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Abstract—Compressed Sensing aims to capture attributes of
k-sparse signals using very few measurements. In the standhr
Compressed Sensing paradigm, théV x C measurement matrix
® is required to act as a near isometry on the set of all
k-sparse signals (Restricted Isometry Property or RIP). If &
satisfies the RIP, then Basis Pursuit or Matching Pursuit reovery
algorithms can be used to recover anyk-sparse vectora from
the N measurements®a. Although it is known that certain
probabilistic processes generateN x C matrices that satisfy
RIP with high probability, there is no practical algorithm f or
verifying whether a given sensing matrix ® has this property,
crucial for the feasibility of the standard recovery algorithms. In
contrast this paper provides simple criteria that guarantee that
a deterministic sensing matrix satisfying these criteria ats as a
near isometry on an overwhelming majority of k-sparse signals;
in particular, most such signals have a unique representatin in
the measurement domain. Probability still plays a critical role,
but it enters the signal model rather than the construction d
the sensing matrix. An essential element in our constructio is
that we require the columns of the sensing matrix to form a
group under pointwise multiplication. The construction allows
recovery methods for which the expected performance is sub-
linear in C, and only quadratic in NV, as compared to the super-
linear complexity in C of the Basis Pursuit or Matching Pursuit
algorithms; the focus on expected performance is more typal
of mainstream signal processing than the worst-case analigs
that prevails in standard Compressed Sensing. Our framewdt
encompasses many families of deterministic sensing mates,
including those formed from discrete chirps, Delsarte-Gothals
codes, and extended BCH codes.

Index Terms—Deterministic Compressed Sensing, Statistical
Near Isometry, Finite Groups, Martingale Sequences, McDianid
Inequality, Delsarte-Goethals Codes.

I. INTRODUCTION AND NOTATIONS
The central goal of compressed sensing is to capture

The two fundamental questions in compressed sensing are:
how to construct suitable sensing matricés and how to
recovera from f efficiently; it is also of practical importance

to be resilient to measurement noise and to be able to recon-
struct (approximations toy-compressible signals, i.e. signals
that have more thah nonvanishing entries, but where ority
entries are significant and the remaining entries are close t

zero.
The work of Donoho [9] and of Candées, Romberg and Tao

[10], [2], [11] provides fundamental insight into the gedme

of sensing matrices. This geometry is expressed by e.g. the
Restricted Isometry Property (RIP), formulated by Carates
Tao [10]: a sensing matrix satisfies theRestricted Isometry
Property if it acts as a near isometry on/alsparse vectors; to
ensure unique and stable reconstructiok-Gjparse vectors, it

is sufficient that® satisfy2k-RIP. WhenN/C and/ork/N are
(very) small, deterministic RIP matrices have been cogta
using methods from approximation theory [12] and coding
theory [13]. More attention has been paid to probabilistio-c
structions where the entries of the sensing matrix are géser

by an i.i.d Gaussian or Bernoulli process or from random
Fourier ensembles, in which larger values'ofC and/ork /N

can be considered. These sensing matrices are known tfy satis
the k-RIP with high probability [9], [10] and the numbeY

of measurements i/slog% . This is best possible in the sense
that approximation results of Kashin [14] and Glushin [15]
imply that Q( % log %) measurements are required for sparse
reconstruction using;-minimization methods. Constructions
of random sensing matrices of similar size that have the RIP
but require a smaller degree of randomness, are given by
several approaches including filtering [16], [17] and exgEn
gtaphs [18], [1], [6], [5]-

tributes of a signal using very few measurements. In mostThe role of random measurement in compressive sensing
work to date, this broader objective is exemplified by thean be viewed as analogous to the role of random coding

important special case in which /asparse vectonn € R¢
(with C large) is to be reconstructed from a small numbéer
of linear measurements with < N < C. In this problem, the
measurement data constitute a vegioe= N /2 o, where
® is an N x C matrix called thesensing matrix Throughout
this paper we shall use the notatign for the j-th column
of the sensing matriX; its entries will be denoted by; (z)
(with label z varying from1 to N). In other words;(z) is
the x-th row andj-th column element of.
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in Shannon theory. Both provide worst case performance
guarantees in the context of an adversarial signal/errateio
Random sensing matrices are easy to construct, aritkaReP

with high probability. As in coding theory, this randomnéss

its drawbacks, briefly described as follows:

o First, efficiency in sampling comes at the cost of complexity
in reconstruction (see Table 1) and at the cost of error inadig
approximation (see Section 5).

e Second, storing the entries of a random sensing matrix may
require significant space, in contrast to deterministicrives
where the entries can often be computed on the fly without
requiring any storage.
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TABLE |
PROPERTIES OFk-SPARSE RECONSTRUCTION ALGORITHMS THAT EMPLOY RANDOM SENEG MATRICES WITH N ROWS ANDC COLUMNS. THE
PROPERTYRIP-11S THE COUNTERPART OFRIP FOR THE/; METRIC AND IT PROVIDES GUARANTEES ON THE PERFORMANCE OF SPSE
RECONSTRUCTION ALGORITHMS THAT EMPLOY LINEAR PROGRAMMING1]. NOTE THAT EXPLICIT CONSTRUCTION OF THE EXPANDER GRAPHS
REQUIRES A LARGE NUMBER OF MEASUREMENTSAND THAT MORE PRACTICAL ALTERNATIVES ARE RANDOM SPARSE MATRCES WHICH ARE
EXPANDERS WITH HIGH PROBABILITY.

Approach Number of Complexity | Compressible  Noise RIP
MeasurementsVv Signals Resilience
Basis Pursuit klog (%) & Yes Yes Yes
(BP) [2]
Orthogonal Matching klog™(C) k*1og(C) Yes No Yes
Pursuit (OMP) [3]
Group Testing [4] klog™(C) klog®(C) Yes No No
Expanders (Unique klog (%) Clog (£) Yes’ Yes’ RIP-1
Neighborhood) [5]
Expanders (BP) [1] klog (%) & Yes Yes RIP-1
Expander Matching klog (%) Clog (%) Yes’ Yes’ RIP-1
Pursuit (EMP) [6]
Sparse Matching klog ($) Clog (£) Yes’ Yes’ RIP-1
Pursuit (SMP) [6]
CoSaMP [7] klog (%) Cklog (£) Yes Yes Yes
SSMP [8] klog (%) Cklog (£) Yes Yes Yes

o [5] provides an algorithm with smaller constants that isera® implement and analyze, whereas [6] is able to handleemo
general noise models.

e Third, there is no algorithm for efficiently verifying wheth an overview of approaches in the literature that employ de-
a sampled sensing matrix satisfies RIP, a condition thatteyministic sensing matrices, several of which are based on
essential for the recovery guarantees of the Basis Punsdit dinear codes (cf. [19] and [21]) and provide expected-case
Matching Pursuit algorithms oany sparse signal. rather than worst-case performance guarantees. It is tantor
These drawbacks lead us to consider constructions with de-note (see Table 2) that although the use of linear codes
terministic sensing matrices, for which the performance makes fast algorithms possible for sparse reconstrudtiese
guaranteed in expectation only, férsparse signals that areare not always resilient to noise. Such non-resilience fasis
random variables, but which do not suffer from the samitself in e.g. Reed-Solomon (RS) constructions [21]; the RS
drawbacks. The framework presented here provides reconstruction algorithm (the roots of which go back to 1795

e easily checkable conditions on special types of detertignis— see [26], [27]) uses the input data to construct an error-
sensing matrices guaranteeing successful recoveslldfut locator polynomial; the roots of this polynomial identifiyet

an exponentially small fractionf k-sparse signals; signals appearing in the sparse superposition. Because the
e in many examples, the entries of these matrices can tarespondence between the coefficients of a polynomial and
computed on the fly without requiring any storage, and its roots is not well conditioned, it is very difficult to deal

e recovery algorithms with lower complexities than Basigiith compressible signals and noisy measurements in RS-
Pursuit and Matching Pursuit algorithms. based approaches.

