motivates the need for sequential compressed sensing
scenario that can adaptively minimize the number of

oy — samples for each observgd which we describe next.
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IIl. STOPPING RULE IN THE NOISELESS CONTINUOUS
CASE

We now analyze the sequential CS approach for the
case when the measurements vectrome from a
continuous ensemble (e.g., the i.i.d. Gaussian ensemble),
having the property that with probabilitya new vector
apr41 Will not be in any lower-dimensional subspace
Fig. 1. Histogram of the stopping times distribution for Gsian and determined by previous vectofsy; } . Suppose that
dBernc(;_ulh measurement ensemble¥: = 100, and K' = 10, and41  ha underlying sparse signal* e RY has K non-

ecoding. zero components (we denote the number of non-zero
entries inx by ||x||p). We sequentially receive ran-
dom measurementg = a;x*, where for concreteness

measurementy = Us where the unknown signal of ai ~ N(0,1) is a N-vector of i.i.d. Gaussian samples,
interests is itself sparse in some basis, ise= ®x, with but the analysis also holds if entries af are i.i.d.

x sparse. Hence the problem reduces to finding spag&mples of an arbitrary continuous random variable. At
solutions satisfyingy = U®x = Ax, whereA = U® is StepM we use a sparse solver of our choice to obtain a
a random matrix. feasiblé solutionx™ using all the received data. Results

A collection of results have been established that Rip compressed sensingl [1]. [14] indicate that if we use
holds for random matrices of certain size from giveR@SiS pursuit or maiching pursuit methods, then after

ensembles: Gaussian, Bernoulli, random Fourier rof&ceiving around/ « Klog(\V) measurements we can

[2], [12], [14]. The general conclusion of these resultE€COVer the signat” with high probability. This requires
is that the convex, formulation can recover (with high the knowledge ofK’, which may not be available, and

probability) a signatx € RY with K non-zeros from only rough bounds on the scaling constants are known.

only CK log(N) measurements, whei@ is a constant Our approach is differe_nt — we compare the solutions at
depending on the random measurement ensemble. TFigPM andM +1, and if they agree, we declare correct

is indeed remarkable — as it only requires a logarithm[ECOVETY-

dependence of the number of measurementaon Proposition 1: If in the Gaussian (generic continuous)

. . _measurement ensemble it holds tkdf+! = %V, then
However, when each additional measurement is ver . -
= x*, with probability 1.

costly there are several problems with these bounds “Proof. Let N [ ', and
firstly, since they are high-probability results indepemtde  ,, 4" YiM i i) o Ymls

!’ oM *
of y, they tend to be conservative, and also the constarﬁ S o %at[al’ ""_ai‘ﬁ\,j Aﬂslugggse thaitx AM 7i )go'thw’?
C are typically generous upper-bounds. Secondly, thée V1M = 20X LM = A X x

/\M _ ~ . . .
number of measurements depends on the number?c;{nfdX belong to the( V' — M)-dimensional affine space

— M

non-zero components af which may not be known | yiw = A¥x}. The ne>/<t me?surement passes a

- .random hyperplangy;+1 = a),,,x* throughx* and
a-priori. Finally, there are successful approaches whic . ; P .

; k . . reduces the dimension of the affine subspace of feasible

we mentioned in Sectidn | for which no such results are_ "~ M . :

. solutions by 1. In order for x to remain feasible
available. . ;oM
) . . at stepM + 1, it must hold thatyy 1 = aj, x".
In Figure[1 we illustrate the drawbacks of using UPP&ince we also haveyry 1 = aj,,,x*, then M

bounds on the number of measurements. We find g, ins feasible only if%x™ — x*)ap.1 = 0, ie.
minimum numberM of random samples which were
needed to recover a sparse sigmaWwith N = 100, 2This requirement is essential for the noiseless case (@ased in

and K = 10 from random Gaussian and Bernoulljater sections). For greedy methods such as matching ptin@imeans
that we allow enough iterations until all the measuremeedgived so

measurements using tm@'_formmat'on n Q)’ overs00 far are satisfied perfectly. Noiseless basis pursuit foatiais satisfy
random trials. We plot a histogram of these numbers, andy construction.
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Fig. 2. A new constraint is addedigwﬂx = yar4+1. Probability

that this hyperplane passing througtf also passes througk™ is
zero.

*
IIx" = i,
o N S (2]

if ]\?M'H falls In. the NV — 1 Aq\y{menslcinal SUbSpaC? OlcFig. 3. Gaussian ensemble examplé:= 100, and K = 10. (Top):

R™ corresponding taVull((%" — x*)'). As ar41 IS |33y, (Middle): |%M |. (Bottom): [|x* — %M |5

random and independent of* and of the previous

samples, ..., aps, the probability that this happens(s

(event with measure zero). See Figlte 2 for illustration.

O a feasible solutiork # x* can have this support only
with probability 0. There are two case%: ¢ J and

Note that the proof implies that we can simplifyZ #ZNJ.

the decoder to checking whethaf,, X = yn41, First supposeZ C 7, |J| < M, and suppose there

avoiding the need to solve fat™+1 at the last stép exists some feasiblé supported on7. Thenx — x* €

Moreover, if using any sparse solver in the continuouSull(A), and support ok—x* is a subset of7, hence it

ensemble case the soluti&?! has fewer than\/ non- is smaller than\/. But that means that there is a subset of

zero entries, the™ = x* with probability 1. fewer thanM columns ofA that are linearly dependent,
Proposition 2: For a Gaussian (continuous) measuravhich can only happen with probability zero.

ment ensemble, ifix[, < M, thenx = x* with Now consider the cas& # Z N J. For a fixedZ

probability 14 we consider all such possible sef§ with | 7| < M.

Proof. Denote the support of our unknown sparsEirst fix one such set7. We use the notation
vector x* by 7, i.e. T = {i | 2} # 0}. We next Z\J = { i € I [ i ¢ J}. Note that we have
generate a random measurement mattiX. Let A = y = Ax* = Ayx7 + A\ gX7, ;. Lety = A7\ 7x7, ;.
AM to simplify notation. We receive the correspondinlow since we requirex to be feasible, we also
measurementy = Ax*. Now A is M x N, with needy = Ax = Asxsy which would imply that
M < N. The key fact about random matrices withy = A7 (X7 —x;). This means that the vectgrwould
i.i.d. entries from a continuous distribution is that anglso have to be in the span of;. However,y is a
M x M submatrix ofA is non-singular with probability random vector inR* (determined byx* and Az 7),
18. We now argue that with probability 1 after receivingand span of4; is an independent random subspace
y there will not exist another sparse feasible solutiopf dimension strictly less thad/. Hence, the event
x # x*, i.e. X with fewer than)M non-zero entries thaty also falls in the span ofi; has measure zero.
satisfyingy = Ax . We consider all possible sparselhis means that for a fixed a distinct sparse solution
supports7 C {1,..,N}, with | 7| < M, and show that can only exist with probability). Now the number

of possible subsetsy is finite (albeit large), so even
3We thank the anonymous reviewer for this simplification. when we take all such support®, a distinct sparse
4Note that a random measurement model is essential: for a fixgblution supported o7 can only exist with probability

matrix A if 2K > M then there exisk; andx2 such thatAx; = ; e ; :
Axa and||x;lo < . However, for a fixedc* with |x*[lo < M the 0. Hence, with probabilityl there is only one solution

probability that it will have ambiguous sparse solutions dorandom with ||x|lo < M, namelyx*. O
choice of A is zero.

oice of o . B _ N .
This is easy to see: fid’ C {1,..,N} with |T| = M. Then  Tpis nronosition allows to stop making measurements

probability thatAr,, € span(Ar,,...,Ar,,_,) is zero, asAr,, . .
is a random vector iRM and the remaining columns span a Iower-When a feasible solution has less thad nonzero