To make this last point more precise, we note that Basis Rursu
and Matching Pursuit algorithms rely heavily oratrix-vector
multiplication, and are super-linear with respect do the
dimension of the data domain. The reconstruction algorith ,
for the framework presented here (see Section 5) requirgs OHreC|ser,
vector-vectomultiplication in the measurement domain; asa )
result, its recovery time is only quadratic in the dimensioRefinition 1. ((k, €, )-StRIP matrix)

N of the measurement domain. We suggest that the role# NV x C (sensing) matrix® is said to be a(k,e,d)-
the deterministic measurement matrices presented here $étistical Restricted Isometry Property matrix [abbaé
compressive sensing is analogous to the role of structurdd¢: 9)-StRIP matrix] if, for k-sparse vectors: € R, the

codes in communications practice: in both cases fast engodinequalities
and decoding algorithms are emphasized, and typical rather 1
than worst case performance is optimized. We are not the (1—e) ol < \/——‘1’04
only ones seeking inspiration in coding theory to construct N

deterministic matrics for compressed sensing; Table 2sgiv@old with probability exceedingl — & (with respect to a
uniform distribution of the vectorsx among all k-sparse

Because we will be interested in expected-case performance
only, we need not impose RIP; we shall instead work with
Me weaker Statistical Restricted Isometry Property. More
we define

2
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TABLE I
PROPERTIES OFk-SPARSE RECONSTRUCTION ALGORITHMS THAT EMPLOY DETERMINIST SENSING MATRICES WITHN Rows ANDC COLUMNS. NOTE
THAT FORLDPC CcODESk < C. NOTE ALSO THAT RIPHOLDS FOR RANDOM MATRICES WHERE IT IMPLIES EXISTENCE OF A LOWISTORTION
EMBEDDING FROM/{2 INTO £1. GURUSWAMIET AL. [18] PROVED THAT THIS PROPERTY ALSO HOLDS FOR DETERMINISTIC SEN$G MATRICES
CONSTRUCTED FROM EXPANDER CODES T FOLLOWS FROMTHEOREM8 IN THIS PAPER THAT SENSING MATRICES BASED ON DISCRETE CHIRRPS\ND
DELSARTE-GOETHALS CODES SATISFY THEUSTRIP.

Approach Number of Complexity | Compressible  Noise RIP
Measurementsv Signals Resilience
Low Density
Parity Check Codes klogC ClogC Yes Yes No
(LDPC) [19]
Low Density
Parity Check Codes klog (£) C Yes Yes No
(LDPC) [20]
Reed-Solomon k k2 No No No
codes [21]
Explicit Construction of C C Yes Yes No
Expander Graphs [22]
Embedding/s into k(log C)~loeglosC c3 Yes No No
¢, (BP) [18]
Extractors [13] kcem kC°M1og(C) No No No
Discrete chirps [23] NG kN log N Yes Yes UStRIP
Delsarte-Goethals codes klogC k2log>T°W ¢ Yes Yes UStRIP
This Paper, [24], [25]

vectors inRC of the same norm. be viewed as another instance of a weakening of RIP, in
I:)the following different direction. RIP implies thak defines

There is a slight wrinkle in that, unlike the simple RI . . . .
. . . a low-distortion ¢5-¢1-embedding that plays a crucial role
case, StRIP does not automatically imply unique reconstruc

tion, not even with high probability. If anNV x C matrix I the proofs of [9], [10], [2], [11]. In [18], Guruswami

B is (2k,c,6)—SIRIP, then, given ak-sparse vectom, it et al. prove tr_lat thls_€2-lél-em_bedd|ng property also holds
: for deterministic sensing matrices constructed from egpan
does follow that® maps any other randomly pickeg-

sparse signaB to a different image, i.edo £ 5, with codes. These matrices satisfy an “almost Euclidean nuiespa

probability exceedingl — § (with respect to the random %ﬁ;gy property, that is for any in the null space of,

choice of 8). This does not mean, however, that uniquenesgiall, ' bounded by a constant ; this is their main tool to
is guaranteed with high probability: requiring that the medPtain the results reported in Table 2.

sure of{ a € R®; a is k-sparse and there is a differeint- In this paper we formulate simple design rules, imposing
sparsef € R¢ for which ®a = ® 3} be small, is a more that the columns of the sensing matrix form a group under
stringent requirement than that the measuré 8fc R¢; 3 # pointwise multiplication, that all row sums vanish, thaffe-
aand ®a = ®S} be small for allk-sparsea. For this ent rows are orthogonal, and requiring a simple upper bound
reason, we also introduce the following definition: on the absolute value of any column sum (other than the

— . multiplicative identity). The properties we require areifsed
Definition 2. ((k, €, §)-UStRIP matrix) . o
An N x C (sensing) matrix® is said to be a(k,e,d)- by a large class of matrices constructed by exponentiating

. L . codewords from a linear code; several examples are given in
Uniqueness-guaranteed Statistical Restricted Isometop-P i : ' ples are g
. . T ) Section 2. In Sections 3, we show that our relatively weak
erty matrix [abbreviatedk, ¢, §)—UStRIP matrix] if @ is a

(k. €, 5)-StRIP matrix, and design rules are suficient Fo guaraptee tItIati_s UStRIP,

T ' provided the parameters satisfy certain constraints. Toepy
{BER; da =08} = {a} property makes it possible to avoid intricate combinatoria
reasoning about coherence of collections of mutually wsdda
bases (cf. [28]). Section 4 applies our results to the case
where the sensing matrix is formed by taking random rows
of the FFT matrix. In Section 5 we emphasize a particular

Again, we are not the first to propose a weaker Versi(jﬂmily of constructions inVOlVing subcodes of the second
of RIP that permits the construction of deterministic segsi order Reed-Muller code; in this case codewords correspond t

matrices. The construction by Guruswami et al. in [18] cafultivariable quadratic functions defined over the binaeyfi
or the integers modulo 4. Section VI provides a discussion

1Throughout the paper norms without subscript derfet@orms regarding the noise resilience.

with probability exceeding — ¢ (with respect to a uniform
distribution of the vectors: among allk-sparse vectors iiR®
of the same norm).



II. STRIP-ABLE: BASIC DEFINITIONS, WITH SEVERAL
EXAMPLES

{1,...,C} such thaty; is the inverse ofp; for this group

operation. Using Lemma 4, we have then, forallp;/ (z) =

. . . " -1
In this section we formulate three basic conditions arlehi(z)] = »; (). n

give examples of deterministic sensing matricesvith N | ainma 6. If the matrix ® satisfies(2) , (3) and (4) , then the
rows andC columns that satisfy these conditions. Note tha{yrmalized cqumnéN‘l/Q %,) form a tight frame
17je{1,....C}

throughout the paper, we shall assume (without stating this

again explicitly) thatP has no repeated columns.

Definition 3. An N x C—matrix ® is said to ben—StRIP-
able, wheren satisfies0 < n < 1, if the following three
conditions are satisfied:

o (St1) The rows of® are orthogonal, and all the row sums

are zero. i.e.

wj(@)pily) = 0if x # y )

Mo

1

<.
Il

®3)

Mo

pj(x) =0, forall z .
1

<.
Il

.....

i’ CN, with redundancyC/N.

Proof: By Lemma 4 and (2), we have

c
(@07), = ¢i(@) p;(y) = Cuy

j=1
i.e.®d" = Cly, so that, for any vector € CV,

3 v, o) = 0@®T ol = o

J=1
|

Lemma 7. If the matrix ¢ satisfies(4) , then the inner

« (St2) The columns of® form a group under “pointwise Product of two columns; and ;, defined asp; - ¢; :=

multiplication”, defined as follows
for all j, 7/ € {1,...,C},
there exists g” € {1,...,C} such that
forall = : ¢;(x) pjr(z) = @ju(x) . (4)
In particular, there is one column @b for which all

> wi(x) @i (x) , equalsN if and only if j = j'.

Proof:
If j = 7/, we obviously havep; - ¢;; = N, by Lemma 4.
If ¢;-¢; = N, then we have, by Cauchy-Schwarz,

N =995 <lpj-pil < leilllesll = N,

the entries are 1, and that acts as a unit for this groi[pplying that in this instance the Cauchy-Schwarz inedyali

operation; this column will be denoted hly. Without
loss of generality, we will assume the columnsdofare
ordered so thap; = 1, i.e. pi(z) = 1 for all z.

o (St3)Forallje{2,...,C},

2
> i)

< N?7n

®)

Remarks
1. Condition (5) applies to all columrexceptthe first column
(i.e. the column which consists of all ones).
2. The justification of the nam8&tRIP-ablewill be given in
the next section.

must be an equality, so that, must be some multiple ap;.
Since N = ¢; - ¢;, the multiplication factor must equal 1,
so thaty; = ;.. Since® has no repeated columns,= j’
follows. |

We shall prove that StRIP-able matrices have (as their
name already announces) a Restricted Isometry Property in
a Statistical sense, provided the different parameteisfpat
certain constraints, which will be made clear and explicihie
next section. Before we embark on that mathematical arslysi
we show that there are many examples of StRIP-able matrices.

A. Discrete Chirp Sensing Matrices

3. When the value of in (5) does not play a special role, we | et ;) be a prime and let be a primitive (complexph

just don't spell it out explicitly, and simply cafb StRIP-able. root of unity. A lengthp chirp signal takes the form
The conditions (2-5) have the following immediate conse-

2
guences: = W' wherer = 0,1, ,p— 1.

Omp+r(T)

Here m is the base frequencyand » is the chirp rate

Lemma 4. If the matrix® satisfieg(4), then|y;(z)| = 1, for
Consider now the family of chirp signal§p,,,+,) where

all 7 and all «.

. r,m=0,1,...,p—1; the “extra” phase factor (zusually not
Proof: For everyz, (¢;(z)).cry o 1S @ group of . . 1
A RIS S . present in chirps) ensures that the row sum$_; ¢¢()
complex numbers under multiplication; all finite groupsubt . . —t=0 . .
. . vanish for allz. It is easy to check that this family satis-
type consist of unimodular numbers. |

fies (St1), (St2), and (St3) [23]. For the correspondingisens
Lemma 5. If the matrix ¢ satisfies(4) , then the collection matrix ®, Applebaum et al. [23] have analyzed an algorithm
of columns of® is closed under complex conjugation, i.efor sparse reconstruction that exploits the efficiency & th
forall j € {1,...,C}, there exists g’ € {1,...,C} FFT in each of two steps: the first to recover the chirp rate
and the second to recover the base frequency. The Gersehgori
Circle Theorem [29] is used to prove that the RIP holds for
sets of(ﬁ’—;U columns. Numerical experiments reported in
[23] compare the eigenvalues of deterministic chirp sensin

i (x) = @i(@) . (6)

Proof: Pick j € {1,...,C}. Since the columns cb form
a group under pointwise multiplication, there is soriec

such that, for allx,



matrices with those of random Gaussian sensing matrices. Bo that condition (St3) is trivially satisfied. Details areyided
singular values of restrictions tb-dimensional subspaces ofin Appendix A; we refer the interested reader to [31], [33D]
N x C random Gaussian sensing matrices have a gaussiml Chapted5 of [33] for more information about subcodes
distribution, with meanuy ¢ » and standard deviationy ¢ »; of the second order Reed-Muller code.

the experiments show that, for the same valuesVofC and

k, the singular values of restrictions of deterministic phirc. BCH Sensing Matrices

sensing matrices have a similar spread around a centra ValuThe Carlitz- Uchiyama Bounds (See Chapterf [33])
w € (unc.k 1) that is closer to 1; in fact, the experiment?mply that the intervgl

suggest thaft — un.ck > on.c.k-
2771 = (¢ = )22, 27 (¢ - 12"

B. Kerdock, Delsarte-Goethals and Second Order Reed Mullggntains all non-zero weights in the dual of the extended
Sensing Matrices binary BCH codeBC H (m, t) of lengthN = 2™ and designed

In our construction of deterministic sensing matrices HasdiStancee = 2¢+1, with the exception ofv((1) = N. Setting

1 _ h
on Kerdock, Delsarte-Goethals and second order Reed Muﬁ%@fi(mvt) = (1) @ Com,ts the CO|UmnS_ O_f the'* BCH
codes, we start by picking an odd number The 2" rows of S€Nsing matrix are obtained by exponentiating the codesvord

the sensing matri® are indexed by the binany-tuplesz, and 1N Cm.¢- The column determined by the codewaré- (c;) is
the 2(-+2™ columns are indexed by the paifsh, wherep 9Ven by

is anm x m binary symmet_ric matrix in the Delsarte-Goethals 0olj) = (_1)bcT(_1)Cj . wherej = 0,1,---,2™ — 1,
set DG(m,r), andb is a binarym-tuple. The entrypp;(z)
is given by and wheré is any vector not orthogonal t0),, ;. Conditions
- - (St1) and (St2) hold by construction and
(pr(x) _ Z-wt(dp)+2wt(b)2-sz +2bx (7) . )
where d,, (_1enote_s the main diagonal_d?, anql wt denotes (_1)bcT Z (—1)% — N-— 2th(C)|2
the Hamming weigh(the number ofls in the binary vector). =

Note that all arithmetic in the expression®z" + 2bz " and 9
wt(dp) + 2wt(b) takes place in the ring of integers moddlo < [2@ — 1)2’“/2}

since they appear only as exponentsifdsiven P, b the vector
xPx" + 2bz" is a codeword in the Delsarte-Goethals co
(defined over the ring of integers modulpFor a fixed matrix
P, the2™ columnsyp; , b € Fy* form an orthonormal basis
I'p that can also be obtained by postmultiplying the Wals

Hadamard basis by the unitary transformation didg’ ="

30 that (St3) holds. These sensing matrices have been adalyz
by Ailon and Liberty [34].

In the binary case, the column sums take the fé¥m- 2w
H\_/herew is the Hamming weight of the exponentiated code-
word, and a similar interpretation is possible for codes #na
) _ linear over the ring of integers modulo 4 (see [30]). Propert
The Delsarte-Goethals sdPG/(m,r) is a binary vector (si3) connects the Hamming geometry of the code domain,

space containing" ") binary symmetric matrices with the a5 captured by the weight enumerator of the code, with the
property that the difference of any two distinct matrices h"i};eometry of the complex domain.

rank at leastn — 2r (See [30]). The Delsarte-Goethals sets
are nested I1. | MPLICATIONS FORDETERMINISTIC STRIP-ABLE

DG(m,0) C DG(m,1) C -+ C DG(m, (m=1)/2). SENSING MATRICES: MAIN RESULT
, . . In this section we prove our main result, namely tha®if
The first setDG(m, 0) is the classical Kerdock set, andgasisfies (st1), (St2) and (St3), théris UStRIP, under certain
the last setDG(m, (m~1)/2) is the set of all binary sym- g5 \weak conditions on the parameters. More precisely,

metric matrices. The'!” Delsarte-Goethals sensing matrix
is determined byDG(m,r) and hasN = 2™ rows and Theorem 8. Suppose theV x C matrix ¢ is n-StRIP-able,
¢ = 2(r+2)m columns. The initial phase in (7) is chosen s@nd supposé < 1 + (C — 1)e andn > 1/2. Then there
that the DeIsarte—G_oethaIs sensing matrices satisfy @td) oyists a constant such that, ifN > (¢ &log€ 77’ thend is
(St2). (See Appendix A). _ [6_(k_61)/(c_1)]2 N

Coherence between orthonormal baBesandT', indexed (K, €,9)-UStRIP withd := 2exp [— Sk }
by binary symmetric matrice® and @ is determined by the
rank R of the binary matrix @ @ (See Appendix A). Any g
vector in one of the orthonormal bases has inner product\ﬁ
absolute valu@—"/> with 2 vectors in the other basis and is
orthogonal to the remaining basis vectors. The column SUIRS .
in this " Delsarte-Goethals sensing matrix satisfy - Proving StRIP

3.1.1 Setting up the Framework

2
Z@Pb(w) —0or N2/ It will be convenient to decompose the random process
- ’ generating the vectors as follows: first pick (randomly) the

The proof of Theorem 8 has two parts: we shall first, in
ction 3.1, prove thad is StRIP; when this is established
turn our attention to proving UStRIP in Section 3.2.




indicesof the nonzero entries af, and then th@aluesof those equality, and of (3) in the second. It then follows that
entries. For the first step, we pick a random permutatioa

(mj)jer1,....cy of {1,...,C},; the k numbersry, ... m; i

wiljl Jth{en be {he indices of the non-vanishing entries cof Ex Z ‘ Z . @ @iy (¥) . (@)
Next, we pickk random valuesy, . .., «y; these will be the o bgwithji

non-zero values of the entries of the vecter Computing N r _
expectations with respect i@ can be decomposed likewise; - T -1 Z &y i -

when we average over all possible choicesrptbut not yet 5 With 51
over the values of the random variables, . . ., o, we shall Applying the Cauchy-Schwarz inequality, we obtain

denote such expectations Hy,, adding a subscript. We start

k
by proving the following 0 < Z o + Z laj|?
Lemma 9. For 7, &, o as described above and := B With '#; =
N—12® o, we have k k
K = D] Sk eyl
(1-E3) hal < &L =T TE
) Combining this with the previous equality gives
< (1455 lar. N(k—1)
( c-1 ———llal?
c-1