dimensional subspace. entries — avoiding the need to make the Ig&f + 1)-st



measurement. most1/2. The same argument applies to all subsequent
Consider an example in Figuré 3 wifi = 100, and samples ofay;,; for i = 1,..,T, so the probability of
K = 10. We keep receiving additional measurementsaving 7-step agreement with an incorrect solution is
and solving [(1) until we reach one-step agreemeriipunded above bg~7. O
*M = xM+1 The top plot shows thdtx ||, increases
linearly with M until one step agreement occurs at Note that as in the discussion for the continuous case,
M = 35, at which point it drops tas = 10 and a and we can simply check that, %" = yr; for i =
we recover the correct sparse solutis!! = x*. The 1,...,T, avoiding the need to solve for™+7,
middle plot shows the monotonic increase|i&™||; (as ~ We now pursue an alternative heuristic analysis, more
the feasible set is shrinking with/). The bottom plot akin to Propositiof]2. For the Bernoulli cagg™ || <
shows the error-norm of the solutiofix™ — x*||. On M does not implyx™ = x*. However, we believe that
average it tends to go down with more observations, bahce we obtain enough samples so thaR!' = < 1
non-monotonically. AfterM = 35 the error becomes then||x ||, < M will imply that ¥ = x* with high
zero. We see that in the ideal conditions of no megrobability. Since the elements af belong to finite set
surement noise, sparse unknown signals and Gaussfanl, 1}, an M x M submatrix of AM can be singular
measurement ensembles, the number of measuremevits non-zero probability. Surprisingly, characterizing
can be indeed minimized by a simple stopping rule. this probability is a very hard question. It is conjectured
[19] that the dominant source of singularity is the event
V. STOPPING RULE IN THEBERNOULL| CASE that two columns or two rows are equal or opposite in

_ ) . sign. This leads to the following estimate (heXg, is
In this section we study a simple but popular measurgy M)@

ment ensemble that is not one of the generic continuous

ensembles described in the previous section. Suppose  P(det Xp; = 0) = (1 +o(1))M?2!=M  (3)
that the measurement vectoes have equiprobable .
ii.d. Bernoulli entries=1. A difference emerges from However the very recent best provable bound on this
the Gaussian case: the probability that alf x 7 Probability is still rather far:P(det Xy = 0) = ((%_4'
submatrices ofAM are non-singular is no longeb. o(1))M) [19]. If we assume that the simple estimate

This makes it possible (with non-zero probability) fopased on pairs of columns is accurate, similar analysis
<M+1 to agree withx™ even thoughs™ + x*, and shows that the probability that a randafl M x N

for erroneous solutiong™ to have cardinality less than Matrix with M < N having all M x M submatrices

M. We modify the stopping rule to require agreemerfton-singular is(1 + o(1)) N2~ M,

for several steps - success is declared only when last

T solutions all agree. We show in propositidn 3 that the V. NEAR-SPARSE SIGNALS
probability of error decays exponentially with We use
the following Lemma from[[19]:

Lemma 1 (Tao and Vu)tet a be an i.i.d. equiproba-
ble Bernoulli vector witha € {—1,1}". Let W be a de-
terministic d-dimensional subspace &, 0 <d < N.
ThenP(a e W) < 2¢-N,

In practical settings, e.g. when taking Fourier and
wavelet transforms of smooth signals, we may only have
approximate sparseness: a few values are large, and most
are very small. In this section we extend our approach to
this case; again, and in contrast to existing work, we do

. . . not need to assume a specific near-sparse structure, like
we are now ready t_o establish the fo_llowmg claim: ower-law decay, but instead provide bounds that hold

Proposition 3: Consider the Bernoulli measuremenFJ :

oM _ oM+l SMAT oM or any signal.
case. Ifx™ = x = .. =%, thenx” = x* The exact one-step agreement stopping rule from Sec-
with probability greater than or equal fo— 2~ 7. Pag PPing

, tion[Mis vacuous for near-sparse signals||as|o = N,
Proof. Suppose thak™ +# x*. Denote the support of
and all samples are needed for perfect recovery. We start
x* by T and the support &t by 7. At stepM we have P P very

Mo M oA M Ny by considering Gaussian measurements, and show that
iAe ﬁle?uﬁspzce. o?szZ;)ia'l"h(e?W_isxarz ZV:—% we can gather info_rmation about the current reconstruc-
ollirﬁensional subspace BV ' tion error by obtaining a small number of additional

) : . measurements, and computing the distance between the

G|ve|:1]\? new random Bemoulli sampley; 1, the o\, ront reconstruction and the affine space determined

vector x can remain feasible at step/ + 1 only

e (oM / 0 i i ;
if (x* —x")" apy1 =0, 'e if ap4q falls 'ntO_W' SProbability that two columns are equal or opposite in sig2tis?
By Lemmal[l, the probability thahy,; € W is a and there are(M?2) pairs of columns.
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Fig. 4. Geometry of the analysis for near-sparse signals.uftknown

reconstruction error is related td(x™ Hpry7) and the angled
between the line fronx* to x* and the affine spac# ;.  defined 2t N
by the new measurements. ol Dy R S
0 20 0 T 60 80 100

by these new measurements. The reconstruction error Is

then equal to an unknown constant times this distanceig. 5. (Top) sample mean, estimate of the mean, and a bound on
the mean ofC'. (Bottom) sample standard deviation, and a bound on
|x* —xM|y = Cr d(xM, Hyrir), (4) the standard deviation @¥'7. Sample mean is based on 1000 samples.
L = 100.
whereHyrr 2 {x | y; =alx, 1 <i < M +T}is the
affine space determined by al + 7' measurements,

Cr is a random variable that we will bound, andj.eq 7, _ 7 dimensional subspace, say the one spanned

AA! . A
d(x", Hyry7) denotes the distance frofd” t0 Harir.  py the lastZ, — T' coordinates, and an iid. Gaussian

We characterizeZ[Cr] and Var[Cr] — this gives US \acior (whose direction falls uniformly on a unit sphere
a confidence interval on the reconstruction error using RL). This holds because the distribution of an i.i.d

. Y : i.d.
the observed distanaf(x™, Har+r). We can now stop 4 ggjan sample does not get changed after applying an

takipg new measurements once the error falls beI()Wffi“bitrary orthogonal transformation. Léf be the span
desired tolerance. Note that our analysis does not assUfihe lastl, — T coordinate vectors. anH be iid

a mo_dgl of decay, and bounds the Irgconstruction error @éussian. Then:
obtaining a small number of additional measurements,
and computing the prediction error. In contrast, some . T
related results in CS literature assume a power-law Cr = L th/ th (6)
K3 [
=1 =1

decay of entries of* (upon sorting) and show that sin(#)
with roughly O(K log N) samplesx™ in (@) will have _ _ , _ N
similar error to that of keeping th& largest entries in ~ Using the properties of ., x7, and inversex7, distri-

x* [d]. butions [20] and Jensen’s inequality, we have an estimate
We now outline the analysis leading to a bound based the mean®[Cr] ~ /£ and an upper bound on both

on {@). Consider FigurEl4. Letl,; = {x : AMx = the mean and the variance:

vi1.m} be the subspace of feasible solutions afiér -

measurements. Botk* andx™ lie in H,;. The affine E[Cr] <4 =—, (7

spaceHy, . is contained inHy;. Let L = N — M, I T_i

and 61 be the angle between the vectot! — x* and Var[Cr] < L-2_ ) 8)

the affine spacdi,;.r. Both are contained in thé- r-2 T

dimensional spacéf,;. Centering aroundk*, we see  We describe the analysis in Appendix A. Using these
that 01 is the angle between a fixed vector R and bounds in conjunction with the Chebyshev ineqquity
a randomL — T dimensional subspace @t*, and the p(|la—Ela]| > ko,) < 7%, we have the following result:
constantCr in @) is equal to@:

v Proposition 4:In  the  Gaussian = measurement
MH2 _ d(x 7H]W+T) (5) ensemble we haveﬂ:x* — ﬁM|‘2 < Cécw d()A(M, H]\,“_T)

sin(GT) ’
s "To improve upon Chebyshev bounds we could directly chariaete
We next analyze the distribution 6f- and hence oCr. the cumulative density function of'; — either analytically, or by

In distribution, 1 is equivalent to the angle between &imple Monte Carlo estimates.