Proof: With the notations introduced above, the entries < Ex Z Z O @i Py (T) e, ()

of f := N~'/2® « are given by @ 5 with j£i
f(z) := N—1/2 ijl @; ¢r,(z). We have then - N la|?
= 1"
lFI? = Z | f(2))? It then suffices to substitute this into (8) to prove the Lemma
|
1 X ) Remark10. By using the Cauchy-Schwarz inequality in the
- N Z Z [y |7 + ¥(2) (8) last step of the proof of 9 we may have sacrificed quite a bit,
z=1 \ =1 especially if the non vanishing entries indiffer appreciably
where(z) = 3, s O3 T P, (@) omi (@) . wo(lnjrlgegeof magnitude. Without this step, the final inequalit
The first term in (8) is independent of ; it just equals
k 2 _ 2 N 2 2
ijl laj [* =[] -1 (||0<Hé1 — [l )
For the second term, we have
< E: Z Z aja_i¢ﬂj(x) O, ()
Yo > 0@ (@) en (@) ) T g with ji
T 4, jwith j#£i N
< =l (1)
= i E T 7T»L . .
o Z @ % Z Z oy (@) ¢ ] To prove the concentration dff||> around its expected
i,7 With j#£i ) ) i i
value, we will make use of a version of the McDiarmid
By (4) and Lemma 6, we have)  ¢¢(z)pwr(xr) = inequality [35] based on concentration of martingale
Y. em(x) for some appropriaten := m(¢,¢'); if £ # (', difference random variables wittlistinct values (as opposed
thenpy = (¢u) " # (¢¢)~ ", s0 thatm(l,¢') # 1. to independenvalues for the standard McDiarmid inequality).

As 7 ranges over all possible permutations{df...,C}, the In what follows, upper case letters denote random variables
indexm(m;, m;) (with j # 4) will range (uniformly) over all lower case letters denote values taken on by these random

possible valueg, ..., C (i.e. excludingl). It follows that, for variables.
J# i
Theorem 11 (Self-Avoiding McDiarmid inequality) Let
Z o, (2 ) ori(2) X1, -+, Xy, be probability spaces and defireé as the prob-
ability space of all distinctn-tupleg. In other words, the set
= Z Z pe(x) X is the subset of the product sét= X; x --- , xX,, given
(#1
= (C — 1)71 Z (—1) = — L , (10) 2We follow a widespread custom, and denote by the same letitr the
- c-1 set carrying the probability measure, and the probabifigce [i.e. the triplet

) . (setp-algebra of measurable sets,measure)]. We shall specifshvid meant
where we have made use of a counting argument in the fivigen confusion could be possible.



by From (15) and Lemma 2.2 we get

. - o h(ﬁa"'am)=2|a.¢'|2+ﬁ Y amel P
the probability measure o/’ is just the renormalization (so i=1 i With i
as to be a probability measure) of the restrictionAbof the ’ '

standard product measure 6%. We have then

Leth(ty,--- ,t,,) be a function from the set to R, such that h(T1s o T ey ) — ALy oo Ty e )
for any coordinatei, giventy,--- ,t;—1: 1 Z - "o
= =z Oy O | Py, — Prt O
N , { J 3 ¢ j }
sup E[h(t17 ety Ti+la T 7Tm)] J with j#L

UEX; juFty ,n=1—1
[ o ——
Z |:O‘j QL Pr; [Spmz - 9071'2]:|

+_
inf ]E[h/(tla e 7tiflvlvTi+17 e 7T’m)] <¢ (713) N j with G0

leX;l#t, ,n=1—1

where the expectations are taken over the random variable_si Z [aza—j Z (<p ( ) (@) = P, )(x))]
m(me,m; m(7,,T;

Tit1, .., T, (conditioned on taking values that are all different &V

from each other and front,...,t;_; as well asu (first
expectation) orl (second expectation). Then for any positive- N Z [aja—g Z (gpm(m”)(x) — gpﬂ(twé)(x))] ,
Vs x
Pr(|h(Ty, -, To) — E[A(T1, - , T)]| > 7] where we .have used the same_notation as in the proof of
942 Lemma 9, i.e,,(; ;) (x) := @i(z) Bj(x).
< 2exp (—2) . (14) Becausgmi, ... ,my, ..., ) and(m, ..., T, ..., ) are
2.6 both in Py, the indicesny, ... ,m, ..., 7 and m;, are all
different. It then follows from (5) that
Proof: See Appendix B. |

[h(m1, oo Ty ooy ) — (1, oo Ty ooy )]

2
3.1.2 Proof of StRIP N |ov | Z || ZE: Preyy (T) — %mw,j)(x)‘

We are now ready to start the

IN

Proof: (of the (k, ¢, §)-StRIP property, claimed in Theo- < 2 || Z oy | 9 N1-n/2
rem 8) N j with j=£¢
Let P, denote the set of alk-tuples (m,--- ,7,) where 4
(m1,---,mc) is a permutation of{1,2,---,C}. It follows = W|Of¢| Z |aj] (16)
from the definition that all entries of each element Bf J with j#¢

are distinct. The se_ka is finite; equipped with the cpunting where we have used thai(m,, 7;) # 1if 7y # =;, i.e. if
measure, renormalized so as to have total masB;lis the 4 # j. Because this bound is uniform over thgin Ay, it is
probability space of the: non-zero entries of the randompgy clear that this implies the sufficient condition of thefSe
signala: the (w1, -+, mx), corresponding to (uniformly) ran- ayoiding McDiarmid inequality, withc, given by the right

domly picked permutations of {1,...,C}, are random pang side of (16). We can thus conclude from Theorem 11
variables distributed uniformly irP,. For1 < i < j < k, that

we denote byr,_,; the (j — i + 1)-tuple of random variables

(7Ti,7Ti+1,"' ,7Tj). Prﬂ’ [|h_E[h]| ZﬂHQHQ} (17)
Given valuesay, ag, ..., oy, let f: P, — CV be defined ) ,
by f(mi, - ) = \/%Zleai%w andh : P, — R by <2exp | - 262 N ||a| ;
Wiy om) = £ (ms- - )2 Clearly 16 4y lael® [ 52, with e ]
k
1 .
h’(ﬂ'lv e 77Tk) = N Z aia_j ((pﬂm)—r(p—ﬂ'] (15) Since ) ,
ij=1 k
Our strategy of proof will be the following. We want to Z |ve|? Z |o;
upper bound Bx||| f1|? — l|||?| > €||]|?]. From Lemma 9 we =1 L g with j#¢
know thatE, ||| f||?] is close to|la|?. This suggests that we k [k 2
investigate, for3 > 0, the functionG(3) defined byG(5) = < Z |ae|? Z |aj ]
Pre([|[f1*=Ex[I[fI’]l] = Bllal|?] = Pre[|h—Ex[h] > B|e?]. =1 =

This last expression is exactly of the type for which the Self
Avoiding McDiarmid Inequality gives upper bounds, provide
we can establish first thdt satisfies the required conditionswhere we have used the Cauchy-Schwarz inequality in the
of the Self-Avoiding McDiarmid inequality. Deriving such a

bound is thus our first step.

< lal?kllol® = Klal*



penultimate step, it follows that or, equivalently,

Pr, [[h— E[h]| > B|o]?] < 2 exp (_ ﬁ;g") , Prr [[IF1I* = llal?] > elle]?]

P L [e=€=D7" p2—21°
After substituting||f||> for h, and applying Lemma 9, we — ~%P{73g P ~Xe>v2) e 1) )
finally obtain that

with p = [|all, [|a] =", as above, and(,~0) = 1 if a > 0,

Pr, [|||f||2 — ||la)l?| > (5 + E) |a||2} X(a>0) = 0 otherwise. The worst case for this bound is when
) ¢-1 p = Vk, in which case we recover the bound in Theorem 8;
< 2exp (_ B N”) ' if one is restricted, for whatever reason, kesparse vectors
- 8k that are known to have some entries that are much larger than

Fore > (k—1)/(C— 1), we can se3 = ¢ — (k — 1)/(C — other non vanishing entries, then the more complicated ¢houn

1), thus recovering the StRIP-bound claimed in the stateméHYen here is tighter.

of Theorem 8 for this case: with probability at least- Remark16. If the sparsity levelk is greater than/C, then
—[e=(k—1)(C-1)"1]*N" C < k? < NZ2. However, since some deterministic sensing
_ 8k matrices of section Il structurally require the conditidyit <
isometry fork-sparse vectors: C, a deterministic matrix withN’ = O ’“f—zgc) rows and

(1—=olal® < [IfII* < (1+ el (18) N'? <’ columns is required. In this case, thé x C sensing
matrix ¢ is constructed by choosing random columns from
the N’ x C’ deterministic matrix.

2 exp ( , we have the following near-

Remark12. Equation (18) implies that as long a@%—l—
k=1 <e, the probability of failure (i.e. the probability that theB. Proving UStRIP: Uniqueness of Sparse Representation

near-isometry inequality fails to hold) drops to zer€as» oc. Although we have established the desired near-isometry
In particular, ify equals 1k < 1(C—1)e+1 for some constant pounds, we still have to address the Uniqueness guaramtee; u
 less than one, and/ = O (’“‘:—fc) then the probability of like the standard RIP case, this does not follow automdyical
failure approaches zero at the rate’. from a StRIP bound, as pointed out in the Introduction. More
precisely, we need to estimate the probability that a raglom
Remark 13. Figure 1 shows the distribution of conditionpickedk-sparse vecton has an “evil twin"a’ # « that maps

numbers for the singular values of restrictions of the s&nsito the same image unddr, i.e. da = o/, and prove that
matrix to sets of K columns. Two cases are considered; thfis probability is very small.

Reed Muller matrices constructed in Section 2.2 and randomif § c {1,...,C} is the union of possible support sets
Gaussian matrices of the same size. The figure suggests #fa4 two k-sparse vectors, that is, i = |S| < 2k, then we
the decay of define @5 to be theN x s matrix obtained by picking out
Pr H”f”z _ ||a||2’ > 6”0[”2} only _the columns indexed by labels In_other word_s, the
- matrix elements o® g are thosep; (x) for whichj € S, with z
is similar for both types of compressive sensing matrices. varying over its full range. There will be two differehtsparse
. vectorsa’ # a, the supports of which are both contained in
Remark14. Note that similar to the case of random and it anq only if thes x s matrix ®'® is rank-deficient (where
expander matrices, the number of measuremefng;m\{vs aS &t denotes conjugate transposed®f Note that this property
the inverse square of the distortion parame{eN o =, @S oncerns the support sétonly — the values of the entries of
¢~ 0. « are not important. This is similar to the discussion of spars

Remark 15. By avoiding the use of the Cauchy-SchwarieconStrUCtiO” whenb satisfies a deterministic Null Space
inequality at the end of the proof, and making use of RemafoPerty [12]. Once uniqueness is found to be overwhelrying

10, one can sharpen the bounds. From (17) it follows that wif€!y, we can derive from it the probability that decoding a
B2N"||a|? gorithms (such as the quadratic decoding algorithms deestri

8lallZ, in Section V) succeed in constructing, frofry, a faithfully

probability at leastl — 2 exp <—
( 1 exact or close copy (depending on the application) ofkhe
- (9= g2 ) P -
C

T 1 lall7, < If117 = llal? sparse source vector.

In fact, it turns out that we won't even have to consider
and 1 matrices®g with |S| = 2k; as we shall see below, it suffices
I£11% = [lall® < <ﬁ + —> [|ex|? to consider®s for setsS of cardinality up tok.
C-1 Once again, condition (St3) will play a crucial role. For the
This implies (set3 = vp, p = ||lall¢, [la]~") StRIP analysis, in the previous subsection, it sufficed take
1 n > 0, wheren is the parameter that measures the closeness
Pr, [|||f||2 — [le?| = (7p+ ——— max(1, p? — 1)) ||a|2] of column sums in (St3). In this subsection, we will impose a
, c-1 non-zero lower bound of; we shall see thay>0.5 suffices
<2e” 7V N/E for our analysis.
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Fig. 1. Mean and standard deviation for the condition nundfde-Gram matrices fob g, with m = 6, compared to that of a Gaussian random matrix
of the same size.

We recall here the formulation of (St3): for any colump the positions of the first elements of a random permutation
of the sensing matrix, with > 2, of {1,...,C}\{w}. Then

2.4 U’f VI

We introduced the notatiofts at the start of this subsection.where the expectation is with respect to the choice of the set
We shall also use the special case where we wish to restect
the sensing matrixp to a single column indexed by; in Proof: By linearity of expectation we have
that case, we denote the restriction gy. Finally we denote ’

the conjugate transpose of a matdxs by ®;. We shall 1 1 2 1 & - 2
use Tropp’s argument (see Section 7 of [Tr008b]) to provetx U‘\/—Nﬂ\/—ﬁs@w ] = WZEM |:‘(SO_M) @w‘ } .
unigueness of sparse representation; to apply this argumen =1 (20)
we first need to prove that a random submatsix has small
coherence with the remaining columns of the sensing matr

< leﬁ/Q. (19)

' kc-N
TN(C-1)

Since the set of columns ob is invariant under complex
ijnjugatmn and forms a group under pointwise multiplarat

. we have
Lemma 17. Let & be n—StRIP-able withn > 1/2, and
assume that the conditions < ¢(C — 1) + 1, and N = (@m) | Pu ZWI Pu(T) = Z‘Pm(w,m)(x)
O ((klogC/e2)1/") hold, and¢ is as defined in Theorem 8, 0 .
ie where we use again the notation introduced just below (9):
[e—(k—1)/(C—1)°N" e(x)per () = @ (z). As k ranges over all the possible
0 = 2exp | — Sk . permutations that do not mowve, ~; ranges uniformly over
{1,...,C}\ {w}, and the different; := m(w, x;) range

Let w be a fixed column o®, and letk = {k1,---,kr} be uniformly over{2,...,C}.
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Hence: we have

zk: LE | ‘(tp_)T ; ‘2] E[f(t1, - ,tic1, ta, tigr, -+, tr)]
SNz — E[f(t1, - s tic1s s tigr, -+ 5 th)
k M 2 ’ 1 T 2 1 __\T 2
1 = |5 |@%) tu| — 35 |(@n) Pw
= Z—QE% Zg@zi(gc) NQ‘ ‘ NQ‘( ) ‘
i=1 L= N 2 N 2
L TN = Z@m(w,ti)(ff) - Z‘Pm(w-,té)(x)
= Z _QEZ% Z Pz (x)s021 (y) z=1 r=1
i=1 Lz, y=1 < IN—" , (23)
El S . . .
= REA(SY Z Z ©;(x)e; (y) (21) by (St3), sincem(w,t;) # 1 # m(u_),_t’i). It immediately
=2 z,y—1 follows that the concentration condition holds fgr with
2 1 N ¢; = N~". Therefore the Self-Avoiding McDiarmid Inequality
= — - — holds for f, which means it also holds fdr: for any positive
NZ(C—1) z%;l (Coz.y ”) ; ! yp
k 1 k C—N 2
= —~—_ - (NC—-—N¥)h=_L 1 1 k
NENGEY J=NEo HTQLT% S
where we have used (Stl) . |
> kC—-N
Next, we use the Self-Avoiding McDiarmid inequality, < Pry l > NC_1 +
together with property (St3) to derive a uniform bound for
the random variablgl @1 o, ||: - < 2N2’7>
< exp o .

Theorem 18. Let ® be —StRIP-able withy > 1/2, and || this was for one fixed choice ofs; note that the bound
assume that/the conditions < ¢(C — 1) + 1, and N' = 565 not depend on the identity of This implies that by
0O (klffc) hold, defines as in Theorem 8, and lex applying union bounds over thé possible choices for the

be a set ofc random columns o. Then with probability at columnw of ®, we get that the probability that there exists a

least1 — ¢, there exists nav such that w such that )
1 1 k
1 > kC—N /2klog¢s —— 0 ——p,|| > =+,
| >+ VRO o) Hm add I
VN “VN NC—-1 N7
27
o . is at most exp (*722\7 7) . Writing v in terms ofd completes
Proof: The proof is in several steps. In the first ste
. T . e proof. |
we pick anyw € {1, ..., C}, and keep it fixed (for the time 1/n
being). Let f N = O ((klfzgc) > the right hand side of (22)
reduces to

k
1 T
f(tlv"' 7tk) = X9 (‘Pti) Pw| > 2 1/2
7| 0(%)+0< R R 1/2>>

where we assume that,--- , ¢, are k different elements of
{1, ..., C}\ {w}, picked at random. Note that ¥ is a ran- Thus, ifp > 1/2, then (for sufficiently smak, and sufficiently
dom permutation ofl,...,C}\{w} thenf(\,...,\x) = large C) a choice ofk random columns of®> has a very

H A\/_%JH The functionf, as defined above from high probability of_ I’.k'?lving §mal| coherence V\{iﬂny other.
column of the matrix; in particular, we have, with probatyili

{(t17t27"'7tk); i € {17 ,C}\{U)} v iv 123 #tja Vi #]} exceedingl _6’ that

2

to R, is information-theoretically indistinguishable frometh Aot L <(-e? (24)
function ' from the permutations of 1, ..., C} \ {w} to R N \/N%” '
defined by