Ix* — %



20 ‘ ‘ ‘ ‘ A. Analysis for More General Ensembles

error

= = = eror bound]| To get the bound in[f4) we characterized the distri-
bution of bm(@ 3 and used the properties of the Gaus-
sian measurement ensemble. Analysigpffor general
ensembles is challenging. We now consider a simpler
analysis which provides useful estimates wher < L,
i.e. the case of main interest for compressed sensing,
-80, " m " ~ 100 and when the measurement coefficients are from

an i.i.d. zero-mean ensemble. The previous bound for
< ! ! rror the Gaussian case depended on haththe number of
or s = = = error bound s samples used for the current reconstruction, @ndhe

‘ 1 number of extra samples. Now, in the following we give

estimates and bounds that depend onlyTgnand in
that sense could be weaker for the Gaussian case when
M is large; they are however more generally applicable
— in particular we no longer requirg™ to satisfy the
‘ ‘ ‘ ‘ measurements exactly.
200 a0, 60 800 1000 Suppose we have a current reconstructionand
Fig. 6. (Top) Error confidence bounds and actual errors fquaaise supposex” is the (unknown) true signal. We now take
signal, N = 100, T = 5, K = 10. (Bottom): Error confidence new sampleg,; = a/x*, for1 < ¢ < T. For each of these
bound and actual errors for a signal with power-law de@éay= 1000, samples we computg = agfcM to be thesamevectora,
r=10 applied to the current reconstruction. Denote the current
error vector byd = %™ —x*, and compute; = §; —v;,
the deviations from the actual measurements. Then

Error (dB)

Error (dB)

zi=ald, 1<i<T 9)
with  probability at least 1 -— kl—z where The new measurements are independent ok and
Ch = \/ +k\/ — L, foranyk >0 of x*, hence ofd. The z;’s are i.i.d. from some (un-

known) distribution, which has zero mean and variance
16113 Var(ai;). We can estimatéd||3 by estimating the

In Figure[® (top) we plot the mean estimate, and ow@riance of thex;’s from the T samples. The quality of
bound in [7) forC7 and (bottom) the standard deviatiorfhe estimate will depend on the exact distributioragf.
bound forL = 100 and a range of’. We compare them  Consider the case whetg are i.i.d. Gaussian. Then
to sample mean and standard deviation(f based =z is Gaussian as well. For simplicity suppose that
on 5000 samples. The figure shows that both boundéar(a;;) = 1, then the distribution ofz; is i.i.d.
provide very good approximation for most of the rang@r’iUSSlc’in with zero- mean and varlarj|d¢|2 Let Zp =
of T > 2, and also that the standard deviation qwcklEl M41 4. Then Zr & ”5”2 ~ X%, i.e. x? random
falls off with 7", giving tight confidence intervals. Invariable withT" degrees of freedom. Now to obtain a
Figure[6 we perform numerical experiments with twgonfidence interval fof|d||3 we use the cumulativg?.
example signals, a sparse signal, = 100, K = 10, distribution. We pick a confidence level- « (for some
T = 5 (top) and a near-sparse signal with power-lagmalloe > 0), and we use thg7. cumulative distribution
decay,N = 1000, T = 10 (bottom). We use basis pursuitto find the largest* such thap(Zr < 2*) < off
to recover the signals as we obtain progressively moreDuring the review process a related analysislin [15]
measurements, and we compare our error bounds (Was brought to our attention: the paper considers com-
Chebyshev inequality) to the actual errors. We see thaiessed sensing in a cross-validation scenario, and it
the bounds reliably indicate the reconstruction error proposes to estimate the errors in the reconstruction
after a small delay of" additional measurements. Wefrom a few additional (cross-validation) measurements.
have used basis pursuit in the experiments, but we could We have thab? — Z 0 lest value af? such that
substitute any sparse solver instead, for example W%batillt;\/;‘ ote)lservngZT ?slvzf Ie:sf;naTﬁzt :/sattcj)esay ?ﬁg bouii‘ld
could Pave also computed error estimates for matchlrﬁgw ZT will hold for at leastl — « fraction of realizations of
pursui



Near-sparse estimates, M small V1. NOISY CASE

- _éfni‘;agja‘fysisr Next we consider the sequential version of the noisy
RIS measurement setting, where the observations are cor-
rupted by additive uncorrelated i.i.d. Gaussian noise with