2 This establishes incoherence between the random submatrix

®, and the remaining columns of the sensing matrix.
We can now complete the UStRIP proof by following an

We have computed(f] = E[F] in Lemma 17; in order to argument of Tropp [36]; for completeness we include the
apply the Self-Avoiding McDiarmid Inequality t@, we need argument here: P ’ P

verify only that a necessary condition of the Self-Avoiding
McDiarmid inequality holds. Lemma 19. Let A = {\y,---,\x} be a set oft indices
When we subtract f(¢1,- -+ ,ti—1,t, tiy1, - ,tx) from sampled uniformly fromj1,--- ,C}. Assume thad is (k, ¢, §)-

fltr, - tim1,ti tiv1, -, tx), only thei-th term survives; StRIP. LetS be any other subset dfl,--- ,C} of size less

1 1
/\) = H\/—N(I)l\/—NWw
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than or equal tok. Then, with probability at leasfl — §) exceeding1 — 9), so that

(with respect to the randomness in the choice\pf dim (rangé®,)) = k
dim (range(®,) Mrangg®s)) < . (25) with probability exceedind — 6. The near-isometry property

%f ®, implies that no two signals with suppoxtcan have the

Proof: First, note that we need check only the cas lue in th d in. If th hel
dim (rangé®ds)) — k, since otherwise (25) is immediate S&Me value in the measurement domain. If there nevertheless

Note also that, becausg is (k,¢,d)-StRIP, the probability /'€ & vectora’ such that®a’ = ®a, the supportS
that the randomly picked set= {A,--- , A} satisfies of o/ would therefore necessarily be different from By
T Lemma 19, we know that’ = rangéA,) NrangéAg) is at

(1—e)ldy < iq’i\q’/\ < (1+€)ldy most (k — 1)-_dim.ensi0nal. It follows that in order to possibly
N have an “evil twin"«’, the vectora must itself lie in the at
is at leastl — ¢. (The notation Ig stands for the identity most(k — 1)-dimensional space that is the inverse imag& of
matrix on ; this just amounts to restating thi&, ¢, 6)-StRIP  under®,. This set, however, has measure zero with respect to
condition in matrix form.) It follows that, with probabijitat any measure that is absolutely continuous with respecteo th
leastl — 4, k-dimensional Lebesgue measure. Thus, for daclet \ for
Omin (Pr) > /(1 —€)N, (26) which @, is a near-isometry, the vectors that are not uniquely
determined by their imagé@«, constitute a set of measure
zero. Since randomly chosénsets\ produce restriction$
that are near-isometric with probability exceeding- ¢, the

whereo,i, (®,) is the smallest singular value @f,.
SinceS # A, S has at least one index not i Denote that

index bys. Since the entries of the matrix are all unimOdmaEheorem i
we have S proved. . -
2 2 Combining Remark 12 with Theorem 20 completes the
losll” = Z [ps(@)]” = N. (27) proof of Theorem 8.
Let P, be the orthogonal projection operator on the raRge
of ®,. We shall prove (25) by showingthﬁlf’kcpSH? < ”%”2, IV. PARTIAL FOURIER ENSEMBLES
which Implles that there exists a vector in the rang@@fthat In Partial Fourier ensembles the matrx is formed by
is outside the range ob,. Note that uniform random selection ofV rows from theC x C dis-
i -1y crete Fourier Transform matrix. The resulting random sensi
Py =&y (‘I’A‘bk) 25 (28)  matrices are widely used in compressed sensing, because the

corresponding memory cost is ondy(V log C), in contrast to
the O(NC) cost of storing Gaussian and Bernoulli matrices.
. Moreover, it is known [10], [7] that ifV > k log® C, then with
Prgs|? = (‘I’i\éﬁs)T (@lfﬁx)_ ((ﬂ\ws) overwhelming probability, the partial Fourier matrix séits
the RIP property. It is easy to verify that suklsatisfies the

Since®, is (k,¢,0)—StRIP, we have, still with probability at
least1 — o,

Hq);(ps ? Hq);(ps : Conditions (St1), and (St2). We now show that it also saisfie
5 < Condition (St3) almost surely.
(Tmin(Px)) N —¢) Note that here in contrast to the proof of Theorem 8, the
< (1-¢eN <N, randomness is with respect to the choice of Meows from

the Discrete Fourier Transform matrix. We show that with

overwhelming probability, the condition (St3) is satisfifet

Theorem 20. Let & be n—StRIP-able withy > 1/2, and €very column of this randomly sampled matrix. First fix a

assume that the conditions < ¢(C — 1) + 1, and N = column ¢; other than the identity column, and define the
blogc\ /M _ _ random variableZ, to be the value of the entry;(x), where

0 <( = ) hold, defined as in Theorem 8, and let

where the penultimate inequality is by Equation (24). =

the randomness is with respect to the choice of the rows of
be a randomly picked-sparse signal. Then with probability ® (that is with respect to the choice 8j. Since the rows are
at leastl — o (with respect to the random choice @}, « is the chosen uniformly at random, and the column sums (for all but
only k-sparse vector that satisfies the equatipe= —=®a.  the first column) in the discrete Fourier transform are zew®,

VN have
Proof: We have already proved in Section 3.1.2 that B |:Zw Zz} _ 2Bl _ (29)
is (k, €, §)-StRIP. We start by recalling that the random choice N N

of a can be viewed as first choosing its support, a uniformigince all entries are unimodular, we may apply Hoeffding’s
distributed subset of size within {1,---,C}, and then, once jnequality to both the real and the imaginary part of the cand

the support is fixed, choosing a random vector within tr\%riamexTZz' then apply union bounds to conclude that for
corresponding:-dimensional vector space. For this last choicgy . -

no distribution has been specified; we shall just assumadtthat

is absolutely continuous with respect to the Lebesgue measu Pr [
on R* or CF.

Since® is (k, €, §)-StRIP, @, is non-singular with probability Applying union bounds to alC — 1 admissible columns we

% > e} < 46Xp{—2N€2}.
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get multiplication of a sparse superposition

Pr[there exists a column average greater tHan (30) 1 &
. . . f(.%‘) = Z QPP b, (.%')
is at most4C exp {—2Ne?} . Hence, with probability at least VN =
1 — ¢ all column averages ar@ % , and all column Wwith a shifted copy of itself. The sensing matrix is obtained

/. o by exponentiating multivariable quadratic functions se finst
sums are less thayi [V log C, so that condition (St3) is indeedgio hroduces a sparse superposition of pure frequendies (i

satisfied. Applying Theorem 8 we see that a partial Fourigfe example below, these are Walsh functions in the binary
matrix satisfies StRIP with only logC measurements.rTh|s domain) against a background of chirp-like cross terms.
improves upon the best previous upper boundkadbg” C

obtained in [10] and helps explain why partial Fourier ncasi 1 T P
work well in practice. flata)f(e) =« > lagP(=n* B (31)
j=1

1 o -
t 5 > aaier, b, (+a)ep, b, (2).
V. QUADRATIC RECONSTRUCTIONALGORITHM J#t

Then the (fast) Hadamard transform concentrates the energy
. T
of the first term+; Zle |aj|2.(—1)a Fiz at (no more tr_\ank
Walsh-Hadamard tones, while the second term distributes en

Algorithm 1 Quadratic Reconstruction Algorithm

Input: N dimensional vectoff = —=®a + v ergy uniformly across allV tones. Thd'" Fourier coefficient
Output: An approximatior to the signalx is
1 _ Ty -
1 Setf; = f,© ={}, & =0x. r, = N¥/2 Zajat Z(_l)l ©p; b; (T + a)pp, b, (2),
2: for t =1,---, k or while || f;]|» > € do i#t e (32)
3. for eachentryr =1to N do

and it can be shown (see [25]) that the energy of the chimp-lik

& pointwise multiply f; with a shift (offset) of itself as cross terms is distributed uniformly in the Walsh-Hadamard

in (31). domain. That is for any coefficierit
5. end for
6: Compute the fast Walsh-Hadamard transform of the lim oo E [NQ |rﬁl|2} = Joy[?le|*. (33)
pointwise product: Equation (32) J#t

7. Find t.h? p05|t|(_)rpt of the n_ext peak in the_ Ha_damarquuation (33) is related to the variance ¢fand may be
domain: Equation (33) implies that the Ch'fp"'ke CTOSGiewed as a fine-grained concentration estimate. In fact the
terms appear as a constant background signal. proof of (33) mirrors the proof of the UStRIP property given

8 if pi € Keyg(©) then in Section 3; first we show that the expected value of any

o Restoref; < fi + O (pt)¢p.- Walsh-Hadamard coefficient is zero, and then we use the Self-

10: end if .1 T . N Avoiding McDiarmid Inequality to prove concentration atbou

11: Update 5, = ﬁf #p. Which minimizes |[f, — this expected value. The Walsh-Hadamard tones appear as
\/Lﬁﬂt@ptﬂw spikes above a constant background signal and the quadratic

12:  Add ' to entryp; of . algorithm learns the terms in the sparse superposition by va

13:  SetO(p;) = f. ing the offseta. These terms can be peeled off in decreasing

14: Setfii1 < [t — Brop, - order of signal strength or processed in a list. The quadrati

15: end for algorithm is a repurposing of the chirp detection algorithm

commonly used in navigation radars which is known to work
extremely well in the presence of noise. Experimental tesul
'show close approach to the information theoretic lower loun
r.?@—the required number of measurements. For example, numer-

Goethals sensing matrices. It is this structure that esabie ical experiments show that the quadratic decoding algurith
is able to reconstruct greater thaf-sparse superpositions

algorithm to avoid the matrix-vector multiplication reced : N . . .
g P Ged hen applied to deterministic Kerdock sensing matrice$ wit

when Basis and Matching Pursuit algorithms are applied 1o~ g 18 . . . )
random sensing matrices. Because our algorithm requirgs Oow?er2bo?1rr]1((jjcis;1§g2'( 1' ltg'/sk)c fgb;h[ezﬁformatlon theoretic

vector-vector multiplication in the measurement domalig t
reconstruction complexity is sublinear in the dimension of We now explain how the StRIP property provides perfor-
the data domain. The Delsarte-Goethals sensing matrix waance guarantees for the Quadratic Reconstruction Algurit
introduced in Section 2.2: there &1® rows indexed by binary At each iteration the algorithm returns the location of one
m-tuples z, and 20"+2™ columns ¢p, ,, indexed by pairs of the k significant entries and an estimate for the value of
P;,b; where P; is a binary symmetric matrix and; is a that entry. The StRIP property guarantees that the estimate
binary m-tuple. The first step in our algorithm is pointwiseis within ¢ of the true value. These errors compound as the

The Quadratic Reconstruction Algorithm [23], [24], [25]
described in detail above, takes advantage of the muktilobei
quadratic functions that appear as exponents in Delsa
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Theorem 21. Let ® and o be such that

1000 R o *

(1—¢) ||a||2<||\/N(I>a||2 (L+€)[lall?, (36)

with probability exceedingg > 0, and let f = J—lﬁQ)a +
v, where the noise samplegx) are iid complex Gaussian
random variables with zero mean and varian2e®. Then,
for v >0,

(1= =llel> < [IfI* < @+ +9)lel?, (37

with probability greater thanl — 2 (6 +S {@} ) where

550 B e’} 0o —1
” | | S(r) = (/ eyz/zledy) (/ eyz/zledy)
10 20 o 50 60 70 T 0

k (Number of components) . . .
Proof: First consider the probability thatf|| exceeds the
upper bound in (37). Setting= —= (I>a we have

Number of successful runs
Py
(=}
T

Fig. 2. The number of successful reconstructiond (00 trials versus the

sparsity factork for the deterministic Kerdock sensing matrix correspogdin
om=9 Pr{lfll = (1 + € + )]

< Prllgl + vl = (1 + ¢ +y)llell]

. . . . . > ! >
algorithm iterates, but since the chirp cross-terms andenoi  — Prillgll = (1 + )]+ Prlliv] VHOZH]

are uniformly distributed in the Walsh-Hadamard domaie, th 5 1 / exp ( ”U”Q)
error in recovery is bounded by the difference between the tr N (2mo2)N/2 llyll>~lell 202
signala and its besk-term approximatiomy;,. More precisely, 54 1 / o llul/2 4N,

if ®is (k,e¢,0)-StRIP, if the position of thé significant entries o 2mN2 J>Allal /o

are chosen uniformly at random, if the near-zero entries and
the measurement noisecome from a Gaussian distribution,! € estimate for Plf|f|| < (1 — ¢’ —~)||a|] is similar, and
and if the Quadratic Recovery Algorithm is used to recovéIPe desired bound then follows from the union bounds.m

an approximation for «, then

2 B. Noisy Signals
o= allo < 2o~ el + T2l (34) Y SO | | o
1- l—e If the signala is contaminated by white gaussian noise then

The role of the StRIP property is to bound the error of approxae measurements are given by

imation in Step 11 of the Quadratic Reconstruction Algarith 1

Note that if it were somehow possible to identify the support V=75 (Pa+ Pu), (38)

of a beforehand, then the UStRIP property would guarantee

that we would be able to recover the signal values by line@here p is complex multivariate Gaussian distributed, with
regression. However identifying the support ofkasparse Z€ro mean and covariance

S|gn§I is known to be _almos_t as hard as full recorystructmd_, a E(upt) = 20%Iexe. (39)
that is why our algorithm finds location and estimates signal

value simultaneously, and does so one location at a time. The reconstruction algorithm thus needs to recover theasign

Note that the error bound is of the forfa//s: from the noisy measurements
o= éllz < Clla — agll2. (35) y=1rf+v (40)
This bound is tighter thaf, /¢, bounds of random ensemblesvhere v = ——®pu is complex multivariate Gaussian dis-
[2] , and ¢, /¢, of expander-based methods [6]. tributed with mean zero and covariance
20°
Ty — 22 T
VI. RESILIENCE TONOISE E(!) = 7 @0 (41)

A. Noisy Measurements The deterministic compressive sensing schemes considered
this paper have some advantage over random compressive
In this Section, we consider deterministic sensing matrice pap g P

satisfying the hypothesis of Theorem 8, and show re&henégns'ng schemes in th@&@ ( (I)T) INXN and con-

to independent identically distributed (iid) Gaussian seoi sequentlyE (v (z)v(z')) = 2‘§Vcém, i.e., the noise samples
that is uncorrelated with the measured signal. Note we have distinct measurements are independent. One can thus use
introduced the square 0f +¢') in (36) merely to simplify the the estimates of the previous subsection again. Noise sf thi
notation in the proof. (This’ could be, for instance, pickedtype is of course harder to deal with; this is illustratedeher
so thate’(2 — €’) > ¢, wheree has the same meaning as irby the measurement variance being a (possibly huge) factor
Theorem 8.) C/N larger than the source noise variance
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VII. CONCLUSIONS [12]

We have provided simple criteria, that when satisfied by
a deterministic sensing matrix, guarantee successfuvego [13]
of all but an exponentially small fraction of k-sparse sigha
These criteria are satisfied by many families of deternmimist

sensing matrices including those formed from subcodeseof f*

second order binary Reed Muller codes. The criteria alsdyap?ls]
to random Fourier ensembles, where they improve known
bounds on the number of measurements required for spguse w. Bajwa, J. Haupt, G. Raz, S. Wright, and R. Nowak, “Tiiep

reconstruction. Our proof of unique reconstruction uses a structured compressed sensing matric&atistical Signal Processing.
version of the classical McDiarmid Inequality that may bﬁ?]
of independent interest.

We have described a reconstruction algorithm for Reed
Muller sensing matrices that takes special advantage of the
code structure. Our algorithm requires only vector-vect&te!
multiplication in the measurement domain, and as a result,
reconstruction complexity is only quadratic in the numbgr g9

measurements. This improves upon standard reconstruction

algorithms such as Basis and Matching Pursuit that require

matrix-vector multiplication and have complexity that is-s [
perlinear in the dimension of the data domain.
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APPENDIXA Hence
PROPERTIES OFDELSARTE-GOETHALS SENSING

2 m (z14e)Q(z1+€) T 4+2(z14e)b "
MATRICES s° =2 ZZ ' ' '

ecl

First we prove that the columns of th& Delsarte-Goethals — 9gm:1Qz +221b7 Z jeQe’ +2eb’
sensing matrix form a group under pointwise multiplication ek

Proposition A.1. Let G = G(m,r) be the set of column The mape — eQe' is a linear map from&' to Z,, so the
vectorsgp;, where numeratoreQe " +2¢eb' also determines a linear map frafh
to Zs (here we identifyZ, and27Z,). If this linear map is the

wt(dp)+2wt(b) ;xPr T +2bx T m
P i , for x € Fy zero map then

epp(x) =i
whereb € F3* and where the binary symmetric matikvaries G2 — 92m—r;z1Qz] +2bz]
over the Delsarte-Goethals s&tG(m,r). Theng is a group
of order 2"t2)™ uynder pointwise multiplication. and if it is not zero thers = 0. Note that givere — eQe',