3r . 3

g | ‘ varianceos?:
g’ 0 0.5 1 15 2
% . Near—sparse es‘timates, M Iarg? Yi = a;x + n;, = {1’ - M} (10)
‘% xzanalysis . .
£l %y | = = =sin(®) analysis|] To solve th|_s problem. one can adqpt a va.rlety of sparse
S solvers which allow inexact solutiong in the se-
il 4 > | guential setting — for example matching pursuit methods
[4 . . . .
Us — S 5 with a fixed number of steps, or the noisy versions
Estimated error norm of basis pursuit. All of these methods have a trade-off

Fa 7 G i 2 and sin(6) analysis. Gi ) between sparsity of the desired solution and the accuracy
ig. 7. Comparison of¢* and sin(6) analysis. Given a unit-norm ; ;
vectord, we obtain7’ additional measurements, and compute our tw N rep.resenu.ng the measurem.ents' In the case of basis
estimates of|5||. We plot the histogram of the estimates over 500¢PUrsuit denoising a regularization paramelebalances
trials with N = 250, T' = 25, and (a)M = 0, (b) M = 200. these two costs:

£ = argmin 3y — AVx]3 4+ Aurlxlh. (1)

For greedy sparse solvers such as matching pursuit and
The paper cleverly uses the Johnson-Lindenstrauss (#s)variants the trade-off is controlled directly by decigli
lemma to find out how many random measurements gigy many columns of to use to represent. We are
needed for predicting the error to a desired accuracy. Fgterested in a stopping rule which tells us thatis
Gaussian measurements ensembles)@doased analy- reasonably close te* for any sparse solver and for any
sis can be seen as a special case (where all the const@gts defined choice of the trade-off between sparsity and
are computed explicitly since we use the exact samplifgeasurement likelihood. We do not discuss the question
distribution of Zr), but JL lemma also generalizes tof selecting a choice for the trade-off — we refer the
other ensembles satisfying certain requirements on theaders to[[22],[[23] and also to [15] for a discussion
decay of the tails/[15],[[21]. of how this can be done in a cross-validation setting.

To compare our analysis if](5), based 6k, to Now, due to the presence of noise, exact agreement will
the one in[(B) we note that the latter simply estimaté¥t occur no matter how many samples are taken. We
the error||8| as ||\/L7A5H' where A are the new mea- consider a stopping rule similar to the one in Secfidn V.

suremenf& Now unlike the analysis in19), ifX5) we In _principle, the analysis in{4) can be_ ext_e_nded to th_e
require that the solution at stejl is feasible (matches NOISY case, but we instead follow the simplified analysis

all the measurements) and instead we compute the effb>eCtionV-A. ,
of projectingd onto the null-space oft and adjust it We establish that the reconstruction error can be

by the expected value of-L_, i.e. we estimate|d| bounded with _h_igh probability by obta_ining a small
*in(9) number of additional samples, and seeing how far the

as \/;HA/(AA/)%/MH’ where A includes allM + T measurements deviate froj = a/x™. With such a
measurements. To compare the quality of the two esbound one can stop receiving additional measurements
mates we conducted a simulation wifti = 250 and once the change in the solution reaches levels that can
T = 25, and computed the estimates for random unibe explained due to noise. The deviatiapsow include
norm vectorsd. We plot the histograms fab/ = 0 and contribution due to noise:
M = 200 over 5000 trials in FigurelY. In the first case A Y )
with M = 0, we see that both estimates have about the % =0~y = (X7 —x7) — ;. (12)
same accuracy (similar error distributions), however agt 7, — S 22, Consider the Gaussian measurement
M becomes appreciable the approach[ih (5) becomgssemble. Then; = alé+n;, andZy £ ”(;Hgﬁ ~ X2
more accurate. The distribution ofz; is Gaussian with mean zero and

variance||8]|3+ o2. Now following a similar analysis as

in previous section we can obtain an estimate|&(f3 +

2

o2
9This is essentially the same estimate as the one based omatale %n from a sample o7, and SUbtraCtmg’n we get an

in [15], as the expected value g is T, henceE[Zr] = T||§]|2.  estimate ofd||3.



challengin.

We now investigate a linear programming approach
for warm-starts using the simplex method to accomplish
this in the noiseless case (a similar strategy can be used
with the Dantzig decoder [1] for the noisy case). We can
not use the solutiok™ directly as a starting point for
the new problem at step/ + 1, because in general it
will not be feasible. In the Gaussian measurement case,
‘ ‘ ‘ ‘ unlessx™ = x*, the new constraind,, ;X" = yp11
200 a0 0o 800 1000 will be violated. One way to handle this is through a dual

formulatioft}, but we instead use an augmented primal
Fig. 8. Error estimate in the noisy case: true error arid-percent formulation [29].
confidence bound (dB scale) = 1000, 7" = 10, K = 100. First, to model[(ll) as a linear program we use the stan-
dard trick: definecj = max(x;,0), ; = max(—x;,0),
and x = x™ — x~. This gives a linear program in

We show an example in Figufé 8 where the true errgfandard form:
appears along with 80-percent confidence bound. We min1'x" + 1/x— (13)
have N = 1000, K = 100, T'= 10 ando,, = 0.01. We
use basis pursuit denoisidg{12) as our choice for sparsey1.n = [AY  — AM] kf} , and xt,x” >0
solver, and we seky; « /M log(N) motivated by the .
universal rule for wavelet denoising [22] to account for,NeXt we need to add an extra constrajny; =

+ 4 — / M
noise added with additional measurements. The bouﬁél“lécd A 1% . Skupp(_)s&ethaaﬁﬂll_x > Ym+1-
clearly shows where the sparse signal has been recove ega an extrq slack varia t(.) t € lInear program,
and a high positive cogp on z. This gives the following

up to the noise floor (the signal is sparse with= 100 i )
non-zero elements). Inéar program:

= DS} w
(=] (=] (=] o
T T T

Error (dB)

I
[y
(=}

min 1'xt + 1'x™ 4+ Q= (14)
Y + _
VIl. EFFICIENT SEQUENTIAL SOLUTION Yim = [AM - AM] k*} , and xt,x” >0

] o ) ) o + - >
The main motivation for the sequential approach is to YM+1 = @m+1X =&y X =2 and z >0

reduce the number of measurements to as few as possiNow using % and z = a/1\4+1(5(]\4)+

ble. Yet, we would also like to keep the computationaihﬂ(f(M)f — ya41 Yyields a basic feasible solution to
complexity of the sequential approach low. We focughis augmented problem. By selectiiglarge enougft

on the/;-based formulations here, and show that therewill be removed from the optimal basis (i.eis set to

is some potential of using "memory” in the sequential), and the solutions to this problem and the + 1)-th
setting for reducing the computational complexity. Fosequential problem are the same.

the static setting there exists a great variety of appraache We test the approach on an example with= 200,

to solve both noiseless and noisy basis pursuit (i.& = 10, and100 trials. In Figure® we plot the number
basis pursuit denoising) in various forms, e.g.![23]of iterations of the simplex method required to solve the
[25]. However, instead of re-solving the linear progrargroblem [1) at stepl/ from scratch (LP1) and using
(D) after each new sample, we would like to use th@e formulation in [I4) (LP2). To solvé {1L3) we first
solution to the previous problem to guide the curremave to find a basic feasible solution, BFS, (phase 1)
problem. It is known that interior point methods areind then move from it to the optimal BFS. An important
not well-suited to take advantage of such “warm-startgidvantage of{14) is that we start right away with a BFS,
[23]. Some methods are able to use warm-starts in

the context of following the solution path if_{11) as 0 related work, [[28] proposed to use Row-action methods for
a functon of \ (23], [26l [27]. In that context the SNFIESSEC sensn, st re on 8 quacate pogremrang |
solution pathk () is continuous (nearby values dfgive  measurements.

nearby solutions) enabling warm-starts. However, once'if at stepM the optimal dual solution ip, then a feasible solution

a new measurement is received, this in general make<t 1sztepM—i-l is‘ [p; 0]. However, it may not be a ba_sic feasible solution.
E.g. the bigh/ approach[[29] suggests treatidg as an undeter-

the previous SQ'Ut'On 'nf_eaS'ble’ ‘T’md can dramaticallyjneq value, and assumes th@tdominates when compared to any
change the optimal solution, making warm-starts mokgher value.