_ there are2™ ways to choosé so thate — eQe' + 2eb' is
Proof: We have the zero map. -

)

The 0** Delsarte-Goethals sensing matrix is a matrix with
N = 2™ rows and N? columns. These columns are the
union of N mutually unbiased bases, where vectors in one
where® is used to emphasize additionli*. Write P+ P’ = orthogonal basis look like noise to all other orthogonaldsas
(P®P")42Q (mod 4) whereQ is a binary symmetric matrix.
Observe tharzQz" = 2dgz " (mod 4), where the diagonal
dg = dp * dp: is a pointwise product oflp anddp-.

erp(T)op b (2)
jwt(de)+wt(dps )+2wt(b€9b’)Z-m(PJrP’)zTJrQ(bEBb’)mT

APPENDIXB
GENERALIZED MCDIARMID 'S INEQUALITY

Thus The method of “independent bounded differences” ([35])
gives large-deviation concentration bounds for multati
opp(x)pp p(x) functions in terms of the maximum effect on the function
—  j(wt(dp)+wt(dp)+2wt(dprdp)]+2wt(b@b Bdpxdp:)) value of changing just one coordinate. This method has been
(PP )z 12060 Sdprdp s widely used in combinatorial applications, and in learning
! theory. In this appendix, we prove that a modification of
= PPaP b@b@dprdp (T), McDiarmid’s inequality also holds fodistinct (in contrast to

independent yandom variables; our proof consists again in
orming martingale sequences.

We first introduce some notation. Létfy,--- , X, be prob-
ability spaces and defing as the probability space of all
distinct m-tuples, that is,

X ={(x1,- ,xm) € T2 X; such thaty i # j @ z; # 2}

and G is closed under pointwise multiplication. Hence th

possible inner products of columps 4, ppr ¢ are exactly the

possible column sums for columps, , whereQ = P& P'. R
Next we verify property (St3).

Proposition A.2. Let Q be a binary symmetrien x m matrix
with rank» and letb € F5*. If

(42)
S — Z,'IQIW%IT (This definition is spelled out in more detail at the end of
- subsection 3.1.2.) Lef(z1,---,x,,) be a function fromx
then eitherS = 0 or to R, and letf(Xy, ..., X,,) be the corresponding random
. . variable on X. Denote by X;_,; the i- tuple of random
§% = 1@z 2z 92m=r - wherez, Q = dg. variables (X1,---,X;) on the probability spacet. (The
] “complete” m-tuple (X1,...,X,,) will also be denoted by
Proof: We have just X.) Analogouslg/, defineX(H)l)ﬁm to be the(m — i)-
§2 - 2:Z-acQacT+yQyT+2b(ac+y)T tuple of random variables(X 1),---,X,,). We shall
.y also use the notations,—;, = (z1,...,x;) € II,_; X,
_ 2:Z-(ss+y>Q(ac+y)T+2*Q.vf+2b(ss+y)T X = {rii € I _y520 # w,if L # nf;
o T(it-m € 1L )X and Xii1m C I
_ ) _ are defined analogously.
Changing variables te = = & y andy gives
5% = ZiZQZT Z(—l)(dQJer)yT- Theorem B.1 (Self-avoiding McDiarmid inequality) Let X
z y be the probability space defined in Equation (42), andflet
Since the diagonall, of a binary symmetric matrixQ is & — R be a function such that for any index and any
contained in the row space 6f there exists a solutionQ = Z1-(i-1) € X1,
dg. The solutions to the equatiar) = 0 form a vector space o .
EQof dimensionm — r, and for alle, f € £ uexﬁuilif_’n:HiE[f(xl’ » Tim1, Uy X1, s Xom)] (43)

lEXﬁl;éiwnnf,nZI—ﬂE[f(xl’ o, Ti—1, l7Xi+la e 7Xm) S C;.

eQe’ +fQf T =(e+ f)Qe+ )T (mod 4).
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Then for any positive, Proof: Using Markov’'s inequality, we see that for any
2) positivet

224;1) Pr[f—E[f]>¢ = Pr [et(.f—]E[f]) > €t6}
< e “E [ew,Em)} (51)

Prilf( Xy, -, Xm) —E[f (X1, -, Xm)]| > € <2exp(

Our proof will invoke Hoeffding’s Lemma [[35]]

Proposition B.2 (Hoeffding’s Lemma) Let X be a random Since f —E[f] = Z,,, — Zo, we can rewrite this as
variable withE[X] = 0 anda < X < b then fort > 0 m
E exXp <tz (Zz — Zzl)>‘|
1=1

[t F—ELD] —
t2(b— a)? Ele } -
E[etx}gexp{g}. .
By marginalization of the expectation,

8

In our proof we will also make use of the functions )
Zi(x15i) = E[f(X)| X155 =215]  where z1,; € X5 E |exp <tz (Z; — Zi1)>‘|
As a result, for allz;_, ;1) In X1, ;1) ) ol m
= Ex, iy lEXm lexp <fZ(Zi - Zi—l)) ‘Xlﬂ(ml)‘|‘|
. . =1
WX mml i Zil@oa-n,v) = e KA 1 D (#1261, 1) | (45) m-1 ( )
— P . t an_mel
is less thar;. This implies, for allz1_,; € X;_,;, = Eexp (2 (Zi ZZ”) Ex,, [e ‘X1—>(m—1)” ;
—¢; < leX--l;ézinrfz:I—)i—l Zi(x153i-1),1) where we have used that eaZh depends on only the first
j i ;u Zir ) components ofX, so that only(Z,,—1 — Z,,) is affected by
uGXi;u;ézn,I:zzlﬂifl A= =1, the averaging oveX,,.
< Zas) (49) FZy( (49)) Vge (have, f)(|)r <al| Ilvvri\ich (fan a)lélc?il;)e
_ . ) ) . L1—i) — Li—1T1—(i-1) > G
]E[f(Xl—>(z—l)7XZvX(l+1)—>m)|'rl—>(z—l)] rewritten as—c¢; < Zl(X) _ Zi—l(X) <.
= Zi(x15i) = Zi-1(T153-1)) Because of the martingale property (50) we have
< Zi(x1-4) (47) E[Zi— Zi71|X;_1_] = Exiinom [Zi— Zia| X7 =
- inf ) Zi(,flﬂ(i,l),l) Ex, [Z Zi_ 1|XZ*1} =0.
1€X;lF@n,n=1=i-1 Combining these last two observations with Hoeffding’s
< sup Zi(vi(i-1),u) (48)  Lemma [35] we conclude
UEX; uFTy,,n=1—i—1
- inf Zi i— 7l i
tettpamtovicy 2T 1) Exim [eXp <Z(Zi - ZH))]
< G, i=1
m—1 7. _
or = Ex, .0y [e(t SN2 By [e(zm Zom 1) |X1_’(’”‘1>H
| Zi(@1551) = Zia(3153-1))| < (49)

m—1
t%ch. /8 _ 7
Until now, we have viewed eacly; as a function on the ¢ L8 ST leXp <2(ZZ ZZ_l))}
subsetX;_,; of H@Zng; it is straightforward to lift theZ; " =
to fur_mtions on all of¥. Tthi(XHi) = Zi(){) can also be < .o <exp }tz Z 2
considered as random variables &mh depending only on the 8
first i components ofX,

Zi(X15i) = Ex( ) [F (X X14]

1o 2
(The subscriptX(;;1)_,,, on the expectation indicates that Pr(f —E[f] 2 ¢ <exp <_t6 + 3t Z € ) (52)
one averages only with respect to the variables listed in the
subscript, in this case the last — i variables. We adopt Since equation (52) is valid for any> 0, we can optimize
this subscript convention in what follows; only expectatio OVer ¢. By substituting the value = 4¢ (3-¢7 )~' we get
without subscript are with respect to the whole probability 92
spaceX’.) Pr(f —E[f] > ¢ <exp (ch) :
Viewing the Z; as random variables, we observe that = v
E[f(X1, -, X,)], and thatZ,,, = f(Xi, -, X,,). Because Replacing the functionf by IE[f] — f, it follows that

Substituting this into (51) we obtain

of the restriction toX’, the random variableXx,, Z, are not Pr[f —E[f] < —¢] < exp ;Z : union bounds therefore
independent. However, with respect to averaging ovgrthe imply that

Zi,i = 1,..., m constitue a martingale in the following 92 -
sense: Pr“f—E[fH26]§2exp<202>.

Ex, [Z:(X)|X156-1] = Zi-1(X) (50)