We also remark that there is a closely related problem
of recovering low-rank matrices from a small number
of random measurements [32], [33], where instead of
searching for sparse signals one looks for matrices with
low-rank. This problem admits a convex 'nuclear-norm’
relaxation (much akin td, relaxation of sparsity). Some
of our results can be directly extended to this setting
Fig. 9. A comparison of the number of simplex iterations When_,]cor exam_ple if in the Gaussian measurement case
solving [3) from scratch (LP1) and using the solution at stép- 1 With no noise there is one-step agreement, then the
(LP2). We plot the average number of iterations A5, over100 trials.  recovered low-rank matrix is the true low-rank solution

with probability one.
so phase 1 is not required._The_ figl_Jre illustrates that forFinaIIy we comment on an important questibh [B1.][34]
large M the approach LP2 is significantly faster. of whether it is possible to do better than simply using

We note that recently a very appealing approagiinqom measurements — using e.g. experiment design or

for sequential solution in the noisy setting has beelyye |eaming techniques. 1][6] the authors propose
proposed based on the homotopy continuation idea [3Q), fing 4 multivariate Gaussian approximation to the

[31], where a homotopy (a continuous transition) if)osteriorp(x ly) wherep(y | x) o exp(%”y—AxHQ),
constructed from the problem at stép to the problem andp(x) o exp(—A||x||1). Note that MAP estimation in

at stepM +1 and the piecewise-smooth path is followedy,is modelx — arg maxy p(x | y) is equivalent to the
The efficiency of the approach depends on the numbgg

) ' Ry h rmulation in [I1), but does not provide uncertainties.
of break-points in this piecewise-smooth path, but tr’lgsing the Bayesian formalism it is possible to do ex-
simulations results in the papers are very promising.

riment design, i.e. to select the next measurement to
also note that/[30] proposes an approach to select the,,imally reduce the expected uncertainty. This is a very

trade-off in the noisy case, using cross-validation idea@xciting development, and although much more complex
than the sequential approach presented here, may reduce

VIIl. CONCLUSION AND DISCUSSION .
] . the number of required samples even further.
This paper presents a formulation for compressed

sensing in which the decoder receives samples sequen-

tially, and can perform computations in between samples. APPENDIX A

We showed how the decoder can estimate the error in  Dgr|VATION OF THE DISTRIBUTION FOR -1~
the current reconstruction; this enables stopping once the sinf

error is within a required tolerance. Our results hold for Consider Efsin?(§)] = E[(Zr_l hg) /IJj2]. Since
h2
]

num iter.

any decoding algorithm, since they only depend on the
distribution of the measurement vectors. This enables; ElRjz] = 1, and eachh; is iid.,, we have
“run-time” performance guarantees in situationswhere@%] = L. In fact E] ﬁ?Q] follows a Dirichlet
priori guarantees may not be available, e.g. if the SparngSQrilgution ThereforeE[sing(Q'Z))] T

level of the signal is not known, or for recovery methods Using J i o ity with tLh funci
for which such guarantees have not been established. —>9 “€NsSens ihequalily with the convex function

We have studied a number of scenarios including 1/, z > 0, we haveE[1/sin(0)] > \/%

noiseless, noisy, sparse and near sparse, and involvingow, E[Wl(a)] = % (for T > 2). This is true
Gaussian and Bernoulli measurements, and demonstrated 1 . L 49 T ;92\
that the sequential approach is practical, flexible aﬁa&causeE[sinz(e)] = E (Zi:l hi) / (Zi:l hi) -

has wide applicability. A very interesting problem is tal + E (Zf:TH h2/ St hf) =14 (L-T)7.
both extend the results to other measurement ensembigge second term is a product of\&@ random variable
e.g. for sparse ensembles, and moreover, to go beyqgh (I — T7) degrees of freedom and an independent

results for particular ensembles and develop a genef@erses? distribution with 7 degrees of freedom:
theory of sequential compressed sensing. Furthermore i ‘L—T+1 R =L-T, and E[ =] = ﬁ see

many important applications the sparse signal of interest" \evizi h; -
may also be evolving with time during the measureme %O]' Now 1+ (L—-T)/(T-2)=(L—-2)/(T-2).

process. Sequential CS with a notion of 'time of a
measurement’ is a natural candidate setting in which to” ™ ) —
explore this important extension to the CS literature. function/z, El ] < \/755-

Finally, using Jensen’s inequality with the concave

10
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